Properties

Label 672.4.i.c.209.75
Level $672$
Weight $4$
Character 672.209
Analytic conductor $39.649$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,4,Mod(209,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.209"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.75
Character \(\chi\) \(=\) 672.209
Dual form 672.4.i.c.209.73

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.10794 + 0.953394i) q^{3} +17.0023i q^{5} +(5.04990 + 17.8185i) q^{7} +(25.1821 + 9.73975i) q^{9} -37.8286 q^{11} +77.9029 q^{13} +(-16.2099 + 86.8468i) q^{15} +34.6479 q^{17} +37.7811 q^{19} +(8.80655 + 95.8303i) q^{21} -47.8900i q^{23} -164.079 q^{25} +(119.343 + 73.7585i) q^{27} +180.790 q^{29} +163.846i q^{31} +(-193.226 - 36.0656i) q^{33} +(-302.956 + 85.8600i) q^{35} +159.677i q^{37} +(397.923 + 74.2721i) q^{39} -81.5544 q^{41} -241.294i q^{43} +(-165.598 + 428.154i) q^{45} -356.246 q^{47} +(-291.997 + 179.963i) q^{49} +(176.979 + 33.0331i) q^{51} -585.689 q^{53} -643.174i q^{55} +(192.984 + 36.0203i) q^{57} -172.591i q^{59} -572.943 q^{61} +(-46.3807 + 497.891i) q^{63} +1324.53i q^{65} -765.089i q^{67} +(45.6580 - 244.619i) q^{69} +925.379i q^{71} -590.913i q^{73} +(-838.105 - 156.432i) q^{75} +(-191.031 - 674.049i) q^{77} +28.4235 q^{79} +(539.274 + 490.534i) q^{81} -2.66288i q^{83} +589.094i q^{85} +(923.466 + 172.364i) q^{87} +600.037 q^{89} +(393.402 + 1388.11i) q^{91} +(-156.210 + 836.917i) q^{93} +642.367i q^{95} +703.593i q^{97} +(-952.603 - 368.441i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 64 q^{7} + 104 q^{9} + 8 q^{15} - 976 q^{25} - 568 q^{39} - 4048 q^{49} - 1448 q^{57} + 2152 q^{63} - 4992 q^{79} + 1568 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.10794 + 0.953394i 0.983023 + 0.183481i
\(4\) 0 0
\(5\) 17.0023i 1.52073i 0.649494 + 0.760367i \(0.274981\pi\)
−0.649494 + 0.760367i \(0.725019\pi\)
\(6\) 0 0
\(7\) 5.04990 + 17.8185i 0.272669 + 0.962108i
\(8\) 0 0
\(9\) 25.1821 + 9.73975i 0.932670 + 0.360732i
\(10\) 0 0
\(11\) −37.8286 −1.03689 −0.518443 0.855112i \(-0.673488\pi\)
−0.518443 + 0.855112i \(0.673488\pi\)
\(12\) 0 0
\(13\) 77.9029 1.66203 0.831015 0.556250i \(-0.187760\pi\)
0.831015 + 0.556250i \(0.187760\pi\)
\(14\) 0 0
\(15\) −16.2099 + 86.8468i −0.279025 + 1.49492i
\(16\) 0 0
\(17\) 34.6479 0.494314 0.247157 0.968975i \(-0.420504\pi\)
0.247157 + 0.968975i \(0.420504\pi\)
\(18\) 0 0
\(19\) 37.7811 0.456189 0.228094 0.973639i \(-0.426751\pi\)
0.228094 + 0.973639i \(0.426751\pi\)
\(20\) 0 0
\(21\) 8.80655 + 95.8303i 0.0915117 + 0.995804i
\(22\) 0 0
\(23\) 47.8900i 0.434163i −0.976153 0.217081i \(-0.930346\pi\)
0.976153 0.217081i \(-0.0696537\pi\)
\(24\) 0 0
\(25\) −164.079 −1.31263
\(26\) 0 0
\(27\) 119.343 + 73.7585i 0.850649 + 0.525734i
\(28\) 0 0
\(29\) 180.790 1.15765 0.578826 0.815451i \(-0.303511\pi\)
0.578826 + 0.815451i \(0.303511\pi\)
\(30\) 0 0
\(31\) 163.846i 0.949280i 0.880180 + 0.474640i \(0.157422\pi\)
−0.880180 + 0.474640i \(0.842578\pi\)
\(32\) 0 0
\(33\) −193.226 36.0656i −1.01928 0.190249i
\(34\) 0 0
\(35\) −302.956 + 85.8600i −1.46311 + 0.414657i
\(36\) 0 0
\(37\) 159.677i 0.709481i 0.934965 + 0.354741i \(0.115431\pi\)
−0.934965 + 0.354741i \(0.884569\pi\)
\(38\) 0 0
\(39\) 397.923 + 74.2721i 1.63381 + 0.304950i
\(40\) 0 0
\(41\) −81.5544 −0.310650 −0.155325 0.987863i \(-0.549642\pi\)
−0.155325 + 0.987863i \(0.549642\pi\)
\(42\) 0 0
\(43\) 241.294i 0.855745i −0.903839 0.427873i \(-0.859263\pi\)
0.903839 0.427873i \(-0.140737\pi\)
\(44\) 0 0
\(45\) −165.598 + 428.154i −0.548577 + 1.41834i
\(46\) 0 0
\(47\) −356.246 −1.10561 −0.552807 0.833309i \(-0.686443\pi\)
−0.552807 + 0.833309i \(0.686443\pi\)
\(48\) 0 0
\(49\) −291.997 + 179.963i −0.851303 + 0.524674i
\(50\) 0 0
\(51\) 176.979 + 33.0331i 0.485923 + 0.0906971i
\(52\) 0 0
\(53\) −585.689 −1.51794 −0.758968 0.651128i \(-0.774296\pi\)
−0.758968 + 0.651128i \(0.774296\pi\)
\(54\) 0 0
\(55\) 643.174i 1.57683i
\(56\) 0 0
\(57\) 192.984 + 36.0203i 0.448444 + 0.0837018i
\(58\) 0 0
\(59\) 172.591i 0.380839i −0.981703 0.190419i \(-0.939015\pi\)
0.981703 0.190419i \(-0.0609848\pi\)
\(60\) 0 0
\(61\) −572.943 −1.20259 −0.601294 0.799028i \(-0.705348\pi\)
−0.601294 + 0.799028i \(0.705348\pi\)
\(62\) 0 0
\(63\) −46.3807 + 497.891i −0.0927527 + 0.995689i
\(64\) 0 0
\(65\) 1324.53i 2.52750i
\(66\) 0 0
\(67\) 765.089i 1.39508i −0.716545 0.697541i \(-0.754277\pi\)
0.716545 0.697541i \(-0.245723\pi\)
\(68\) 0 0
\(69\) 45.6580 244.619i 0.0796605 0.426792i
\(70\) 0 0
\(71\) 925.379i 1.54679i 0.633923 + 0.773396i \(0.281444\pi\)
−0.633923 + 0.773396i \(0.718556\pi\)
\(72\) 0 0
\(73\) 590.913i 0.947413i −0.880683 0.473706i \(-0.842916\pi\)
0.880683 0.473706i \(-0.157084\pi\)
\(74\) 0 0
\(75\) −838.105 156.432i −1.29035 0.240843i
\(76\) 0 0
\(77\) −191.031 674.049i −0.282727 0.997597i
\(78\) 0 0
\(79\) 28.4235 0.0404797 0.0202399 0.999795i \(-0.493557\pi\)
