Properties

Label 162.2.g.a.25.2
Level $162$
Weight $2$
Character 162.25
Analytic conductor $1.294$
Analytic rank $0$
Dimension $72$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(4\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 25.2
Character \(\chi\) \(=\) 162.25
Dual form 162.2.g.a.13.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.893633 + 0.448799i) q^{2} +(-1.41362 + 1.00084i) q^{3} +(0.597159 - 0.802123i) q^{4} +(0.308002 - 1.02880i) q^{5} +(0.814085 - 1.52881i) q^{6} +(-2.06499 + 4.78718i) q^{7} +(-0.173648 + 0.984808i) q^{8} +(0.996657 - 2.82961i) q^{9} +(0.186483 + 1.05760i) q^{10} +(-5.51869 - 1.30795i) q^{11} +(-0.0413635 + 1.73156i) q^{12} +(-2.75916 + 1.81473i) q^{13} +(-0.303142 - 5.20475i) q^{14} +(0.594259 + 1.76259i) q^{15} +(-0.286803 - 0.957990i) q^{16} +(-1.32917 - 0.483778i) q^{17} +(0.379280 + 2.97593i) q^{18} +(-0.526489 + 0.191626i) q^{19} +(-0.641296 - 0.861410i) q^{20} +(-1.87207 - 8.83399i) q^{21} +(5.51869 - 1.30795i) q^{22} +(0.185413 + 0.429835i) q^{23} +(-0.740157 - 1.56594i) q^{24} +(3.21388 + 2.11380i) q^{25} +(1.65123 - 2.86001i) q^{26} +(1.42307 + 4.99749i) q^{27} +(2.60678 + 4.51508i) q^{28} +(-0.413128 + 7.09314i) q^{29} +(-1.32210 - 1.30840i) q^{30} +(2.69492 + 0.314991i) q^{31} +(0.686242 + 0.727374i) q^{32} +(9.11038 - 3.67435i) q^{33} +(1.40491 - 0.164210i) q^{34} +(4.28902 + 3.59892i) q^{35} +(-1.67453 - 2.48917i) q^{36} +(-3.28779 + 2.75878i) q^{37} +(0.384486 - 0.407532i) q^{38} +(2.08417 - 5.32681i) q^{39} +(0.959683 + 0.481971i) q^{40} +(5.78531 + 2.90549i) q^{41} +(5.63763 + 7.05416i) q^{42} +(6.69559 - 7.09691i) q^{43} +(-4.34467 + 3.64561i) q^{44} +(-2.60412 - 1.89688i) q^{45} +(-0.358600 - 0.300901i) q^{46} +(1.37768 - 0.161028i) q^{47} +(1.36422 + 1.06719i) q^{48} +(-13.8493 - 14.6794i) q^{49} +(-3.82070 - 0.446576i) q^{50} +(2.36312 - 0.646400i) q^{51} +(-0.192021 + 3.29687i) q^{52} +(-3.96592 - 6.86918i) q^{53} +(-3.51457 - 3.82724i) q^{54} +(-3.04538 + 5.27476i) q^{55} +(-4.35587 - 2.86490i) q^{56} +(0.552471 - 0.797817i) q^{57} +(-2.81421 - 6.52407i) q^{58} +(-1.06624 + 0.252703i) q^{59} +(1.76868 + 0.575877i) q^{60} +(5.03022 + 6.75675i) q^{61} +(-2.54964 + 0.927991i) q^{62} +(11.4878 + 10.6143i) q^{63} +(-0.939693 - 0.342020i) q^{64} +(1.01716 + 3.39756i) q^{65} +(-6.49229 + 7.37225i) q^{66} +(-0.100933 - 1.73295i) q^{67} +(-1.18177 + 0.777265i) q^{68} +(-0.692297 - 0.422057i) q^{69} +(-5.44800 - 1.29120i) q^{70} +(1.32440 + 7.51103i) q^{71} +(2.61355 + 1.47287i) q^{72} +(-1.86793 + 10.5936i) q^{73} +(1.69994 - 3.94090i) q^{74} +(-6.65878 + 0.228447i) q^{75} +(-0.160690 + 0.536741i) q^{76} +(17.6574 - 23.7181i) q^{77} +(0.528187 + 5.69558i) q^{78} +(-1.99908 + 1.00398i) q^{79} -1.07391 q^{80} +(-7.01335 - 5.64029i) q^{81} -6.47392 q^{82} +(-10.3349 + 5.19037i) q^{83} +(-8.20387 - 3.77366i) q^{84} +(-0.907095 + 1.21844i) q^{85} +(-2.79831 + 9.34701i) q^{86} +(-6.51505 - 10.4405i) q^{87} +(2.24639 - 5.20772i) q^{88} +(-0.973720 + 5.52224i) q^{89} +(3.17844 + 0.526388i) q^{90} +(-2.98980 - 16.9560i) q^{91} +(0.455501 + 0.107956i) q^{92} +(-4.12485 + 2.25189i) q^{93} +(-1.15887 + 0.762203i) q^{94} +(0.0349852 + 0.600672i) q^{95} +(-1.69807 - 0.341417i) q^{96} +(-0.471322 - 1.57433i) q^{97} +(18.9642 + 6.90241i) q^{98} +(-9.20123 + 14.3121i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 9 q^{6} + 18 q^{13} - 9 q^{20} - 81 q^{23} + 18 q^{25} - 27 q^{26} - 27 q^{27} + 18 q^{28} - 27 q^{29} - 63 q^{30} - 54 q^{31} + 9 q^{33} - 27 q^{35} - 9 q^{36} + 9 q^{38} - 9 q^{41} + 9 q^{42} + 36 q^{43}+ \cdots + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{23}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.893633 + 0.448799i −0.631894 + 0.317349i
\(3\) −1.41362 + 1.00084i −0.816155 + 0.577833i
\(4\) 0.597159 0.802123i 0.298579 0.401062i
\(5\) 0.308002 1.02880i 0.137743 0.460092i −0.861087 0.508457i \(-0.830216\pi\)
0.998830 + 0.0483653i \(0.0154012\pi\)
\(6\) 0.814085 1.52881i 0.332349 0.624135i
\(7\) −2.06499 + 4.78718i −0.780493 + 1.80939i −0.233237 + 0.972420i \(0.574932\pi\)
−0.547256 + 0.836966i \(0.684327\pi\)
\(8\) −0.173648 + 0.984808i −0.0613939 + 0.348182i
\(9\) 0.996657 2.82961i 0.332219 0.943202i
\(10\) 0.186483 + 1.05760i 0.0589711 + 0.334442i
\(11\) −5.51869 1.30795i −1.66395 0.394363i −0.712377 0.701797i \(-0.752381\pi\)
