Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [162,2,Mod(7,162)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(162, base_ring=CyclotomicField(54))
chi = DirichletCharacter(H, H._module([16]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("162.7");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.g (of order \(27\), degree \(18\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.29357651274\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{27})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{27}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −0.597159 | − | 0.802123i | −1.65406 | + | 0.513880i | −0.286803 | + | 0.957990i | 2.13228 | − | 1.40243i | 1.39993 | + | 1.01990i | −0.606844 | + | 0.643217i | 0.939693 | − | 0.342020i | 2.47185 | − | 1.69998i | −2.39823 | − | 0.872884i |
7.2 | −0.597159 | − | 0.802123i | −1.45578 | − | 0.938458i | −0.286803 | + | 0.957990i | −1.84048 | + | 1.21050i | 0.116573 | + | 1.72812i | −0.500394 | + | 0.530386i | 0.939693 | − | 0.342020i | 1.23859 | + | 2.73238i | 2.07003 | + | 0.753431i |
7.3 | −0.597159 | − | 0.802123i | 0.967452 | + | 1.43668i | −0.286803 | + | 0.957990i | 1.46985 | − | 0.966735i | 0.574669 | − | 1.63394i | −0.262959 | + | 0.278720i | 0.939693 | − | 0.342020i | −1.12808 | + | 2.77983i | −1.65317 | − | 0.601706i |
7.4 | −0.597159 | − | 0.802123i | 1.64484 | − | 0.542681i | −0.286803 | + | 0.957990i | −1.45045 | + | 0.953973i | −1.41753 | − | 0.995298i | 2.66288 | − | 2.82248i | 0.939693 | − | 0.342020i | 2.41100 | − | 1.78525i | 1.63135 | + | 0.593763i |
13.1 | −0.893633 | − | 0.448799i | −1.71649 | + | 0.231626i | 0.597159 | + | 0.802123i | −0.267154 | − | 0.892356i | 1.63787 | + | 0.563372i | 1.11188 | + | 2.57764i | −0.173648 | − | 0.984808i | 2.89270 | − | 0.795169i | −0.161751 | + | 0.917337i |
13.2 | −0.893633 | − | 0.448799i | −1.41362 | − | 1.00084i | 0.597159 | + | 0.802123i | 0.308002 | + | 1.02880i | 0.814085 | + | 1.52881i | −2.06499 | − | 4.78718i | −0.173648 | − | 0.984808i | 0.996657 | + | 2.82961i | 0.186483 | − | 1.05760i |
13.3 | −0.893633 | − | 0.448799i | 0.647569 | − | 1.60644i | 0.597159 | + | 0.802123i | −0.750365 | − | 2.50640i | −1.29966 | + | 1.14494i | 0.318489 | + | 0.738341i | −0.173648 | − | 0.984808i | −2.16131 | − | 2.08056i | −0.454317 | + | 2.57656i |
13.4 | −0.893633 | − | 0.448799i | 0.674015 | + | 1.59553i | 0.597159 | + | 0.802123i | 0.195520 | + | 0.653084i | 0.113749 | − | 1.72831i | 0.386069 | + | 0.895009i | −0.173648 | − | 0.984808i | −2.09141 | + | 2.15082i | 0.118380 | − | 0.671366i |
25.1 | −0.893633 | + | 0.448799i | −1.71649 | − | 0.231626i | 0.597159 | − | 0.802123i | −0.267154 | + | 0.892356i | 1.63787 | − | 0.563372i | 1.11188 | − | 2.57764i | −0.173648 | + | 0.984808i | 2.89270 | + | 0.795169i | −0.161751 | − | 0.917337i |
25.2 | −0.893633 | + | 0.448799i | −1.41362 | + | 1.00084i | 0.597159 | − | 0.802123i | 0.308002 | − | 1.02880i | 0.814085 | − | 1.52881i | −2.06499 | + | 4.78718i | −0.173648 | + | 0.984808i | 0.996657 | − | 2.82961i | 0.186483 | + | 1.05760i |