0.0202399 + 0.999795i \(0.493557\pi\)
\(80\) 0 0
\(81\) 539.274 + 490.534i 0.739745 + 0.672887i
\(82\) 0 0
\(83\) 2.66288i 0.00352155i −0.999998 0.00176077i \(-0.999440\pi\)
0.999998 0.00176077i \(-0.000560472\pi\)
\(84\) 0 0
\(85\) 589.094i 0.751721i
\(86\) 0 0
\(87\) 923.466 + 172.364i 1.13800 + 0.212407i
\(88\) 0 0
\(89\) 600.037 0.714649 0.357324 0.933980i \(-0.383689\pi\)
0.357324 + 0.933980i \(0.383689\pi\)
\(90\) 0 0
\(91\) 393.402 + 1388.11i 0.453184 + 1.59905i
\(92\) 0 0
\(93\) −156.210 + 836.917i −0.174175 + 0.933164i
\(94\) 0 0
\(95\) 642.367i 0.693742i
\(96\) 0 0
\(97\) 703.593i 0.736485i 0.929730 + 0.368243i \(0.120040\pi\)
−0.929730 + 0.368243i \(0.879960\pi\)
\(98\) 0 0
\(99\) −952.603 368.441i −0.967073 0.374038i
\(100\) 0 0
\(101\) 1007.27i 0.992350i −0.868223 0.496175i \(-0.834737\pi\)
0.868223 0.496175i \(-0.165263\pi\)
\(102\) 0 0
\(103\) 274.314i 0.262417i −0.991355 0.131209i \(-0.958114\pi\)
0.991355 0.131209i \(-0.0418857\pi\)
\(104\) 0 0
\(105\) −1629.34 + 149.732i −1.51435 + 0.139165i
\(106\) 0 0
\(107\) 1132.06 1.02281 0.511405 0.859340i \(-0.329125\pi\)
0.511405 + 0.859340i \(0.329125\pi\)
\(108\) 0 0
\(109\) 2168.32i 1.90539i −0.303934 0.952693i \(-0.598300\pi\)
0.303934 0.952693i \(-0.401700\pi\)
\(110\) 0 0
\(111\) −152.235 + 815.622i −0.130176 + 0.697436i
\(112\) 0 0
\(113\) 42.7131i 0.0355585i 0.999842 + 0.0177793i \(0.00565961\pi\)
−0.999842 + 0.0177793i \(0.994340\pi\)
\(114\) 0 0
\(115\) 814.240 0.660246
\(116\) 0 0
\(117\) 1961.76 + 758.755i 1.55012 + 0.599546i
\(118\) 0 0
\(119\) 174.968 + 617.373i 0.134784 + 0.475584i
\(120\) 0 0
\(121\) 100.004 0.0751345
\(122\) 0 0
\(123\) −416.575 77.7534i −0.305376 0.0569983i
\(124\) 0 0
\(125\) 664.433i 0.475430i
\(126\) 0 0
\(127\) 57.0406 0.0398546 0.0199273 0.999801i \(-0.493657\pi\)
0.0199273 + 0.999801i \(0.493657\pi\)
\(128\) 0 0
\(129\) 230.048 1232.52i 0.157013 0.841217i
\(130\) 0 0
\(131\) 2244.81i 1.49717i −0.663036 0.748587i \(-0.730732\pi\)
0.663036 0.748587i \(-0.269268\pi\)
\(132\) 0 0
\(133\) 190.791 + 673.203i 0.124389 + 0.438903i
\(134\) 0 0
\(135\) −1254.07 + 2029.10i −0.799502 + 1.29361i
\(136\) 0 0
\(137\) 1244.36i 0.776003i 0.921659 + 0.388002i \(0.126835\pi\)
−0.921659 + 0.388002i \(0.873165\pi\)
\(138\) 0 0
\(139\) 502.246 0.306475 0.153237 0.988189i \(-0.451030\pi\)
0.153237 + 0.988189i \(0.451030\pi\)
\(140\) 0 0
\(141\) −1819.69 339.643i −1.08684 0.202859i
\(142\) 0 0
\(143\) −2946.96 −1.72334
\(144\) 0 0
\(145\) 3073.86i 1.76048i
\(146\) 0 0
\(147\) −1663.08 + 640.853i −0.933119 + 0.359569i
\(148\) 0 0
\(149\) 2671.10 1.46863 0.734313 0.678811i \(-0.237504\pi\)
0.734313 + 0.678811i \(0.237504\pi\)
\(150\) 0 0
\(151\) 1518.45 0.818345 0.409172 0.912457i \(-0.365817\pi\)
0.409172 + 0.912457i \(0.365817\pi\)
\(152\) 0 0
\(153\) 872.506 + 337.462i 0.461032 + 0.178315i
\(154\) 0 0
\(155\) −2785.77 −1.44360
\(156\) 0 0
\(157\) −1311.73 −0.666800 −0.333400 0.942785i \(-0.608196\pi\)
−0.333400 + 0.942785i \(0.608196\pi\)
\(158\) 0 0
\(159\) −2991.66 558.392i −1.49217 0.278512i
\(160\) 0 0
\(161\) 853.327 241.839i 0.417712 0.118383i
\(162\) 0 0
\(163\) 3119.89i 1.49920i 0.661894 + 0.749598i \(0.269753\pi\)
−0.661894 + 0.749598i \(0.730247\pi\)
\(164\) 0 0
\(165\) 613.198 3285.29i 0.289318 1.55006i
\(166\) 0 0
\(167\) 3622.79 1.67868 0.839342 0.543604i \(-0.182941\pi\)
0.839342 + 0.543604i \(0.182941\pi\)
\(168\) 0 0
\(169\) 3871.87 1.76234
\(170\) 0 0
\(171\) 951.408 + 367.979i 0.425474 + 0.164562i
\(172\) 0 0
\(173\) 1901.49i 0.835653i 0.908527 + 0.417826i \(0.137208\pi\)
−0.908527 + 0.417826i \(0.862792\pi\)
\(174\) 0 0
\(175\) −828.582 2923.64i −0.357914 1.26289i
\(176\) 0 0
\(177\) 164.548 881.586i 0.0698766 0.374373i
\(178\) 0 0
\(179\) 1329.17 0.555010 0.277505 0.960724i \(-0.410493\pi\)
0.277505 + 0.960724i \(0.410493\pi\)
\(180\) 0 0
\(181\) −2346.73 −0.963709 −0.481855 0.876251i \(-0.660037\pi\)
−0.481855 + 0.876251i \(0.660037\pi\)
\(182\) 0 0
\(183\) −2926.56 546.240i −1.18217 0.220652i
\(184\) 0 0
\(185\) −2714.89 −1.07893
\(186\) 0 0
\(187\) −1310.68 −0.512548
\(188\) 0 0
\(189\) −711.596 + 2498.98i −0.273868 + 0.961767i
\(190\) 0 0
\(191\) 2129.66i 0.806791i 0.915026 + 0.403395i \(0.132170\pi\)
−0.915026 + 0.403395i \(0.867830\pi\)
\(192\) 0 0
\(193\) 878.502 0.327647 0.163824 0.986490i \(-0.447617\pi\)
0.163824 + 0.986490i \(0.447617\pi\)
\(194\) 0 0
\(195\) −1262.80 + 6765.62i −0.463748 + 2.48460i
\(196\) 0 0
\(197\) −3405.38 −1.23159 −0.615796 0.787906i \(-0.711165\pi\)
−0.615796 + 0.787906i \(0.711165\pi\)
\(198\) 0 0
\(199\) 2603.72i 0.927503i 0.885965 + 0.463752i \(0.153497\pi\)
−0.885965 + 0.463752i \(0.846503\pi\)
\(200\) 0 0
\(201\) 729.431 3908.03i 0.255971 1.37140i
\(202\) 0 0
\(203\) 912.973 + 3221.41i 0.315656 + 1.11379i
\(204\) 0 0
\(205\) 1386.61i 0.472416i
\(206\) 0 0
\(207\) 466.436 1205.97i 0.156616 0.404931i