−0.951569 + 0.307434i \(0.900530\pi\)
\(12\) −0.0413635 + 1.73156i −0.0119406 + 0.499857i
\(13\) −2.75916 + 1.81473i −0.765253 + 0.503315i −0.871123 0.491065i \(-0.836608\pi\)
0.105870 + 0.994380i \(0.466237\pi\)
\(14\) −0.303142 5.20475i −0.0810181 1.39103i
\(15\) 0.594259 + 1.76259i 0.153437 + 0.455099i
\(16\) −0.286803 0.957990i −0.0717008 0.239497i
\(17\) −1.32917 0.483778i −0.322371 0.117333i 0.175766 0.984432i \(-0.443760\pi\)
−0.498136 + 0.867099i \(0.665982\pi\)
\(18\) 0.379280 + 2.97593i 0.0893971 + 0.701433i
\(19\) −0.526489 + 0.191626i −0.120785 + 0.0439621i −0.401706 0.915769i \(-0.631582\pi\)
0.280921 + 0.959731i \(0.409360\pi\)
\(20\) −0.641296 0.861410i −0.143398 0.192617i
\(21\) −1.87207 8.83399i −0.408519 1.92773i
\(22\) 5.51869 1.30795i 1.17659 0.278856i
\(23\) 0.185413 + 0.429835i 0.0386612 + 0.0896268i 0.936453 0.350794i \(-0.114088\pi\)
−0.897791 + 0.440421i \(0.854829\pi\)
\(24\) −0.740157 1.56594i −0.151084 0.319646i
\(25\) 3.21388 + 2.11380i 0.642776 + 0.422761i
\(26\) 1.65123 2.86001i 0.323832 0.560894i
\(27\) 1.42307 + 4.99749i 0.273871 + 0.961767i
\(28\) 2.60678 + 4.51508i 0.492636 + 0.853271i
\(29\) −0.413128 + 7.09314i −0.0767160 + 1.31716i 0.711902 + 0.702279i \(0.247834\pi\)
−0.788618 + 0.614883i \(0.789203\pi\)
\(30\) −1.32210 1.30840i −0.241381 0.238881i
\(31\) 2.69492 + 0.314991i 0.484022 + 0.0565740i 0.354605 0.935016i \(-0.384615\pi\)
0.129417 + 0.991590i \(0.458689\pi\)
\(32\) 0.686242 + 0.727374i 0.121312 + 0.128583i
\(33\) 9.11038 3.67435i 1.58591 0.639621i
\(34\) 1.40491 0.164210i 0.240940 0.0281618i
\(35\) 4.28902 + 3.59892i 0.724977 + 0.608328i
\(36\) −1.67453 2.48917i −0.279088 0.414861i
\(37\) −3.28779 + 2.75878i −0.540510 + 0.453541i −0.871712 0.490018i \(-0.836990\pi\)
0.331203 + 0.943560i \(0.392546\pi\)
\(38\) 0.384486 0.407532i 0.0623719 0.0661104i
\(39\) 2.08417 5.32681i 0.333734 0.852972i
\(40\) 0.959683 + 0.481971i 0.151739 + 0.0762063i
\(41\) 5.78531 + 2.90549i 0.903513 + 0.453761i 0.838985 0.544155i \(-0.183150\pi\)
0.0645280 + 0.997916i \(0.479446\pi\)
\(42\) 5.63763 + 7.05416i 0.869905 + 1.08848i
\(43\) 6.69559 7.09691i 1.02107 1.08227i 0.0244831 0.999700i \(-0.492206\pi\)
0.996585 0.0825691i \(-0.0263125\pi\)
\(44\) −4.34467 + 3.64561i −0.654984 + 0.549597i
\(45\) −2.60412 1.89688i −0.388199 0.282770i
\(46\) −0.358600 0.300901i −0.0528727 0.0443655i
\(47\) 1.37768 0.161028i 0.200956 0.0234883i −0.0150195 0.999887i \(-0.504781\pi\)
0.215975 + 0.976399i \(0.430707\pi\)
\(48\) 1.36422 + 1.06719i 0.196908 + 0.154036i
\(49\) −13.8493 14.6794i −1.97847 2.09705i
\(50\) −3.82070 0.446576i −0.540329 0.0631554i
\(51\) 2.36312 0.646400i 0.330904 0.0905141i
\(52\) −0.192021 + 3.29687i −0.0266285 + 0.457193i
\(53\) −3.96592 6.86918i −0.544761 0.943554i −0.998622 0.0524814i \(-0.983287\pi\)
0.453861 0.891073i \(-0.350046\pi\)
\(54\) −3.51457 3.82724i −0.478273 0.520822i
\(55\) −3.04538 + 5.27476i −0.410639 + 0.711248i
\(56\) −4.35587 2.86490i −0.582078 0.382839i
\(57\) 0.552471 0.797817i 0.0731765 0.105673i
\(58\) −2.81421 6.52407i −0.369524 0.856652i
\(59\) −1.06624 + 0.252703i −0.138812 + 0.0328991i −0.299435 0.954117i \(-0.596798\pi\)
0.160622 + 0.987016i \(0.448650\pi\)
\(60\) 1.76868 + 0.575877i 0.228336 + 0.0743454i
\(61\) 5.03022 + 6.75675i 0.644053 + 0.865114i 0.997524 0.0703322i \(-0.0224059\pi\)
−0.353470 + 0.935446i \(0.614999\pi\)
\(62\) −2.54964 + 0.927991i −0.323804 + 0.117855i
\(63\) 11.4878 + 10.6143i 1.44732 + 1.33727i
\(64\) −0.939693 0.342020i −0.117462 0.0427525i
\(65\) 1.01716 + 3.39756i 0.126163 + 0.421415i
\(66\) −6.49229 + 7.37225i −0.799146 + 0.907461i
\(67\) −0.100933 1.73295i −0.0123309 0.211714i −0.998845 0.0480399i \(-0.984703\pi\)
0.986514 0.163674i \(-0.0523345\pi\)
\(68\) −1.18177 + 0.777265i −0.143311 + 0.0942572i
\(69\) −0.692297 0.422057i −0.0833428 0.0508096i
\(70\) −5.44800 1.29120i −0.651160 0.154328i
\(71\) 1.32440 + 7.51103i 0.157177 + 0.891395i 0.956768 + 0.290851i \(0.0939384\pi\)
−0.799591 + 0.600544i \(0.794951\pi\)
\(72\) 2.61355 + 1.47287i 0.308010 + 0.173580i
\(73\) −1.86793 + 10.5936i −0.218625 + 1.23988i 0.655879 + 0.754866i \(0.272298\pi\)
−0.874504 + 0.485018i \(0.838813\pi\)
\(74\) 1.69994 3.94090i 0.197614 0.458120i
\(75\) −6.65878 + 0.228447i −0.768890 + 0.0263788i
\(76\) −0.160690 + 0.536741i −0.0184324 + 0.0615684i
