L(s) = 1 | + (2.65 + 0.964i)2-s + (5.10 − 0.953i)3-s + (6.13 + 5.13i)4-s + 17.0i·5-s + (14.5 + 2.39i)6-s + (−5.04 − 17.8i)7-s + (11.3 + 19.5i)8-s + (25.1 − 9.73i)9-s + (−16.4 + 45.2i)10-s + 37.8·11-s + (36.2 + 20.3i)12-s − 77.9·13-s + (3.76 − 52.2i)14-s + (16.2 + 86.8i)15-s + (11.3 + 62.9i)16-s − 34.6·17-s + ⋯ |
L(s) = 1 | + (0.940 + 0.341i)2-s + (0.983 − 0.183i)3-s + (0.767 + 0.641i)4-s + 1.52i·5-s + (0.986 + 0.162i)6-s + (−0.272 − 0.962i)7-s + (0.502 + 0.864i)8-s + (0.932 − 0.360i)9-s + (−0.518 + 1.42i)10-s + 1.03·11-s + (0.871 + 0.489i)12-s − 1.66·13-s + (0.0718 − 0.997i)14-s + (0.279 + 1.49i)15-s + (0.177 + 0.984i)16-s − 0.494·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.550 - 0.834i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.550 - 0.834i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(3.50888 + 1.88797i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.50888 + 1.88797i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2.65 - 0.964i)T \) |
| 3 | \( 1 + (-5.10 + 0.953i)T \) |
| 7 | \( 1 + (5.04 + 17.8i)T \) |
good | 5 | \( 1 - 17.0iT - 125T^{2} \) |
| 11 | \( 1 - 37.8T + 1.33e3T^{2} \) |
| 13 | \( 1 + 77.9T + 2.19e3T^{2} \) |
| 17 | \( 1 + 34.6T + 4.91e3T^{2} \) |
| 19 | \( 1 - 37.7T + 6.85e3T^{2} \) |
| 23 | \( 1 + 47.8iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 180.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 163. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 159. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 81.5T + 6.89e4T^{2} \) |
| 43 | \( 1 + 241. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 356.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 585.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 172. iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 572.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 765. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 925. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 590. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 28.4T + 4.93e5T^{2} \) |
| 83 | \( 1 - 2.66iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 600.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 703. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.73450252949969716173532271414, −11.67298441914560608060485693181, −10.52583468608226095325209514999, −9.582104403310800345488735515357, −7.85465952774330770469539872846, −7.02999193671350528089365813350, −6.55251355626476258236492271574, −4.42480947591222943771513338090, −3.37921963834979327948074708367, −2.35773630562939373611714627575,
1.55720657419888196469191383014, 2.93232812233527355654833451552, 4.46247405835277343327691458153, 5.16239859488318340570934183599, 6.75145038088083795685297460997, 8.224596249455444915510795833658, 9.318035387088198113682021707494, 9.820010591272459180531878866049, 11.69542891216207383578774505087, 12.40241494674776845923494483551