\(208\) 0 0
\(209\) −1429.21 −0.473016
\(210\) 0 0
\(211\) 987.223i 0.322101i 0.986946 + 0.161050i \(0.0514881\pi\)
−0.986946 + 0.161050i \(0.948512\pi\)
\(212\) 0 0
\(213\) −882.250 + 4726.78i −0.283807 + 1.52053i
\(214\) 0 0
\(215\) 4102.56 1.30136
\(216\) 0 0
\(217\) −2919.50 + 827.408i −0.913310 + 0.258839i
\(218\) 0 0
\(219\) 563.373 3018.35i 0.173832 0.931329i
\(220\) 0 0
\(221\) 2699.17 0.821565
\(222\) 0 0
\(223\) 1430.30i 0.429507i −0.976668 0.214754i \(-0.931105\pi\)
0.976668 0.214754i \(-0.0688949\pi\)
\(224\) 0 0
\(225\) −4131.85 1598.09i −1.22425 0.473508i
\(226\) 0 0
\(227\) 5026.34i 1.46965i −0.678258 0.734824i \(-0.737265\pi\)
0.678258 0.734824i \(-0.262735\pi\)
\(228\) 0 0
\(229\) 4464.57 1.28833 0.644164 0.764887i \(-0.277205\pi\)
0.644164 + 0.764887i \(0.277205\pi\)
\(230\) 0 0
\(231\) −333.139 3625.13i −0.0948873 1.03254i
\(232\) 0 0
\(233\) 2131.34i 0.599265i −0.954055 0.299632i \(-0.903136\pi\)
0.954055 0.299632i \(-0.0968641\pi\)
\(234\) 0 0
\(235\) 6057.02i 1.68135i
\(236\) 0 0
\(237\) 145.186 + 27.0988i 0.0397925 + 0.00742725i
\(238\) 0 0
\(239\) 6763.79i 1.83060i −0.402774 0.915299i \(-0.631954\pi\)
0.402774 0.915299i \(-0.368046\pi\)
\(240\) 0 0
\(241\) 2721.77i 0.727489i 0.931499 + 0.363744i \(0.118502\pi\)
−0.931499 + 0.363744i \(0.881498\pi\)
\(242\) 0 0
\(243\) 2286.91 + 3019.76i 0.603725 + 0.797192i
\(244\) 0 0
\(245\) −3059.79 4964.63i −0.797889 1.29461i
\(246\) 0 0
\(247\) 2943.26 0.758199
\(248\) 0 0
\(249\) 2.53877 13.6018i 0.000646136 0.00346177i
\(250\) 0 0
\(251\) 5463.02i 1.37380i −0.726754 0.686898i \(-0.758972\pi\)
0.726754 0.686898i \(-0.241028\pi\)
\(252\) 0 0
\(253\) 1811.61i 0.450178i
\(254\) 0 0
\(255\) −561.639 + 3009.06i −0.137926 + 0.738959i
\(256\) 0 0
\(257\) 6828.16 1.65731 0.828655 0.559760i \(-0.189107\pi\)
0.828655 + 0.559760i \(0.189107\pi\)
\(258\) 0 0
\(259\) −2845.21 + 806.355i −0.682597 + 0.193453i
\(260\) 0 0
\(261\) 4552.68 + 1760.85i 1.07971 + 0.417602i
\(262\) 0 0
\(263\) 665.207i 0.155964i −0.996955 0.0779818i \(-0.975152\pi\)
0.996955 0.0779818i \(-0.0248476\pi\)
\(264\) 0 0
\(265\) 9958.08i 2.30838i
\(266\) 0 0
\(267\) 3064.95 + 572.071i 0.702517 + 0.131124i
\(268\) 0 0
\(269\) 4857.98i 1.10110i −0.834802 0.550550i \(-0.814418\pi\)
0.834802 0.550550i \(-0.185582\pi\)
\(270\) 0 0
\(271\) 1075.74i 0.241131i 0.992705 + 0.120566i \(0.0384709\pi\)
−0.992705 + 0.120566i \(0.961529\pi\)
\(272\) 0 0
\(273\) 686.056 + 7465.46i 0.152095 + 1.65506i
\(274\) 0 0
\(275\) 6206.88 1.36105
\(276\) 0 0
\(277\) 6119.99i 1.32749i 0.747959 + 0.663745i \(0.231034\pi\)
−0.747959 + 0.663745i \(0.768966\pi\)
\(278\) 0 0
\(279\) −1595.82 + 4125.99i −0.342435 + 0.885365i
\(280\) 0 0
\(281\) 580.494i 0.123236i 0.998100 + 0.0616181i \(0.0196261\pi\)
−0.998100 + 0.0616181i \(0.980374\pi\)
\(282\) 0 0
\(283\) 5973.23 1.25467 0.627335 0.778750i \(-0.284146\pi\)
0.627335 + 0.778750i \(0.284146\pi\)
\(284\) 0 0
\(285\) −612.429 + 3281.17i −0.127288 + 0.681964i
\(286\) 0 0
\(287\) −411.841 1453.18i −0.0847046 0.298879i
\(288\) 0 0
\(289\) −3712.52 −0.755653
\(290\) 0 0
\(291\) −670.801 + 3593.91i −0.135131 + 0.723982i
\(292\) 0 0
\(293\) 522.434i 0.104167i 0.998643 + 0.0520835i \(0.0165862\pi\)
−0.998643 + 0.0520835i \(0.983414\pi\)
\(294\) 0 0
\(295\) 2934.45 0.579154
\(296\) 0 0
\(297\) −4514.57 2790.18i −0.882027 0.545127i
\(298\) 0 0
\(299\) 3730.77i 0.721591i
\(300\) 0 0
\(301\) 4299.50 1218.51i 0.823319 0.233335i
\(302\) 0 0
\(303\) 960.327 5145.08i 0.182077 0.975503i
\(304\) 0 0
\(305\) 9741.37i 1.82882i
\(306\) 0 0
\(307\) 7907.97 1.47014 0.735068 0.677994i \(-0.237150\pi\)
0.735068 + 0.677994i \(0.237150\pi\)
\(308\) 0 0
\(309\) 261.529 1401.18i 0.0481485 0.257962i
\(310\) 0 0
\(311\) −1459.26 −0.266068 −0.133034 0.991111i \(-0.542472\pi\)
−0.133034 + 0.991111i \(0.542472\pi\)
\(312\) 0 0
\(313\) 5437.91i 0.982008i 0.871157 + 0.491004i \(0.163370\pi\)
−0.871157 + 0.491004i \(0.836630\pi\)
\(314\) 0 0
\(315\) −8465.31 788.579i −1.51418 0.141052i
\(316\) 0 0
\(317\) 7991.76 1.41597 0.707984 0.706228i \(-0.249605\pi\)
0.707984 + 0.706228i \(0.249605\pi\)
\(318\) 0 0
\(319\) −6839.05 −1.20035
\(320\) 0 0
\(321\) 5782.51 + 1079.30i 1.00545 + 0.187666i
\(322\) 0 0
\(323\) 1309.04 0.225501
\(324\) 0 0
\(325\) −12782.2 −2.18163
\(326\) 0 0
\(327\) 2067.26 11075.6i 0.349602 1.87304i
\(328\) 0 0
\(329\) −1799.01 6347.77i −0.301467 1.06372i
\(330\) 0 0
\(331\) 5913.18i 0.981927i −0.871180 0.490963i \(-0.836645\pi\)
0.871180 0.490963i \(-0.163355\pi\)
\(332\) 0 0
\(333\) −1555.22 + 4021.01i −0.255932 + 0.661712i
\(334\) 0 0
\(335\) 13008.3 2.12155
\(336\) 0 0
\(337\) −10946.5 −1.76942 −0.884712 0.466138i \(-0.845645\pi\)
−0.884712 + 0.466138i \(0.845645\pi\)
\(338\) 0 0
\(339\) −40.7224 + 218.176i −0.00652430 + 0.0349549i
\(340\) 0 0
\(341\) 6198.08i 0.984296i
\(342\) 0 0
\(343\) −4681.23 4294.15i −0.736917 0.675983i