\(77\) 17.6574 23.7181i 2.01225 2.70292i
\(78\) 0.528187 + 5.69558i 0.0598054 + 0.644898i
\(79\) −1.99908 + 1.00398i −0.224914 + 0.112956i −0.557689 0.830050i \(-0.688312\pi\)
0.332774 + 0.943007i \(0.392015\pi\)
\(80\) −1.07391 −0.120067
\(81\) −7.01335 5.64029i −0.779261 0.626699i
\(82\) −6.47392 −0.714925
\(83\) −10.3349 + 5.19037i −1.13440 + 0.569717i −0.914009 0.405694i \(-0.867030\pi\)
−0.220391 + 0.975412i \(0.570733\pi\)
\(84\) −8.20387 3.77366i −0.895115 0.411740i
\(85\) −0.907095 + 1.21844i −0.0983883 + 0.132158i
\(86\) −2.79831 + 9.34701i −0.301750 + 1.00791i
\(87\) −6.51505 10.4405i −0.698487 1.11934i
\(88\) 2.24639 5.20772i 0.239466 0.555145i
\(89\) −0.973720 + 5.52224i −0.103214 + 0.585356i 0.888704 + 0.458480i \(0.151606\pi\)
−0.991919 + 0.126876i \(0.959505\pi\)
\(90\) 3.17844 + 0.526388i 0.335037 + 0.0554862i
\(91\) −2.98980 16.9560i −0.313416 1.77747i
\(92\) 0.455501 + 0.107956i 0.0474893 + 0.0112552i
\(93\) −4.12485 + 2.25189i −0.427727 + 0.233510i
\(94\) −1.15887 + 0.762203i −0.119529 + 0.0786152i
\(95\) 0.0349852 + 0.600672i 0.00358940 + 0.0616276i
\(96\) −1.69807 0.341417i −0.173308 0.0348457i
\(97\) −0.471322 1.57433i −0.0478555 0.159848i 0.930722 0.365728i \(-0.119180\pi\)
−0.978577 + 0.205879i \(0.933995\pi\)
\(98\) 18.9642 + 6.90241i 1.91568 + 0.697249i
\(99\) −9.20123 + 14.3121i −0.924758 + 1.43842i
\(100\) 3.61473 1.31565i 0.361473 0.131565i
\(101\) 4.20558 + 5.64907i 0.418471 + 0.562104i 0.960509 0.278250i \(-0.0897545\pi\)
−0.542038 + 0.840354i \(0.682347\pi\)
\(102\) −1.82166 + 1.63821i −0.180371 + 0.162207i
\(103\) 2.74489 0.650550i 0.270462 0.0641006i −0.0931471 0.995652i \(-0.529693\pi\)
0.363609 + 0.931552i \(0.381545\pi\)
\(104\) −1.30804 3.03237i −0.128263 0.297348i
\(105\) −9.66498 0.794904i −0.943205 0.0775747i
\(106\) 6.62696 + 4.35862i 0.643667 + 0.423346i
\(107\) −4.20659 + 7.28602i −0.406666 + 0.704366i −0.994514 0.104605i \(-0.966642\pi\)
0.587848 + 0.808972i \(0.299975\pi\)
\(108\) 4.85840 + 1.84281i 0.467500 + 0.177325i
\(109\) −8.42332 14.5896i −0.806808 1.39743i −0.915064 0.403309i \(-0.867860\pi\)
0.108256 0.994123i \(-0.465473\pi\)
\(110\) 0.354146 6.08046i 0.0337665 0.579749i
\(111\) 1.88661 7.19042i 0.179069 0.682484i
\(112\) 5.17832 + 0.605259i 0.489305 + 0.0571916i
\(113\) 4.68823 + 4.96923i 0.441032 + 0.467466i 0.909313 0.416113i \(-0.136608\pi\)
−0.468281 + 0.883580i \(0.655127\pi\)
\(114\) −0.135646 + 0.960903i −0.0127044 + 0.0899968i
\(115\) 0.499320 0.0583622i 0.0465618 0.00544230i
\(116\) 5.44287 + 4.56711i 0.505357 + 0.424045i
\(117\) 2.38503 + 9.61600i 0.220496 + 0.889000i
\(118\) 0.839412 0.704350i 0.0772741 0.0648407i
\(119\) 5.06065 5.36398i 0.463909 0.491715i
\(120\) −1.83900 + 0.279160i −0.167877 + 0.0254837i
\(121\) 18.9152 + 9.49957i 1.71956 + 0.863597i
\(122\) −7.52759 3.78050i −0.681516 0.342270i
\(123\) −11.0862 + 1.68287i −0.999605 + 0.151740i
\(124\) 1.86196 1.97356i 0.167209 0.177231i
\(125\) 7.27788 6.10687i 0.650953 0.546215i
\(126\) −15.0295 4.32958i −1.33894 0.385709i
\(127\) −0.965931 0.810512i −0.0857125 0.0719213i 0.598925 0.800805i \(-0.295595\pi\)
−0.684637 + 0.728884i \(0.740039\pi\)
\(128\) 0.993238 0.116093i 0.0877907 0.0102613i
\(129\) −2.36220 + 16.7335i −0.207980 + 1.47331i
\(130\) −2.43379 2.57967i −0.213457 0.226252i
\(131\) 2.66534 + 0.311534i 0.232872 + 0.0272188i 0.231728 0.972781i \(-0.425562\pi\)
0.00114347 + 0.999999i \(0.499636\pi\)
\(132\) 2.49307 9.50182i 0.216994 0.827027i
\(133\) 0.169844 2.91611i 0.0147273 0.252859i
\(134\) 0.867945 + 1.50332i 0.0749790 + 0.129867i
\(135\) 5.57971 + 0.0751794i 0.480225 + 0.00647041i
\(136\) 0.707236 1.22497i 0.0606450 0.105040i
\(137\) −15.9362 10.4814i −1.36152 0.895485i −0.362190 0.932104i \(-0.617971\pi\)
−0.999329 + 0.0366189i \(0.988341\pi\)
\(138\) 0.808078 + 0.0664611i 0.0687882 + 0.00565754i
\(139\) −5.10799 11.8416i −0.433254 1.00440i −0.985339 0.170607i \(-0.945427\pi\)
0.552085 0.833788i \(-0.313832\pi\)
\(140\) 5.44800 1.29120i 0.460440 0.109126i
\(141\) −1.78636 + 1.60647i −0.150439 + 0.135289i
\(142\) −4.55447 6.11771i −0.382203 0.513387i
\(143\) 17.6005 6.40607i 1.47183 0.535702i
\(144\) −2.99658 0.143247i −0.249715 0.0119372i
\(145\) 7.17015 + 2.60972i 0.595449 + 0.216726i
\(146\) −3.08514 10.3051i −0.255328 0.852855i
\(147\) 34.2692 + 6.89024i 2.82648 + 0.568297i
