gp: [N,k,chi] = [162,2,Mod(7,162)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("162.7");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(162, base_ring=CyclotomicField(54))
chi = DirichletCharacter(H, H._module([16]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [72]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{72} - 9 T_{5}^{70} + 30 T_{5}^{69} + 63 T_{5}^{68} - 81 T_{5}^{67} - 1665 T_{5}^{66} + \cdots + 18487617876729 \)
T5^72 - 9*T5^70 + 30*T5^69 + 63*T5^68 - 81*T5^67 - 1665*T5^66 - 4023*T5^65 - 18009*T5^64 + 92904*T5^63 + 832275*T5^62 - 782244*T5^61 - 3669129*T5^60 - 2215971*T5^59 + 20006190*T5^58 + 211141890*T5^57 + 194098437*T5^56 - 917659449*T5^55 - 7909104051*T5^54 + 3074813136*T5^53 + 90549665910*T5^52 + 13404534237*T5^51 - 224621596044*T5^50 - 1256364214029*T5^49 - 293997362913*T5^48 + 8896529258631*T5^47 + 18719689234824*T5^46 - 72899173687680*T5^45 + 45477480112560*T5^44 - 333608013865935*T5^43 + 1050026413177494*T5^42 - 446934749947029*T5^41 + 1025799001647687*T5^40 - 9860481858124341*T5^39 + 13845318444103977*T5^38 + 3965564709755163*T5^37 + 6981933423245760*T5^36 - 74262523173191829*T5^35 - 10212170436737325*T5^34 + 492967832749720641*T5^33 - 1185978512570037255*T5^32 + 1933981561488652299*T5^31 - 3601549879720853121*T5^30 + 6255477436882040226*T5^29 - 4663589135885765496*T5^28 - 10420330097426565231*T5^27 + 40571736481071911025*T5^26 - 74593280088369757107*T5^25 + 115625899655006466420*T5^24 - 231268077709656221565*T5^23 + 569309201504709561495*T5^22 - 1288311062821892716905*T5^21 + 2427764360206977100917*T5^20 - 3814103238214452766110*T5^19 + 5088374232110604417438*T5^18 - 5856353743839819509223*T5^17 + 5875539270631456499181*T5^16 - 5167416707914294899864*T5^15 + 3991501493254318790646*T5^14 - 2705627004610328540370*T5^13 + 1604464840435653552096*T5^12 - 828023739147020669247*T5^11 + 368965030392689707467*T5^10 - 140285851606303122906*T5^9 + 44666277754795016310*T5^8 - 11532910190384285685*T5^7 + 2267928686904543558*T5^6 - 290430059885208153*T5^5 + 10127863003144230*T5^4 + 3688005678595245*T5^3 - 389971588969998*T5^2 - 66147312707901*T5 + 18487617876729
acting on \(S_{2}^{\mathrm{new}}(162, [\chi])\).