\(344\) 0 0
\(345\) 4159.09 + 776.292i 0.649037 + 0.121142i
\(346\) 0 0
\(347\) 1637.21 0.253285 0.126643 0.991948i \(-0.459580\pi\)
0.126643 + 0.991948i \(0.459580\pi\)
\(348\) 0 0
\(349\) 4492.59 0.689062 0.344531 0.938775i \(-0.388038\pi\)
0.344531 + 0.938775i \(0.388038\pi\)
\(350\) 0 0
\(351\) 9297.15 + 5746.00i 1.41380 + 0.873786i
\(352\) 0 0
\(353\) 1372.22 0.206901 0.103451 0.994635i \(-0.467012\pi\)
0.103451 + 0.994635i \(0.467012\pi\)
\(354\) 0 0
\(355\) −15733.6 −2.35226
\(356\) 0 0
\(357\) 305.128 + 3320.32i 0.0452355 + 0.492240i
\(358\) 0 0
\(359\) 5118.09i 0.752430i −0.926532 0.376215i \(-0.877225\pi\)
0.926532 0.376215i \(-0.122775\pi\)
\(360\) 0 0
\(361\) −5431.59 −0.791892
\(362\) 0 0
\(363\) 510.814 + 95.3432i 0.0738590 + 0.0137857i
\(364\) 0 0
\(365\) 10046.9 1.44076
\(366\) 0 0
\(367\) 6151.73i 0.874980i 0.899223 + 0.437490i \(0.144133\pi\)
−0.899223 + 0.437490i \(0.855867\pi\)
\(368\) 0 0
\(369\) −2053.71 794.320i −0.289734 0.112061i
\(370\) 0 0
\(371\) −2957.67 10436.1i −0.413894 1.46042i
\(372\) 0 0
\(373\) 12854.7i 1.78443i −0.451614 0.892213i \(-0.649152\pi\)
0.451614 0.892213i \(-0.350848\pi\)
\(374\) 0 0
\(375\) 633.466 3393.88i 0.0872321 0.467358i
\(376\) 0 0
\(377\) 14084.1 1.92405
\(378\) 0 0
\(379\) 2284.79i 0.309662i −0.987941 0.154831i \(-0.950517\pi\)
0.987941 0.154831i \(-0.0494832\pi\)
\(380\) 0 0
\(381\) 291.360 + 54.3821i 0.0391780 + 0.00731255i
\(382\) 0 0
\(383\) −3061.90 −0.408501 −0.204251 0.978919i \(-0.565476\pi\)
−0.204251 + 0.978919i \(0.565476\pi\)
\(384\) 0 0
\(385\) 11460.4 3247.97i 1.51708 0.429952i
\(386\) 0 0
\(387\) 2350.15 6076.29i 0.308694 0.798128i
\(388\) 0 0
\(389\) −2350.30 −0.306336 −0.153168 0.988200i \(-0.548948\pi\)
−0.153168 + 0.988200i \(0.548948\pi\)
\(390\) 0 0
\(391\) 1659.29i 0.214613i
\(392\) 0 0
\(393\) 2140.19 11466.3i 0.274703 1.47176i
\(394\) 0 0
\(395\) 483.266i 0.0615589i
\(396\) 0 0
\(397\) −1338.92 −0.169266 −0.0846329 0.996412i \(-0.526972\pi\)
−0.0846329 + 0.996412i \(0.526972\pi\)
\(398\) 0 0
\(399\) 332.721 + 3620.58i 0.0417466 + 0.454275i
\(400\) 0 0
\(401\) 7728.45i 0.962444i 0.876599 + 0.481222i \(0.159807\pi\)
−0.876599 + 0.481222i \(0.840193\pi\)
\(402\) 0 0
\(403\) 12764.1i 1.57773i
\(404\) 0 0
\(405\) −8340.23 + 9168.92i −1.02328 + 1.12496i
\(406\) 0 0
\(407\) 6040.37i 0.735652i
\(408\) 0 0
\(409\) 13294.9i 1.60731i −0.595093 0.803657i \(-0.702885\pi\)
0.595093 0.803657i \(-0.297115\pi\)
\(410\) 0 0
\(411\) −1186.36 + 6356.09i −0.142382 + 0.762829i
\(412\) 0 0
\(413\) 3075.32 871.569i 0.366408 0.103843i
\(414\) 0 0
\(415\) 45.2751 0.00535534
\(416\) 0 0
\(417\) 2565.44 + 478.838i 0.301272 + 0.0562322i
\(418\) 0 0
\(419\) 8465.25i 0.987003i 0.869745 + 0.493502i \(0.164283\pi\)
−0.869745 + 0.493502i \(0.835717\pi\)
\(420\) 0 0
\(421\) 1141.45i 0.132140i 0.997815 + 0.0660701i \(0.0210461\pi\)
−0.997815 + 0.0660701i \(0.978954\pi\)
\(422\) 0 0
\(423\) −8971.03 3469.75i −1.03117 0.398830i
\(424\) 0 0
\(425\) −5684.99 −0.648853
\(426\) 0 0
\(427\) −2893.31 10209.0i −0.327908 1.15702i
\(428\) 0 0
\(429\) −15052.9 2809.61i −1.69408 0.316199i
\(430\) 0 0
\(431\) 6623.29i 0.740215i 0.928989 + 0.370108i \(0.120679\pi\)
−0.928989 + 0.370108i \(0.879321\pi\)
\(432\) 0 0
\(433\) 151.928i 0.0168619i −0.999964 0.00843095i \(-0.997316\pi\)
0.999964 0.00843095i \(-0.00268369\pi\)
\(434\) 0 0
\(435\) −2930.59 + 15701.1i −0.323014 + 1.73059i
\(436\) 0 0
\(437\) 1809.34i 0.198060i
\(438\) 0 0
\(439\) 9828.43i 1.06853i 0.845317 + 0.534266i \(0.179412\pi\)
−0.845317 + 0.534266i \(0.820588\pi\)
\(440\) 0 0
\(441\) −9105.89 + 1687.87i −0.983251 + 0.182255i
\(442\) 0 0
\(443\) 2207.57 0.236760 0.118380 0.992968i \(-0.462230\pi\)
0.118380 + 0.992968i \(0.462230\pi\)
\(444\) 0 0
\(445\) 10202.0i 1.08679i
\(446\) 0 0
\(447\) 13643.8 + 2546.61i 1.44369 + 0.269465i
\(448\) 0 0
\(449\) 7960.02i 0.836651i 0.908297 + 0.418326i \(0.137383\pi\)
−0.908297 + 0.418326i \(0.862617\pi\)
\(450\) 0 0
\(451\) 3085.09 0.322109
\(452\) 0 0
\(453\) 7756.17 + 1447.68i 0.804452 + 0.150150i
\(454\) 0 0
\(455\) −23601.1 + 6688.75i −2.43173 + 0.689172i
\(456\) 0 0
\(457\) 3624.43 0.370993 0.185496 0.982645i \(-0.440611\pi\)
0.185496 + 0.982645i \(0.440611\pi\)
\(458\) 0 0
\(459\) 4134.97 + 2555.58i 0.420488 + 0.259878i
\(460\) 0 0
\(461\) 5885.29i 0.594589i 0.954786 + 0.297294i \(0.0960843\pi\)
−0.954786 + 0.297294i \(0.903916\pi\)
\(462\) 0 0
\(463\) −13856.2 −1.39083 −0.695415 0.718609i \(-0.744779\pi\)
−0.695415 + 0.718609i \(0.744779\pi\)
\(464\) 0 0
\(465\) −14229.5 2655.93i −1.41909 0.264873i
\(466\) 0 0
\(467\) 12318.9i 1.22066i 0.792147 + 0.610330i \(0.208963\pi\)
−0.792147 + 0.610330i \(0.791037\pi\)
\(468\) 0 0
\(469\) 13632.7 3863.62i 1.34222 0.380396i
\(470\) 0 0
\(471\) −6700.24 1250.60i −0.655480 0.122345i
\(472\) 0 0
\(473\) 9127.83i 0.887311i
\(474\) 0 0
\(475\) −6199.09 −0.598808