\(148\) 0.249552 + 4.28465i 0.0205131 + 0.352196i
\(149\) −4.12368 + 2.71219i −0.337825 + 0.222191i −0.707074 0.707139i \(-0.749985\pi\)
0.369249 + 0.929330i \(0.379615\pi\)
\(150\) 5.84798 3.19260i 0.477485 0.260675i
\(151\) 7.91920 + 1.87689i 0.644456 + 0.152739i 0.539832 0.841773i \(-0.318488\pi\)
0.104624 + 0.994512i \(0.466636\pi\)
\(152\) −0.0972913 0.551766i −0.00789137 0.0447542i
\(153\) −2.69363 + 3.27886i −0.217767 + 0.265080i
\(154\) −5.13462 + 29.1199i −0.413759 + 2.34655i
\(155\) 1.15410 2.67551i 0.0926996 0.214902i
\(156\) −3.02818 4.85271i −0.242448 0.388528i
\(157\) −2.05866 + 6.87641i −0.164299 + 0.548797i −1.00000 0.000387867i \(-0.999877\pi\)
0.835701 + 0.549185i \(0.185062\pi\)
\(158\) 1.33586 1.79437i 0.106275 0.142753i
\(159\) 12.4812 + 5.74119i 0.989826 + 0.455306i
\(160\) 0.959683 0.481971i 0.0758696 0.0381032i
\(161\) −2.44057 −0.192344
\(162\) 8.79872 + 1.89277i 0.691293 + 0.148710i
\(163\) −2.16637 −0.169684 −0.0848418 0.996394i \(-0.527038\pi\)
−0.0848418 + 0.996394i \(0.527038\pi\)
\(164\) 5.78531 2.90549i 0.451756 0.226881i
\(165\) −0.974143 10.5044i −0.0758369 0.817770i
\(166\) 6.90615 9.27657i 0.536021 0.720001i
\(167\) −3.79628 + 12.6805i −0.293765 + 0.981243i 0.675939 + 0.736958i \(0.263738\pi\)
−0.969703 + 0.244285i \(0.921447\pi\)
\(168\) 9.02486 0.309621i 0.696283 0.0238878i
\(169\) −0.829309 + 1.92255i −0.0637930 + 0.147889i
\(170\) 0.263775 1.49594i 0.0202306 0.114733i
\(171\) 0.0174982 + 1.68074i 0.00133812 + 0.128530i
\(172\) −1.69427 9.60867i −0.129187 0.732655i
\(173\) 11.9681 + 2.83648i 0.909915 + 0.215654i 0.658813 0.752307i \(-0.271059\pi\)
0.251102 + 0.967961i \(0.419207\pi\)
\(174\) 10.5077 + 6.40601i 0.796590 + 0.485638i
\(175\) −16.7558 + 11.0205i −1.26662 + 0.833068i
\(176\) 0.329772 + 5.66197i 0.0248575 + 0.426787i
\(177\) 1.25434 1.42435i 0.0942822 0.107061i
\(178\) −1.60823 5.37186i −0.120542 0.402638i
\(179\) −20.3238 7.39727i −1.51907 0.552898i −0.558157 0.829735i \(-0.688491\pi\)
−0.960917 + 0.276838i \(0.910714\pi\)
\(180\) −3.07660 + 0.956085i −0.229317 + 0.0712624i
\(181\) 9.01352 3.28065i 0.669970 0.243849i 0.0154348 0.999881i \(-0.495087\pi\)
0.654535 + 0.756032i \(0.272865\pi\)
\(182\) 10.2816 + 13.8106i 0.762125 + 1.02371i
\(183\) −13.8732 4.51708i −1.02554 0.333912i
\(184\) −0.455501 + 0.107956i −0.0335800 + 0.00795861i
\(185\) 1.82558 + 4.23218i 0.134220 + 0.311156i
\(186\) 2.67545 3.86359i 0.196174 0.283292i
\(187\) 6.70251 + 4.40831i 0.490136 + 0.322367i
\(188\) 0.693531 1.20123i 0.0505809 0.0876087i
\(189\) −26.8625 3.50724i −1.95396 0.255114i
\(190\) −0.300845 0.521079i −0.0218256 0.0378030i
\(191\) −0.223393 + 3.83552i −0.0161642 + 0.277528i 0.980535 + 0.196345i \(0.0629071\pi\)
−0.996699 + 0.0811837i \(0.974130\pi\)
\(192\) 1.67068 0.456990i 0.120571 0.0329804i
\(193\) −6.64292 0.776446i −0.478168 0.0558898i −0.126405 0.991979i \(-0.540344\pi\)
−0.351763 + 0.936089i \(0.614418\pi\)
\(194\) 1.12774 + 1.19534i 0.0809673 + 0.0858204i
\(195\) −4.83828 3.78485i −0.346476 0.271039i
\(196\) −20.0449 + 2.34291i −1.43178 + 0.167351i
\(197\) −4.92101 4.12922i −0.350607 0.294194i 0.450427 0.892813i \(-0.351272\pi\)
−0.801034 + 0.598619i \(0.795716\pi\)
\(198\) 1.79925 16.9193i 0.127867 1.20240i
\(199\) 15.5119 13.0161i 1.09961 0.922685i 0.102214 0.994762i \(-0.467407\pi\)
0.997399 + 0.0720778i \(0.0229630\pi\)
\(200\) −2.63977 + 2.79800i −0.186660 + 0.197848i
\(201\) 1.87708 + 2.34872i 0.132399 + 0.165666i
\(202\) −6.29354 3.16074i −0.442812 0.222389i
\(203\) −33.1030 16.6250i −2.32338 1.16684i
\(204\) 0.892668 2.28152i 0.0624992 0.159738i
\(205\) 4.77104 5.05701i 0.333224 0.353197i
\(206\) −2.16095 + 1.81326i −0.150561 + 0.126335i
\(207\) 1.40106 0.0962470i 0.0973801 0.00668963i
\(208\) 2.52983 + 2.12278i 0.175412 + 0.147188i
\(209\) 3.15617 0.368903i 0.218317 0.0255176i
\(210\) 8.99369 3.62728i 0.620624 0.250306i
\(211\) 4.98594 + 5.28479i 0.343247 + 0.363820i 0.875883 0.482524i \(-0.160280\pi\)
−0.532636 + 0.846344i \(0.678799\pi\)
\(212\) −7.87821 0.920831i −0.541078 0.0632429i
\(213\) −9.38950 9.29226i −0.643358 0.636695i
\(214\) 0.489183 8.39894i 0.0334398 0.574140i
\(215\) −5.23903 9.07427i −0.357299 0.618860i
\(216\) −5.16868 + 0.533650i −0.351684 + 0.0363103i
\(217\) −7.07290 + 12.2506i −0.480140 + 0.831626i