25.3 | −0.893633 | + | 0.448799i | 0.647569 | + | 1.60644i | 0.597159 | − | 0.802123i | −0.750365 | + | 2.50640i | −1.29966 | − | 1.14494i | 0.318489 | − | 0.738341i | −0.173648 | + | 0.984808i | −2.16131 | + | 2.08056i | −0.454317 | − | 2.57656i |
25.4 | −0.893633 | + | 0.448799i | 0.674015 | − | 1.59553i | 0.597159 | − | 0.802123i | 0.195520 | − | 0.653084i | 0.113749 | + | 1.72831i | 0.386069 | − | 0.895009i | −0.173648 | + | 0.984808i | −2.09141 | − | 2.15082i | 0.118380 | + | 0.671366i |
31.1 | −0.396080 | − | 0.918216i | −1.62371 | + | 0.602974i | −0.686242 | + | 0.727374i | −0.0263678 | + | 0.452718i | 1.19678 | + | 1.25209i | 4.03057 | − | 0.955263i | 0.939693 | + | 0.342020i | 2.27284 | − | 1.95811i | 0.426137 | − | 0.155101i |
31.2 | −0.396080 | − | 0.918216i | −1.31402 | − | 1.12843i | −0.686242 | + | 0.727374i | −0.205044 | + | 3.52046i | −0.515687 | + | 1.65350i | −4.52050 | + | 1.07138i | 0.939693 | + | 0.342020i | 0.453287 | + | 2.96556i | 3.31376 | − | 1.20611i |
31.3 | −0.396080 | − | 0.918216i | 1.05738 | + | 1.37184i | −0.686242 | + | 0.727374i | −0.141847 | + | 2.43542i | 0.840836 | − | 1.51426i | −0.675743 | + | 0.160154i | 0.939693 | + | 0.342020i | −0.763881 | + | 2.90112i | 2.29243 | − | 0.834375i |
31.4 | −0.396080 | − | 0.918216i | 1.72259 | − | 0.180780i | −0.686242 | + | 0.727374i | 0.201959 | − | 3.46750i | −0.848278 | − | 1.51011i | −2.51951 | + | 0.597135i | 0.939693 | + | 0.342020i | 2.93464 | − | 0.622818i | −3.26390 | + | 1.18796i |
43.1 | 0.286803 | + | 0.957990i | −1.47699 | − | 0.904708i | −0.835488 | + | 0.549509i | 0.423867 | + | 0.982634i | 0.443094 | − | 1.67442i | −0.264903 | + | 4.54820i | −0.766044 | − | 0.642788i | 1.36301 | + | 2.67249i | −0.819786 | + | 0.687882i |
43.2 | 0.286803 | + | 0.957990i | −0.671790 | + | 1.59646i | −0.835488 | + | 0.549509i | 0.417669 | + | 0.968265i | −1.72207 | − | 0.185697i | −0.0919975 | + | 1.57954i | −0.766044 | − | 0.642788i | −2.09740 | − | 2.14498i | −0.807799 | + | 0.677824i |
43.3 | 0.286803 | + | 0.957990i | −0.524336 | − | 1.65078i | −0.835488 | + | 0.549509i | −0.757906 | − | 1.75702i | 1.43105 | − | 0.975757i | 0.278553 | − | 4.78256i | −0.766044 | − | 0.642788i | −2.45014 | + | 1.73113i | 1.46584 | − | 1.22999i |
43.4 | 0.286803 | + | 0.957990i | 1.38972 | + | 1.03377i | −0.835488 | + | 0.549509i | 0.266390 | + | 0.617563i | −0.591767 | + | 1.62782i | 0.0791338 | − | 1.35867i | −0.766044 | − | 0.642788i | 0.862631 | + | 2.87330i | −0.515217 | + | 0.432318i |
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
81.g | even | 27 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 162.2.g.a | ✓ | 72 |
3.b | odd | 2 | 1 | 486.2.g.a | 72 | ||
81.g | even | 27 | 1 | inner | 162.2.g.a | ✓ | 72 |
81.h | odd | 54 | 1 | 486.2.g.a | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
162.2.g.a | ✓ | 72 | 1.a | even | 1 | 1 | trivial |
162.2.g.a | ✓ | 72 | 81.g | even | 27 | 1 | inner |
486.2.g.a | 72 | 3.b | odd | 2 | 1 | ||
486.2.g.a | 72 | 81.h | odd | 54 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{72} - 9 T_{5}^{70} + 30 T_{5}^{69} + 63 T_{5}^{68} - 81 T_{5}^{67} - 1665 T_{5}^{66} + \cdots + 18487617876729 \) acting on \(S_{2}^{\mathrm{new}}(162, [\chi])\).