\(476\) 0 0
\(477\) −14748.9 5704.47i −1.41573 0.547567i
\(478\) 0 0
\(479\) 5683.40 0.542132 0.271066 0.962561i \(-0.412624\pi\)
0.271066 + 0.962561i \(0.412624\pi\)
\(480\) 0 0
\(481\) 12439.3i 1.17918i
\(482\) 0 0
\(483\) 4589.31 421.745i 0.432341 0.0397310i
\(484\) 0 0
\(485\) −11962.7 −1.12000
\(486\) 0 0
\(487\) −3252.77 −0.302663 −0.151332 0.988483i \(-0.548356\pi\)
−0.151332 + 0.988483i \(0.548356\pi\)
\(488\) 0 0
\(489\) −2974.49 + 15936.2i −0.275073 + 1.47374i
\(490\) 0 0
\(491\) −8991.73 −0.826459 −0.413229 0.910627i \(-0.635599\pi\)
−0.413229 + 0.910627i \(0.635599\pi\)
\(492\) 0 0
\(493\) 6264.00 0.572244
\(494\) 0 0
\(495\) 6264.36 16196.5i 0.568812 1.47066i
\(496\) 0 0
\(497\) −16488.9 + 4673.07i −1.48818 + 0.421762i
\(498\) 0 0
\(499\) 10529.3i 0.944599i 0.881438 + 0.472300i \(0.156576\pi\)
−0.881438 + 0.472300i \(0.843424\pi\)
\(500\) 0 0
\(501\) 18505.0 + 3453.95i 1.65019 + 0.308006i
\(502\) 0 0
\(503\) −1886.42 −0.167220 −0.0836098 0.996499i \(-0.526645\pi\)
−0.0836098 + 0.996499i \(0.526645\pi\)
\(504\) 0 0
\(505\) 17126.0 1.50910
\(506\) 0 0
\(507\) 19777.3 + 3691.41i 1.73242 + 0.323356i
\(508\) 0 0
\(509\) 10860.9i 0.945781i −0.881121 0.472891i \(-0.843211\pi\)
0.881121 0.472891i \(-0.156789\pi\)
\(510\) 0 0
\(511\) 10529.2 2984.05i 0.911513 0.258330i
\(512\) 0 0
\(513\) 4508.90 + 2786.68i 0.388057 + 0.239834i
\(514\) 0 0
\(515\) 4663.97 0.399067
\(516\) 0 0
\(517\) 13476.3 1.14640
\(518\) 0 0
\(519\) −1812.87 + 9712.71i −0.153326 + 0.821466i
\(520\) 0 0
\(521\) −6930.38 −0.582774 −0.291387 0.956605i \(-0.594117\pi\)
−0.291387 + 0.956605i \(0.594117\pi\)
\(522\) 0 0
\(523\) 9140.75 0.764239 0.382119 0.924113i \(-0.375194\pi\)
0.382119 + 0.924113i \(0.375194\pi\)
\(524\) 0 0
\(525\) −1444.97 15723.7i −0.120121 1.30712i
\(526\) 0 0
\(527\) 5676.93i 0.469243i
\(528\) 0 0
\(529\) 9873.55 0.811503
\(530\) 0 0
\(531\) 1681.00 4346.21i 0.137381 0.355197i
\(532\) 0 0
\(533\) −6353.33 −0.516310
\(534\) 0 0
\(535\) 19247.7i 1.55542i
\(536\) 0 0
\(537\) 6789.31 + 1267.22i 0.545587 + 0.101834i
\(538\) 0 0
\(539\) 11045.8 6807.76i 0.882705 0.544027i
\(540\) 0 0
\(541\) 1327.06i 0.105461i −0.998609 0.0527307i \(-0.983207\pi\)
0.998609 0.0527307i \(-0.0167925\pi\)
\(542\) 0 0
\(543\) −11987.0 2237.36i −0.947348 0.176822i
\(544\) 0 0
\(545\) 36866.4 2.89759
\(546\) 0 0
\(547\) 6943.34i 0.542735i 0.962476 + 0.271367i \(0.0874758\pi\)
−0.962476 + 0.271367i \(0.912524\pi\)
\(548\) 0 0
\(549\) −14427.9 5580.33i −1.12162 0.433811i
\(550\) 0 0
\(551\) 6830.47 0.528108
\(552\) 0 0
\(553\) 143.536 + 506.465i 0.0110376 + 0.0389459i
\(554\) 0 0
\(555\) −13867.5 2588.36i −1.06062 0.197963i
\(556\) 0 0
\(557\) −12038.4 −0.915770 −0.457885 0.889012i \(-0.651393\pi\)
−0.457885 + 0.889012i \(0.651393\pi\)
\(558\) 0 0
\(559\) 18797.5i 1.42227i
\(560\) 0 0
\(561\) −6694.88 1249.59i −0.503847 0.0940427i
\(562\) 0 0
\(563\) 10849.1i 0.812139i −0.913842 0.406070i \(-0.866899\pi\)
0.913842 0.406070i \(-0.133101\pi\)
\(564\) 0 0
\(565\) −726.222 −0.0540750
\(566\) 0 0
\(567\) −6017.30 + 12086.2i −0.445684 + 0.895190i
\(568\) 0 0
\(569\) 10335.0i 0.761450i −0.924688 0.380725i \(-0.875674\pi\)
0.924688 0.380725i \(-0.124326\pi\)
\(570\) 0 0
\(571\) 2025.81i 0.148472i 0.997241 + 0.0742360i \(0.0236518\pi\)
−0.997241 + 0.0742360i \(0.976348\pi\)
\(572\) 0 0
\(573\) −2030.41 + 10878.2i −0.148030 + 0.793094i
\(574\) 0 0
\(575\) 7857.73i 0.569896i
\(576\) 0 0
\(577\) 3778.32i 0.272606i −0.990667 0.136303i \(-0.956478\pi\)
0.990667 0.136303i \(-0.0435220\pi\)
\(578\) 0 0
\(579\) 4487.33 + 837.558i 0.322085 + 0.0601170i
\(580\) 0 0
\(581\) 47.4484 13.4473i 0.00338811 0.000960217i
\(582\) 0 0
\(583\) 22155.8 1.57393
\(584\) 0 0
\(585\) −12900.6 + 33354.4i −0.911751 + 2.35733i
\(586\) 0 0
\(587\) 1814.70i 0.127599i −0.997963 0.0637997i \(-0.979678\pi\)
0.997963 0.0637997i \(-0.0203219\pi\)
\(588\) 0 0
\(589\) 6190.30i 0.433051i
\(590\) 0 0
\(591\) −17394.5 3246.67i −1.21068 0.225973i
\(592\) 0 0
\(593\) −9793.33 −0.678185 −0.339093 0.940753i \(-0.610120\pi\)
−0.339093 + 0.940753i \(0.610120\pi\)
\(594\) 0 0
\(595\) −10496.8 + 2974.87i −0.723236 + 0.204971i
\(596\) 0 0
\(597\) −2482.37 + 13299.7i −0.170179 + 0.911757i
\(598\) 0 0
\(599\) 10824.1i 0.738332i 0.929363 + 0.369166i \(0.120357\pi\)
−0.929363 + 0.369166i \(0.879643\pi\)
\(600\) 0 0
\(601\) 16512.2i 1.12071i −0.828252 0.560355i \(-0.810665\pi\)
0.828252 0.560355i \(-0.189335\pi\)
\(602\) 0 0
\(603\) 7451.78 19266.5i 0.503250 1.30115i
\(604\) 0 0
\(605\) 1700.30i 0.114260i
\(606\) 0 0
\(607\) 7537.39i 0.504009i 0.967726 + 0.252004i \(0.0810898\pi\)
−0.967726 + 0.252004i \(0.918910\pi\)
\(608\) 0 0
\(609\) 1592.14 + 17325.2i 0.105939 + 1.15279i
\(610\) 0 0
\(611\) −27752.6 −1.83756
\(612\) 0 0
\(613\) 10916.9i 0.719297i −0.933088 0.359648i \(-0.882897\pi\)
0.933088 0.359648i \(-0.117103\pi\)
\(614\) 0 0