\(218\) 14.0752 + 9.25738i 0.953290 + 0.626989i
\(219\) −7.96187 16.8448i −0.538013 1.13827i
\(220\) 2.41243 + 5.59264i 0.162646 + 0.377056i
\(221\) 4.54531 1.07726i 0.305751 0.0724643i
\(222\) 1.54112 + 7.27230i 0.103433 + 0.488085i
\(223\) 10.1697 + 13.6602i 0.681012 + 0.914758i 0.999449 0.0331861i \(-0.0105654\pi\)
−0.318437 + 0.947944i \(0.603158\pi\)
\(224\) −4.89915 + 1.78315i −0.327338 + 0.119141i
\(225\) 9.18437 6.98728i 0.612291 0.465819i
\(226\) −6.41974 2.33660i −0.427035 0.155428i
\(227\) −0.986451 3.29498i −0.0654731 0.218695i 0.918992 0.394276i \(-0.129005\pi\)
−0.984465 + 0.175581i \(0.943820\pi\)
\(228\) −0.310035 0.919572i −0.0205325 0.0609002i
\(229\) 1.38456 + 23.7720i 0.0914944 + 1.57090i 0.661936 + 0.749560i \(0.269735\pi\)
−0.570442 + 0.821338i \(0.693228\pi\)
\(230\) −0.420016 + 0.276249i −0.0276950 + 0.0182153i
\(231\) −1.22308 + 51.2006i −0.0804729 + 3.36875i
\(232\) −6.91364 1.63856i −0.453902 0.107577i
\(233\) 2.27078 + 12.8782i 0.148764 + 0.843681i 0.964268 + 0.264929i \(0.0853487\pi\)
−0.815504 + 0.578751i \(0.803540\pi\)
\(234\) −6.44700 7.52277i −0.421453 0.491779i
\(235\) 0.258663 1.46695i 0.0168733 0.0956934i
\(236\) −0.434014 + 1.00616i −0.0282519 + 0.0654953i
\(237\) 1.82113 3.42000i 0.118295 0.222153i
\(238\) −2.11502 + 7.06464i −0.137096 + 0.457933i
\(239\) −8.89870 + 11.9530i −0.575609 + 0.773177i −0.990621 0.136639i \(-0.956370\pi\)
0.415012 + 0.909816i \(0.363777\pi\)
\(240\) 1.51811 1.07481i 0.0979934 0.0693787i
\(241\) 3.45496 1.73515i 0.222554 0.111771i −0.334029 0.942563i \(-0.608408\pi\)
0.556583 + 0.830792i \(0.312112\pi\)
\(242\) −21.1666 −1.36064
\(243\) 15.5592 + 0.954039i 0.998125 + 0.0612016i
\(244\) 8.42358 0.539265
\(245\) −19.3677 + 9.72681i −1.23736 + 0.621423i
\(246\) 9.15168 6.47933i 0.583490 0.413107i
\(247\) 1.10492 1.48416i 0.0703043 0.0944350i
\(248\) −0.778173 + 2.59928i −0.0494140 + 0.165054i
\(249\) 9.41491 17.6807i 0.596646 1.12047i
\(250\) −3.76299 + 8.72360i −0.237993 + 0.551729i
\(251\) 4.35201 24.6815i 0.274696 1.55788i −0.465228 0.885191i \(-0.654028\pi\)
0.739924 0.672690i \(-0.234861\pi\)
\(252\) 15.3740 2.87619i 0.968470 0.181183i
\(253\) −0.461031 2.61463i −0.0289847 0.164381i
\(254\) 1.22694 + 0.290791i 0.0769854 + 0.0182459i
\(255\) 0.0628320 2.63027i 0.00393469 0.164714i
\(256\) −0.835488 + 0.549509i −0.0522180 + 0.0343443i
\(257\) 1.24192 + 21.3229i 0.0774689 + 1.33009i 0.783271 + 0.621680i \(0.213550\pi\)
−0.705802 + 0.708409i \(0.749413\pi\)
\(258\) −5.39906 16.0138i −0.336131 0.996975i
\(259\) −6.41755 21.4361i −0.398767 1.33198i
\(260\) 3.33266 + 1.21299i 0.206683 + 0.0752265i
\(261\) 19.6590 + 8.23841i 1.21686 + 0.509945i
\(262\) −2.52165 + 0.917806i −0.155788 + 0.0567022i
\(263\) −1.09986 1.47736i −0.0678200 0.0910981i 0.766919 0.641744i \(-0.221789\pi\)
−0.834739 + 0.550646i \(0.814381\pi\)
\(264\) 2.03652 + 9.61002i 0.125339 + 0.591456i
\(265\) −8.28850 + 1.96441i −0.509158 + 0.120673i
\(266\) 1.15697 + 2.68215i 0.0709383 + 0.164453i
\(267\) −4.15038 8.78090i −0.253999 0.537382i
\(268\) −1.45031 0.953887i −0.0885921 0.0582679i
\(269\) 6.45590 11.1819i 0.393623 0.681775i −0.599301 0.800523i \(-0.704555\pi\)
0.992924 + 0.118749i \(0.0378882\pi\)
\(270\) −5.01995 + 2.43699i −0.305504 + 0.148310i
\(271\) −3.07287 5.32237i −0.186664 0.323311i 0.757472 0.652867i \(-0.226434\pi\)
−0.944136 + 0.329557i \(0.893101\pi\)
\(272\) −0.0822442 + 1.41208i −0.00498679 + 0.0856198i
\(273\) 21.1966 + 20.9771i 1.28288 + 1.26959i
\(274\) 18.9451 + 2.21437i 1.14452 + 0.133775i
\(275\) −14.9716 15.8690i −0.902824 0.956938i
\(276\) −0.751953 + 0.303273i −0.0452622 + 0.0182549i
\(277\) −10.6331 + 1.24283i −0.638879 + 0.0746743i −0.429365 0.903131i \(-0.641262\pi\)
−0.209515 + 0.977806i \(0.567188\pi\)
\(278\) 9.87918 + 8.28962i 0.592514 + 0.497178i
\(279\) 3.57721 7.31162i 0.214162 0.437735i
\(280\) −4.28902 + 3.59892i −0.256318 + 0.215076i
\(281\) 9.37188 9.93361i 0.559080 0.592590i −0.384751 0.923021i \(-0.625713\pi\)
0.943830 + 0.330431i \(0.107194\pi\)
\(282\) 0.875369 2.23731i 0.0521275 0.133230i
\(283\) −12.6807 6.36849i −0.753790 0.378568i 0.0300353 0.999549i \(-0.490438\pi\)
−0.783825 + 0.620981i \(0.786734\pi\)
\(284\) 6.81565 + 3.42295i 0.404434 + 0.203115i
\(285\) −0.650629 0.814109i −0.0385400 0.0482237i
\(286\) −12.8534 + 13.6238i −0.760035 + 0.805590i