\(615\) 1321.99 7082.74i 0.0866792 0.464396i
\(616\) 0 0
\(617\) 27154.5i 1.77180i 0.463881 + 0.885898i \(0.346457\pi\)
−0.463881 + 0.885898i \(0.653543\pi\)
\(618\) 0 0
\(619\) −12483.7 −0.810602 −0.405301 0.914183i \(-0.632833\pi\)
−0.405301 + 0.914183i \(0.632833\pi\)
\(620\) 0 0
\(621\) 3532.29 5715.32i 0.228254 0.369320i
\(622\) 0 0
\(623\) 3030.12 + 10691.7i 0.194863 + 0.687569i
\(624\) 0 0
\(625\) −9212.97 −0.589630
\(626\) 0 0
\(627\) −7300.31 1362.60i −0.464986 0.0867894i
\(628\) 0 0
\(629\) 5532.48i 0.350707i
\(630\) 0 0
\(631\) −5011.50 −0.316172 −0.158086 0.987425i \(-0.550532\pi\)
−0.158086 + 0.987425i \(0.550532\pi\)
\(632\) 0 0
\(633\) −941.212 + 5042.68i −0.0590992 + 0.316632i
\(634\) 0 0
\(635\) 969.822i 0.0606082i
\(636\) 0 0
\(637\) −22747.4 + 14019.7i −1.41489 + 0.872023i
\(638\) 0 0
\(639\) −9012.96 + 23303.0i −0.557977 + 1.44265i
\(640\) 0 0
\(641\) 20433.1i 1.25906i −0.776975 0.629531i \(-0.783247\pi\)
0.776975 0.629531i \(-0.216753\pi\)
\(642\) 0 0
\(643\) −7784.75 −0.477450 −0.238725 0.971087i \(-0.576730\pi\)
−0.238725 + 0.971087i \(0.576730\pi\)
\(644\) 0 0
\(645\) 20955.6 + 3911.36i 1.27927 + 0.238775i
\(646\) 0 0
\(647\) −13288.6 −0.807463 −0.403732 0.914877i \(-0.632287\pi\)
−0.403732 + 0.914877i \(0.632287\pi\)
\(648\) 0 0
\(649\) 6528.89i 0.394887i
\(650\) 0 0
\(651\) −15701.4 + 1442.92i −0.945297 + 0.0868702i
\(652\) 0 0
\(653\) 6596.26 0.395301 0.197651 0.980273i \(-0.436669\pi\)
0.197651 + 0.980273i \(0.436669\pi\)
\(654\) 0 0
\(655\) 38167.0 2.27680
\(656\) 0 0
\(657\) 5755.35 14880.4i 0.341762 0.883623i
\(658\) 0 0
\(659\) 8372.03 0.494883 0.247442 0.968903i \(-0.420410\pi\)
0.247442 + 0.968903i \(0.420410\pi\)
\(660\) 0 0
\(661\) −6191.40 −0.364323 −0.182162 0.983269i \(-0.558309\pi\)
−0.182162 + 0.983269i \(0.558309\pi\)
\(662\) 0 0
\(663\) 13787.2 + 2573.37i 0.807618 + 0.150741i
\(664\) 0 0
\(665\) −11446.0 + 3243.89i −0.667455 + 0.189162i
\(666\) 0 0
\(667\) 8658.04i 0.502610i
\(668\) 0 0
\(669\) 1363.64 7305.90i 0.0788063 0.422216i
\(670\) 0 0
\(671\) 21673.7 1.24695
\(672\) 0 0
\(673\) 1317.91 0.0754855 0.0377428 0.999287i \(-0.487983\pi\)
0.0377428 + 0.999287i \(0.487983\pi\)
\(674\) 0 0
\(675\) −19581.6 12102.2i −1.11659 0.690096i
\(676\) 0 0
\(677\) 11076.8i 0.628826i −0.949286 0.314413i \(-0.898192\pi\)
0.949286 0.314413i \(-0.101808\pi\)
\(678\) 0 0
\(679\) −12537.0 + 3553.08i −0.708578 + 0.200817i
\(680\) 0 0
\(681\) 4792.08 25674.2i 0.269652 1.44470i
\(682\) 0 0
\(683\) −31967.1 −1.79090 −0.895451 0.445161i \(-0.853147\pi\)
−0.895451 + 0.445161i \(0.853147\pi\)
\(684\) 0 0
\(685\) −21156.9 −1.18009
\(686\) 0 0
\(687\) 22804.8 + 4256.50i 1.26646 + 0.236383i
\(688\) 0 0
\(689\) −45626.9 −2.52285
\(690\) 0 0
\(691\) 4700.10 0.258756 0.129378 0.991595i \(-0.458702\pi\)
0.129378 + 0.991595i \(0.458702\pi\)
\(692\) 0 0
\(693\) 1754.52 18834.5i 0.0961740 1.03242i
\(694\) 0 0
\(695\) 8539.35i 0.466066i
\(696\) 0 0
\(697\) −2825.69 −0.153559
\(698\) 0 0
\(699\) 2032.01 10886.8i 0.109954 0.589091i
\(700\) 0 0
\(701\) 22855.2 1.23143 0.615714 0.787970i \(-0.288868\pi\)
0.615714 + 0.787970i \(0.288868\pi\)
\(702\) 0 0
\(703\) 6032.79i 0.323657i
\(704\) 0 0
\(705\) 5774.72 30938.9i 0.308494 1.65280i
\(706\) 0 0
\(707\) 17948.1 5086.62i 0.954748 0.270583i
\(708\) 0 0
\(709\) 20814.1i 1.10252i 0.834333 + 0.551261i \(0.185853\pi\)
−0.834333 + 0.551261i \(0.814147\pi\)
\(710\) 0 0
\(711\) 715.764 + 276.838i 0.0377542 + 0.0146023i
\(712\) 0 0
\(713\) 7846.60 0.412142
\(714\) 0 0
\(715\) 50105.2i 2.62074i
\(716\) 0 0
\(717\) 6448.55 34549.0i 0.335880 1.79952i
\(718\) 0 0
\(719\) −5088.93 −0.263957 −0.131979 0.991253i \(-0.542133\pi\)
−0.131979 + 0.991253i \(0.542133\pi\)
\(720\) 0 0
\(721\) 4887.86 1385.26i 0.252474 0.0715530i
\(722\) 0 0
\(723\) −2594.92 + 13902.7i −0.133480 + 0.715139i
\(724\) 0 0
\(725\) −29663.9 −1.51957
\(726\) 0 0
\(727\) 1716.37i 0.0875609i 0.999041 + 0.0437804i \(0.0139402\pi\)
−0.999041 + 0.0437804i \(0.986060\pi\)
\(728\) 0 0
\(729\) 8802.37 + 17605.1i 0.447207 + 0.894431i
\(730\) 0 0
\(731\) 8360.34i 0.423007i
\(732\) 0 0
\(733\) −2487.51 −0.125346 −0.0626728 0.998034i \(-0.519962\pi\)
−0.0626728 + 0.998034i \(0.519962\pi\)
\(734\) 0 0
\(735\) −10896.0 28276.2i −0.546809 1.41902i
\(736\) 0 0
\(737\) 28942.3i 1.44654i
\(738\) 0 0
\(739\) 16167.7i 0.804786i 0.915467 + 0.402393i \(0.131821\pi\)
−0.915467 + 0.402393i \(0.868179\pi\)
\(740\) 0 0
\(741\) 15034.0 + 2806.09i 0.745328 + 0.139115i
\(742\) 0 0
\(743\) 6261.24i 0.309156i −0.987981 0.154578i \(-0.950598\pi\)
0.987981 0.154578i \(-0.0494017\pi\)
\(744\) 0 0
\(745\) 45415.0i 2.23339i
\(746\) 0 0
\(747\) 25.9358 67.0568i 0.00127033 0.00328444i
\(748\) 0 0
\(749\) 5716.80 + 20171.6i 0.278888 + 0.984053i
\(750\) 0 0
\(751\) −26131.4 −1.26971 −0.634853 0.772633i \(-0.718939\pi\)
−0.634853 + 0.772633i \(0.718939\pi\)
\(752\) 0 0
\(753\) 5208.41 27904.8i 0.252065 1.35047i
\(754\) 0 0
\(755\) 25817.3i 1.24448i
\(756\) 0 0
\(757\) 2301.88i 0.110519i 0.998472 + 0.0552596i \(0.0175987\pi\)
−0.998472 + 0.0552596i \(0.982401\pi\)
\(758\) 0 0
\(759\) −1727.18 + 9253.60i −0.0825989 + 0.442535i
\(760\) 0 0
\(761\) 22624.8 1.07772 0.538862 0.842394i \(-0.318854\pi\)
0.538862 + 0.842394i \(0.318854\pi\)
\(762\) 0 0
\(763\) 38636.1 10949.8i 1.83319 0.519540i
\(764\) 0 0
\(765\) −5737.63 + 14834.6i −0.271169 + 0.701107i
\(766\) 0 0
\(767\) 13445.4i 0.632965i
\(768\) 0 0
\(769\) 12312.9i 0.577393i −0.957421 0.288697i \(-0.906778\pi\)
0.957421 0.288697i \(-0.0932219\pi\)
\(770\) 0 0
\(771\) 34877.8 + 6509.92i 1.62917 + 0.304084i
\(772\) 0 0
\(773\) 18738.9i 0.871916i 0.899967 + 0.435958i \(0.143590\pi\)
−0.899967 + 0.435958i \(0.856410\pi\)
\(774\) 0 0
\(775\) 26883.7i 1.24606i
\(776\) 0 0
\(777\) −15301.9 + 1406.21i −0.706504 + 0.0649258i
\(778\) 0 0
\(779\) −3081.22 −0.141715
\(780\) 0 0
\(781\) 35005.8i 1.60385i
\(782\) 0 0
\(783\) 21576.0 + 13334.8i 0.984756 + 0.608618i
\(784\) 0 0
\(785\) 22302.5i 1.01403i
\(786\) 0 0
\(787\) 7115.83 0.322302 0.161151 0.986930i \(-0.448479\pi\)
0.161151 + 0.986930i \(0.448479\pi\)
\(788\) 0 0
\(789\) 634.204 3397.84i 0.0286163 0.153316i
\(790\) 0 0
\(791\) −761.083 + 215.697i −0.0342111 + 0.00969570i
\(792\) 0 0
\(793\) −44634.0 −1.99874
\(794\) 0 0
\(795\) 9493.96 50865.2i 0.423542 2.26919i
\(796\) 0 0
\(797\) 12278.2i 0.545693i 0.962058 + 0.272846i \(0.0879650\pi\)
−0.962058 + 0.272846i \(0.912035\pi\)
\(798\) 0 0
\(799\) −12343.2 −0.546521
\(800\) 0 0
\(801\) 15110.2 + 5844.21i 0.666531 + 0.257796i
\(802\) 0 0
\(803\) 22353.4i 0.982360i
\(804\) 0 0
\(805\) 4111.83 + 14508.5i 0.180029 + 0.635228i
\(806\) 0 0
\(807\) 4631.57 24814.3i 0.202031 1.08241i
\(808\) 0 0
\(809\) 9226.15i 0.400957i 0.979698 + 0.200479i \(0.0642497\pi\)
−0.979698 + 0.200479i \(0.935750\pi\)
\(810\) 0 0
\(811\) 36172.6 1.56621 0.783103 0.621892i \(-0.213636\pi\)
0.783103 + 0.621892i \(0.213636\pi\)
\(812\) 0 0
\(813\) −1025.60 + 5494.82i −0.0442430 + 0.237038i
\(814\) 0 0
\(815\) −53045.4 −2.27988
\(816\) 0 0
\(817\) 9116.38i 0.390381i
\(818\) 0 0
\(819\) −3613.19 + 38787.2i −0.154158 + 1.65486i
\(820\) 0 0
\(821\) −7181.84 −0.305296 −0.152648 0.988281i \(-0.548780\pi\)
−0.152648 + 0.988281i \(0.548780\pi\)
\(822\) 0 0
\(823\) 2266.38 0.0959916 0.0479958 0.998848i \(-0.484717\pi\)
0.0479958 + 0.998848i \(0.484717\pi\)
\(824\) 0 0
\(825\) 31704.4 + 5917.60i 1.33794 + 0.249726i
\(826\) 0 0
\(827\) 5411.98 0.227561 0.113781 0.993506i \(-0.463704\pi\)
0.113781 + 0.993506i \(0.463704\pi\)
\(828\) 0 0
\(829\) 27630.7 1.15760 0.578802 0.815468i \(-0.303520\pi\)
0.578802 + 0.815468i \(0.303520\pi\)
\(830\) 0 0
\(831\) −5834.76 + 31260.5i −0.243569 + 1.30495i
\(832\) 0 0
\(833\) −10117.1 + 6235.34i −0.420811 + 0.259354i
\(834\) 0 0
\(835\) 61595.9i 2.55283i
\(836\) 0 0
\(837\) −12085.1 + 19553.9i −0.499069 + 0.807504i
\(838\) 0 0
\(839\) 38177.4 1.57095 0.785476 0.618892i \(-0.212418\pi\)
0.785476 + 0.618892i \(0.212418\pi\)
\(840\) 0 0
\(841\) 8296.14 0.340159
\(842\) 0 0
\(843\) −553.439 + 2965.13i −0.0226115 + 0.121144i
\(844\) 0 0
\(845\) 65830.7i 2.68005i
\(846\) 0 0
\(847\) 505.010 + 1781.92i 0.0204868 + 0.0722875i
\(848\) 0 0
\(849\) 30510.9 + 5694.84i 1.23337 + 0.230208i
\(850\) 0 0
\(851\) 7646.94 0.308030
\(852\) 0 0
\(853\) 5549.77 0.222767 0.111384 0.993777i \(-0.464472\pi\)
0.111384 + 0.993777i \(0.464472\pi\)
\(854\) 0 0
\(855\) −6256.50 + 16176.1i −0.250255 + 0.647032i
\(856\) 0 0
\(857\) −22763.4 −0.907332 −0.453666 0.891172i \(-0.649884\pi\)
−0.453666 + 0.891172i \(0.649884\pi\)
\(858\) 0 0
\(859\) −672.946 −0.0267295 −0.0133647 0.999911i \(-0.504254\pi\)
−0.0133647 + 0.999911i \(0.504254\pi\)
\(860\) 0 0
\(861\) −718.212 7815.38i −0.0284281 0.309347i
\(862\) 0 0
\(863\) 38773.2i 1.52938i −0.644397 0.764691i \(-0.722892\pi\)
0.644397 0.764691i \(-0.277108\pi\)
\(864\) 0 0
\(865\) −32329.8 −1.27081
\(866\) 0 0
\(867\) −18963.4 3539.50i −0.742825 0.138648i
\(868\) 0 0
\(869\) −1075.22 −0.0419729
\(870\) 0 0
\(871\) 59602.7i 2.31867i
\(872\) 0 0
\(873\) −6852.83 + 17717.9i −0.265674 + 0.686898i
\(874\) 0 0
\(875\) 11839.2 3355.32i 0.457415 0.129635i
\(876\) 0 0
\(877\) 5911.60i 0.227617i 0.993503 + 0.113809i \(0.0363051\pi\)
−0.993503 + 0.113809i \(0.963695\pi\)
\(878\) 0 0
\(879\) −498.085 + 2668.56i −0.0191126 + 0.102399i
\(880\) 0 0
\(881\) −1628.16 −0.0622635 −0.0311317 0.999515i \(-0.509911\pi\)
−0.0311317 + 0.999515i \(0.509911\pi\)
\(882\) 0 0
\(883\) 13348.7i 0.508743i 0.967107 + 0.254371i \(0.0818686\pi\)
−0.967107 + 0.254371i \(0.918131\pi\)
\(884\) 0 0
\(885\) 14989.0 + 2797.69i 0.569322 + 0.106264i
\(886\) 0 0
\(887\) 35230.3 1.33362 0.666808 0.745230i \(-0.267660\pi\)
0.666808 + 0.745230i \(0.267660\pi\)
\(888\) 0 0
\(889\) 288.049 + 1016.38i 0.0108671 + 0.0383444i