\(287\) −25.8557 + 21.6955i −1.52621 + 1.28065i
\(288\) 2.74213 1.21685i 0.161581 0.0717037i
\(289\) −11.4901 9.64135i −0.675889 0.567138i
\(290\) −7.57872 + 0.885826i −0.445038 + 0.0520175i
\(291\) 2.24191 + 1.75379i 0.131423 + 0.102809i
\(292\) 7.38190 + 7.82435i 0.431993 + 0.457886i
\(293\) 4.91970 + 0.575030i 0.287412 + 0.0335936i 0.258577 0.965991i \(-0.416746\pi\)
0.0288345 + 0.999584i \(0.490820\pi\)
\(294\) −33.7164 + 9.22266i −1.96638 + 0.537877i
\(295\) −0.0684228 + 1.17477i −0.00398373 + 0.0683980i
\(296\) −2.14595 3.71690i −0.124731 0.216040i
\(297\) −1.31702 29.4409i −0.0764215 1.70833i
\(298\) 2.46783 4.27440i 0.142957 0.247610i
\(299\) −1.29162 0.849510i −0.0746961 0.0491284i
\(300\) −3.79311 + 5.47758i −0.218995 + 0.316248i
\(301\) 20.1479 + 46.7081i 1.16131 + 2.69221i
\(302\) −7.91920 + 1.87689i −0.455699 + 0.108003i
\(303\) −11.5989 3.77656i −0.666339 0.216958i
\(304\) 0.334575 + 0.449412i 0.0191892 + 0.0257756i
\(305\) 8.50064 3.09398i 0.486745 0.177161i
\(306\) 0.935561 4.13900i 0.0534824 0.236611i
\(307\) 29.8416 + 10.8615i 1.70315 + 0.619896i 0.996178 0.0873444i \(-0.0278381\pi\)
0.706973 + 0.707241i \(0.250060\pi\)
\(308\) −8.48051 28.3269i −0.483222 1.61407i
\(309\) −3.22914 + 3.66681i −0.183699 + 0.208598i
\(310\) 0.169423 + 2.90888i 0.00962258 + 0.165213i
\(311\) 14.2314 9.36016i 0.806991 0.530766i −0.0776823 0.996978i \(-0.524752\pi\)
0.884673 + 0.466212i \(0.154382\pi\)
\(312\) 4.88397 + 2.97749i 0.276500 + 0.168567i
\(313\) −24.5742 5.82419i −1.38902 0.329203i −0.532984 0.846125i \(-0.678929\pi\)
−0.856032 + 0.516923i \(0.827078\pi\)
\(314\) −1.24644 7.06891i −0.0703406 0.398922i
\(315\) 14.4582 8.54936i 0.814627 0.481702i
\(316\) −0.388456 + 2.20304i −0.0218524 + 0.123931i
\(317\) 6.46401 14.9853i 0.363055 0.841656i −0.634576 0.772861i \(-0.718825\pi\)
0.997631 0.0687955i \(-0.0219156\pi\)
\(318\) −13.7303 + 0.471053i −0.769956 + 0.0264153i
\(319\) 11.5574 38.6044i 0.647091 2.16143i
\(320\) −0.641296 + 0.861410i −0.0358495 + 0.0481543i
\(321\) −1.34558 14.5098i −0.0751031 0.809857i
\(322\) 2.18098 1.09533i 0.121541 0.0610402i
\(323\) 0.792498 0.0440957
\(324\) −8.71229 + 2.25742i −0.484016 + 0.125412i
\(325\) −12.7036 −0.704668
\(326\) 1.93594 0.972267i 0.107222 0.0538489i
\(327\) 26.5092 + 12.1939i 1.46596 + 0.674322i
\(328\) −3.86596 + 5.19288i −0.213462 + 0.286729i
\(329\) −2.07403 + 6.92774i −0.114345 + 0.381939i
\(330\) 5.58491 + 8.94992i 0.307439 + 0.492677i
\(331\) −9.09083 + 21.0749i −0.499677 + 1.15838i 0.462663 + 0.886534i \(0.346894\pi\)
−0.962340 + 0.271848i \(0.912365\pi\)
\(332\) −2.00824 + 11.3893i −0.110217 + 0.625070i
\(333\) 4.52947 + 12.0527i 0.248214 + 0.660485i
\(334\) −2.29850 13.0354i −0.125768 0.713267i
\(335\) −1.81394 0.429913i −0.0991064 0.0234886i
\(336\) −7.92595 + 4.32704i −0.432396 + 0.236059i
\(337\) 22.7711 14.9768i 1.24042 0.815838i 0.252023 0.967721i \(-0.418904\pi\)
0.988398 + 0.151883i \(0.0485338\pi\)
\(338\) −0.121743 2.09025i −0.00662196 0.113695i
\(339\) −11.6008 2.33247i −0.630067 0.126683i
\(340\) 0.435660 + 1.45520i 0.0236270 + 0.0789195i
\(341\) −14.4604 5.26316i −0.783076 0.285016i
\(342\) −0.769953 1.49411i −0.0416343 0.0807924i
\(343\) 64.5773 23.5042i 3.48684 1.26911i
\(344\) 5.82642 + 7.82624i 0.314139 + 0.421963i
\(345\) −0.647439 + 0.582239i −0.0348570 + 0.0313467i
\(346\) −11.9681 + 2.83648i −0.643407 + 0.152490i
\(347\) 4.50877 + 10.4525i 0.242044 + 0.561120i 0.995325 0.0965778i \(-0.0307896\pi\)
−0.753282 + 0.657698i \(0.771530\pi\)
\(348\) −12.2651 1.00875i −0.657477 0.0540748i
\(349\) 12.3021 + 8.09124i 0.658518 + 0.433114i 0.834297 0.551315i \(-0.185874\pi\)
−0.175779 + 0.984430i \(0.556244\pi\)
\(350\) 10.0275 17.3682i 0.535995 0.928371i
\(351\) −12.9956 11.2064i −0.693652 0.598152i
\(352\) −2.83578 4.91172i −0.151148 0.261795i
\(353\) −1.12945 + 19.3920i −0.0601148 + 1.03213i 0.824516 + 0.565839i \(0.191448\pi\)
−0.884631 + 0.466293i \(0.845589\pi\)
\(354\) −0.481673 + 1.83580i −0.0256006 + 0.0975716i
\(355\) 8.13524 + 0.950874i 0.431774 + 0.0504671i
\(356\) 3.84805 + 4.07870i 0.203946 + 0.216171i
\(357\) −1.78539 + 12.6475i −0.0944930 + 0.669378i
\(358\) 21.4819 2.51088i 1.13535 0.132704i
\(359\) −12.8043 10.7441i −0.675784 0.567050i 0.238987 0.971023i \(-0.423185\pi\)
−0.914771 + 0.403972i \(0.867629\pi\)
\(360\) 2.32026 2.23517i 0.122289 0.117804i
\(361\) −14.3144 + 12.0112i −0.753388 + 0.632168i
\(362\) −6.58242 + 6.97696i −0.345964 + 0.366701i
\(363\) −36.2465 + 5.50220i −1.90245 + 0.288790i
\(364\) −15.3862 7.72723i −0.806455 0.405017i
\(365\) 10.3233 + 5.18456i 0.540347 + 0.271372i
\(366\) 14.4248 2.18968i 0.753998 0.114457i
\(367\) −4.81051 + 5.09884i −0.251107 + 0.266157i −0.840649 0.541580i \(-0.817826\pi\)
0.589543 + 0.807737i \(0.299308\pi\)
\(368\) 0.358600 0.300901i 0.0186933 0.0156856i
\(369\) 13.9874 13.4744i 0.728153 0.701447i
\(370\) −3.53080 2.96269i −0.183558 0.154023i
\(371\) 41.0736 4.80082i 2.13243 0.249246i
\(372\) −0.656896 + 4.65338i −0.0340585 + 0.241266i
\(373\) 4.31982 + 4.57874i 0.223672 + 0.237078i 0.829485 0.558528i \(-0.188634\pi\)
−0.605814 + 0.795607i \(0.707152\pi\)
\(374\) −7.96802 0.931328i −0.412017 0.0481578i
\(375\) −4.17621 + 15.9168i −0.215658 + 0.821938i
\(376\) −0.0806504 + 1.38471i −0.00415923 + 0.0714112i
\(377\) −11.7322 20.3208i −0.604240 1.04658i
\(378\) 25.5793 8.92169i 1.31566 0.458882i
\(379\) −4.24620 + 7.35464i −0.218113 + 0.377782i −0.954231 0.299071i \(-0.903323\pi\)
0.736118 + 0.676853i \(0.236657\pi\)
\(380\) 0.502705 + 0.330634i 0.0257882 + 0.0169612i
\(381\) 2.17665 + 0.179021i 0.111513 + 0.00917150i
\(382\) −1.52175 3.52780i −0.0778593 0.180498i
\(383\) 26.2193 6.21409i 1.33974 0.317525i 0.502605 0.864516i \(-0.332375\pi\)
0.837138 + 0.546991i \(0.184227\pi\)
\(384\) −1.28787 + 1.15818i −0.0657216 + 0.0591031i
\(385\) −18.9625 25.4711i −0.966421 1.29813i
\(386\) 6.28480 2.28748i 0.319888 0.116430i
\(387\) −13.4083 26.0191i −0.681581 1.32262i
\(388\) −1.54426 0.562063i −0.0783978 0.0285344i
\(389\) 8.78641 + 29.3487i 0.445489 + 1.48804i 0.826218 + 0.563350i \(0.190488\pi\)
−0.380730 + 0.924686i \(0.624327\pi\)
\(390\) 6.02228 + 1.21085i 0.304950 + 0.0613138i
\(391\) −0.0385001 0.661021i −0.00194703 0.0334293i
\(392\) 16.8612 11.0898i 0.851621 0.560120i
\(393\) −4.07958 + 2.22718i −0.205788 + 0.112346i
\(394\) 6.25076 + 1.48146i 0.314909 + 0.0746348i
\(395\) 0.417168 + 2.36588i 0.0209900 + 0.119040i
\(396\) 5.98550 + 15.9271i 0.300783 + 0.800369i
\(397\) −3.88827 + 22.0515i −0.195147 + 1.10673i 0.717063 + 0.697008i \(0.245486\pi\)
−0.912210 + 0.409724i \(0.865625\pi\)
\(398\) −8.02038 + 18.5933i −0.402025 + 0.932000i
\(399\) 2.67845 + 4.29226i 0.134090 + 0.214882i
\(400\) 1.10325 3.68511i 0.0551625 0.184255i
\(401\) 13.9066 18.6798i 0.694461 0.932823i −0.305350 0.952240i \(-0.598774\pi\)
0.999811 + 0.0194168i \(0.00618095\pi\)
\(402\) −2.73153 1.25646i −0.136236 0.0626667i
\(403\) −8.00734 + 4.02144i −0.398874 + 0.200322i
\(404\) 7.04265 0.350385
\(405\) −7.96284 + 5.47809i −0.395677 + 0.272209i
\(406\) 37.0432 1.83842
\(407\) 21.7526 10.9246i 1.07824 0.541512i
\(408\) 0.226227 + 2.43947i 0.0111999 + 0.120772i
\(409\) 3.63030 4.87634i 0.179507 0.241120i −0.703258 0.710935i \(-0.748272\pi\)
0.882765 + 0.469815i \(0.155679\pi\)
\(410\) −1.99398 + 6.66035i −0.0984755 + 0.328931i
\(411\) 33.0179 1.13276i 1.62865 0.0558751i
\(412\) 1.11731 2.59022i 0.0550460 0.127611i
\(413\) 0.992034 5.62610i 0.0488148 0.276842i
\(414\) −1.20883 + 0.714802i −0.0594110 + 0.0351306i
\(415\) 2.15668 + 12.2311i 0.105867 + 0.600403i
\(416\) −3.21344 0.761598i −0.157552 0.0373404i
\(417\) 19.0723 + 11.6274i 0.933975 + 0.569394i
\(418\) −2.65489 + 1.74615i −0.129855 + 0.0854070i
\(419\) 0.839499 + 14.4136i 0.0410122 + 0.704152i 0.954670 + 0.297667i \(0.0962086\pi\)
−0.913658 + 0.406485i \(0.866754\pi\)
\(420\) −6.40914 + 7.27782i −0.312734 + 0.355121i
\(421\) −1.71397 5.72504i −0.0835336 0.279022i 0.906010 0.423257i \(-0.139113\pi\)
−0.989543 + 0.144235i \(0.953928\pi\)
\(422\) −6.82741 2.48498i −0.332353 0.120967i
\(423\) 0.917431 4.05879i 0.0446070 0.197345i
\(424\) 7.45349 2.71285i 0.361974 0.131748i
\(425\) −3.24918 4.36440i −0.157608 0.211705i
\(426\) 12.5611 + 4.08986i 0.608588 + 0.198155i
\(427\) −42.7332 + 10.1279i −2.06800 + 0.490126i
\(428\) 3.33229 + 7.72511i 0.161072 + 0.373407i
\(429\) −18.4691 + 26.6710i −0.891695 + 1.28769i
\(430\) 8.75429 + 5.75779i 0.422170 + 0.277665i
\(431\) −4.17774 + 7.23605i −0.201234 + 0.348548i −0.948926 0.315497i \(-0.897829\pi\)
0.747692 + 0.664046i \(0.231162\pi\)
\(432\) 4.37940 2.79658i 0.210704 0.134551i