\(890\) 0 0
\(891\) −20400.0 18556.2i −0.767032 0.697708i
\(892\) 0 0
\(893\) −13459.4 −0.504369
\(894\) 0 0
\(895\) 22598.9i 0.844022i
\(896\) 0 0
\(897\) 3556.89 19056.5i 0.132398 0.709341i
\(898\) 0 0
\(899\) 29621.8i 1.09894i
\(900\) 0 0
\(901\) −20292.9 −0.750337
\(902\) 0 0
\(903\) 23123.3 2124.97i 0.852154 0.0783107i
\(904\) 0 0
\(905\) 39899.9i 1.46554i
\(906\) 0 0
\(907\) 41269.7i 1.51085i −0.655237 0.755423i \(-0.727431\pi\)
0.655237 0.755423i \(-0.272569\pi\)
\(908\) 0 0
\(909\) 9810.58 25365.2i 0.357972 0.925535i
\(910\) 0 0
\(911\) 11899.0i 0.432747i −0.976311 0.216373i \(-0.930577\pi\)
0.976311 0.216373i \(-0.0694228\pi\)
\(912\) 0 0
\(913\) 100.733i 0.00365145i
\(914\) 0 0
\(915\) 9287.36 49758.3i 0.335552 1.79777i
\(916\) 0 0
\(917\) 39999.1 11336.1i 1.44044 0.408233i
\(918\) 0 0
\(919\) 19268.9 0.691647 0.345823 0.938300i \(-0.387600\pi\)
0.345823 + 0.938300i \(0.387600\pi\)
\(920\) 0 0
\(921\) 40393.4 + 7539.40i 1.44518 + 0.269741i
\(922\) 0 0
\(923\) 72089.7i 2.57081i
\(924\) 0 0
\(925\) 26199.7i 0.931287i
\(926\) 0 0
\(927\) 2671.75 6907.80i 0.0946621 0.244748i
\(928\) 0 0
\(929\) 22796.3 0.805083 0.402542 0.915402i \(-0.368127\pi\)
0.402542 + 0.915402i \(0.368127\pi\)
\(930\) 0 0
\(931\) −11032.0 + 6799.21i −0.388355 + 0.239350i
\(932\) 0 0
\(933\) −7453.81 1391.25i −0.261551 0.0488183i
\(934\) 0 0
\(935\) 22284.6i 0.779449i
\(936\) 0 0
\(937\) 34878.2i 1.21603i 0.793925 + 0.608016i \(0.208034\pi\)
−0.793925 + 0.608016i \(0.791966\pi\)
\(938\) 0 0
\(939\) −5184.46 + 27776.5i −0.180180 + 0.965337i
\(940\) 0 0
\(941\) 34823.7i 1.20640i −0.797591 0.603198i \(-0.793893\pi\)
0.797591 0.603198i \(-0.206107\pi\)
\(942\) 0 0
\(943\) 3905.64i 0.134873i
\(944\) 0 0
\(945\) −42488.5 12098.8i −1.46259 0.416480i
\(946\) 0 0
\(947\) 44753.6 1.53569 0.767844 0.640637i \(-0.221329\pi\)
0.767844 + 0.640637i \(0.221329\pi\)
\(948\) 0 0
\(949\) 46033.8i 1.57463i
\(950\) 0 0
\(951\) 40821.4 + 7619.29i 1.39193 + 0.259803i
\(952\) 0 0
\(953\) 27410.7i 0.931709i −0.884861 0.465854i \(-0.845747\pi\)
0.884861 0.465854i \(-0.154253\pi\)
\(954\) 0 0
\(955\) −36209.2 −1.22691
\(956\) 0 0
\(957\) −34933.4 6520.30i −1.17998 0.220242i
\(958\) 0 0
\(959\) −22172.5 + 6283.87i −0.746599 + 0.211592i
\(960\) 0 0
\(961\) 2945.36 0.0988674
\(962\) 0 0
\(963\) 28507.7 + 11026.0i 0.953943 + 0.368960i
\(964\) 0 0
\(965\) 14936.6i 0.498264i
\(966\) 0 0
\(967\) −19242.8 −0.639923 −0.319961 0.947431i \(-0.603670\pi\)
−0.319961 + 0.947431i \(0.603670\pi\)
\(968\) 0 0
\(969\) 6686.48 + 1248.03i 0.221672 + 0.0413750i
\(970\) 0 0
\(971\) 9065.66i 0.299620i −0.988715 0.149810i \(-0.952134\pi\)
0.988715 0.149810i \(-0.0478661\pi\)
\(972\) 0 0
\(973\) 2536.29 + 8949.27i 0.0835661 + 0.294862i
\(974\) 0 0
\(975\) −65290.9 12186.5i −2.14460 0.400287i
\(976\) 0 0
\(977\) 59374.1i 1.94426i −0.234435 0.972132i \(-0.575324\pi\)
0.234435 0.972132i \(-0.424676\pi\)
\(978\) 0 0
\(979\) −22698.6 −0.741010
\(980\) 0 0
\(981\) 21118.9 54602.7i 0.687333 1.77710i
\(982\) 0 0
\(983\) −22834.0 −0.740886 −0.370443 0.928855i \(-0.620794\pi\)
−0.370443 + 0.928855i \(0.620794\pi\)
\(984\) 0 0
\(985\) 57899.4i 1.87292i
\(986\) 0 0
\(987\) −3137.30 34139.2i −0.101177 1.10098i
\(988\) 0 0
\(989\) −11555.6 −0.371533
\(990\) 0 0
\(991\) −33338.9 −1.06866 −0.534331 0.845275i \(-0.679437\pi\)
−0.534331 + 0.845275i \(0.679437\pi\)
\(992\) 0 0
\(993\) 5637.59 30204.2i 0.180165 0.965257i
\(994\) 0 0
\(995\) −44269.4 −1.41049
\(996\) 0 0
\(997\) −17170.3 −0.545427 −0.272713 0.962095i \(-0.587921\pi\)
−0.272713 + 0.962095i \(0.587921\pi\)
\(998\) 0 0
\(999\) −11777.6 + 19056.3i −0.372999 + 0.603519i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.i.c.209.75 80
3.2 odd 2 inner 672.4.i.c.209.74 80
4.3 odd 2 168.4.i.c.125.73 yes 80
7.6 odd 2 inner 672.4.i.c.209.5 80
8.3 odd 2 168.4.i.c.125.6 yes 80
8.5 even 2 inner 672.4.i.c.209.6 80
12.11 even 2 168.4.i.c.125.7 yes 80
21.20 even 2 inner 672.4.i.c.209.8 80
24.5 odd 2 inner 672.4.i.c.209.7 80
24.11 even 2 168.4.i.c.125.76 yes 80
28.27 even 2 168.4.i.c.125.74 yes 80
56.13 odd 2 inner 672.4.i.c.209.76 80
56.27 even 2 168.4.i.c.125.5 80
84.83 odd 2 168.4.i.c.125.8 yes 80
168.83 odd 2 168.4.i.c.125.75 yes 80
168.125 even 2 inner 672.4.i.c.209.73 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.5 80 56.27 even 2
168.4.i.c.125.6 yes 80 8.3 odd 2
168.4.i.c.125.7 yes 80 12.11 even 2
168.4.i.c.125.8 yes 80 84.83 odd 2
168.4.i.c.125.73 yes 80 4.3 odd 2
168.4.i.c.125.74 yes 80 28.27 even 2
168.4.i.c.125.75 yes 80 168.83 odd 2
168.4.i.c.125.76 yes 80 24.11 even 2
672.4.i.c.209.5 80 7.6 odd 2 inner
672.4.i.c.209.6 80 8.5 even 2 inner
672.4.i.c.209.7 80 24.5 odd 2 inner
672.4.i.c.209.8 80 21.20 even 2 inner
672.4.i.c.209.73 80 168.125 even 2 inner
672.4.i.c.209.74 80 3.2 odd 2 inner
672.4.i.c.209.75 80 1.1 even 1 trivial
672.4.i.c.209.76 80 56.13 odd 2 inner