\(433\) 0.106189 + 0.183924i 0.00510310 + 0.00883883i 0.868566 0.495574i \(-0.165042\pi\)
−0.863463 + 0.504413i \(0.831709\pi\)
\(434\) 0.822505 14.1219i 0.0394815 0.677871i
\(435\) −12.7478 + 3.48698i −0.611210 + 0.167188i
\(436\) −16.7327 1.95578i −0.801352 0.0936647i
\(437\) −0.179985 0.190773i −0.00860987 0.00912593i
\(438\) 14.6749 + 11.4798i 0.701195 + 0.548525i
\(439\) −22.5058 + 2.63055i −1.07414 + 0.125549i −0.634729 0.772735i \(-0.718888\pi\)
−0.439415 + 0.898284i \(0.644814\pi\)
\(440\) −4.66580 3.91507i −0.222433 0.186644i
\(441\) −55.3398 + 24.5577i −2.63523 + 1.16941i
\(442\) −3.57837 + 3.00261i −0.170206 + 0.142819i
\(443\) 12.5701 13.3236i 0.597225 0.633021i −0.356287 0.934377i \(-0.615958\pi\)
0.953512 + 0.301355i \(0.0974390\pi\)
\(444\) −4.64100 5.80711i −0.220252 0.275593i
\(445\) 5.38136 + 2.70262i 0.255101 + 0.128116i
\(446\) −15.2187 7.64310i −0.720625 0.361911i
\(447\) 3.11487 7.96113i 0.147329 0.376549i
\(448\) 3.57777 3.79221i 0.169034 0.179165i
\(449\) 12.9119 10.8344i 0.609352 0.511307i −0.285084 0.958502i \(-0.592022\pi\)
0.894436 + 0.447196i \(0.147577\pi\)
\(450\) −5.07156 + 10.3660i −0.239076 + 0.488658i
\(451\) −28.1270 23.6014i −1.32445 1.11135i
\(452\) 6.78555 0.793118i 0.319166 0.0373051i
\(453\) −13.0732 + 5.27261i −0.614233 + 0.247729i
\(454\) 2.36031 + 2.50178i 0.110775 + 0.117414i
\(455\) −18.3652 2.14658i −0.860972 0.100633i
\(456\) 0.689760 + 0.682617i 0.0323010 + 0.0319665i
\(457\) 0.722429 12.4036i 0.0337938 0.580217i −0.938329 0.345744i \(-0.887627\pi\)
0.972123 0.234473i \(-0.0753364\pi\)
\(458\) −11.9061 20.6220i −0.556338 0.963605i
\(459\) 0.526167 7.33095i 0.0245594 0.342180i
\(460\) 0.251360 0.435368i 0.0117197 0.0202991i
\(461\) 24.6019 + 16.1809i 1.14583 + 0.753621i 0.972880 0.231310i \(-0.0743013\pi\)
0.172945 + 0.984931i \(0.444672\pi\)
\(462\) −21.8858 46.3034i −1.01822 2.15423i
\(463\) −10.7936 25.0223i −0.501620 1.16289i −0.961475 0.274892i \(-0.911358\pi\)
0.459855 0.887994i \(-0.347901\pi\)
\(464\) 6.91364 1.63856i 0.320957 0.0760683i
\(465\) 1.04628 + 4.93722i 0.0485200 + 0.228958i
\(466\) −7.80898 10.4893i −0.361744 0.485907i
\(467\) 1.56709 0.570374i 0.0725163 0.0263938i −0.305507 0.952190i \(-0.598826\pi\)
0.378024 + 0.925796i \(0.376604\pi\)
\(468\) 9.13746 + 3.82919i 0.422379 + 0.177004i
\(469\) 8.50439 + 3.09534i 0.392696 + 0.142930i
\(470\) 0.427217 + 1.42700i 0.0197061 + 0.0658228i
\(471\) −3.97198 11.7810i −0.183019 0.542841i
\(472\) −0.0637136 1.09392i −0.00293266 0.0503518i
\(473\) −46.2333 + 30.4081i −2.12581 + 1.39817i
\(474\) −0.0925315 + 3.87355i −0.00425011 + 0.177918i
\(475\) −2.09713 0.497030i −0.0962231 0.0228053i
\(476\) −1.28056 7.26241i −0.0586943 0.332872i
\(477\) −23.3897 + 4.37578i −1.07094 + 0.200353i
\(478\) 2.58766 14.6754i 0.118357 0.671235i
\(479\) −13.2595 + 30.7391i −0.605844 + 1.40450i 0.288655 + 0.957433i \(0.406792\pi\)
−0.894499 + 0.447071i \(0.852467\pi\)
\(480\) −0.874256 + 1.64181i −0.0399042 + 0.0749380i
\(481\) 4.06510 13.5784i 0.185353 0.619121i
\(482\) −2.30874 + 3.10117i −0.105160 + 0.141254i
\(483\) 3.45005 2.44261i 0.156983 0.111143i
\(484\) 18.9152 9.49957i 0.859782 0.431799i
\(485\) −1.76483 −0.0801368
\(486\) −14.3324 + 6.13041i −0.650131 + 0.278081i
\(487\) −17.7293 −0.803393 −0.401696 0.915773i \(-0.631579\pi\)
−0.401696 + 0.915773i \(0.631579\pi\)
\(488\) −7.52759 + 3.78050i −0.340758 + 0.171135i
\(489\) 3.06244 2.16818i 0.138488 0.0980487i
\(490\) 12.9422 17.3844i 0.584669 0.785347i
\(491\) −4.58939 + 15.3296i −0.207116 + 0.691817i 0.789801 + 0.613363i \(0.210184\pi\)
−0.996918 + 0.0784541i \(0.975002\pi\)
\(492\) −5.27032 + 9.89740i −0.237604 + 0.446209i
\(493\) 3.98062 9.22811i 0.179278 0.415613i
\(494\) −0.321300 + 1.82218i −0.0144560 + 0.0819839i
\(495\) 11.8903 + 13.8744i 0.534429 + 0.623606i
\(496\) −0.471154 2.67204i −0.0211554 0.119978i
\(497\) −38.6916 9.17007i −1.73555 0.411334i
\(498\) −0.478370 + 20.0255i −0.0214363 + 0.897363i
\(499\) 6.16978 4.05793i 0.276197 0.181658i −0.403852 0.914824i \(-0.632329\pi\)
0.680049 + 0.733167i \(0.261958\pi\)
\(500\) −0.552411 9.48452i −0.0247045 0.424161i
\(501\) −7.32454 21.7248i −0.327236 0.970593i
\(502\) 7.18793 + 24.0094i 0.320813 + 1.07159i
\(503\) 25.1227 + 9.14393i 1.12017 + 0.407708i 0.834713 0.550685i \(-0.185633\pi\)
0.285454 + 0.958392i \(0.407856\pi\)
\(504\) −12.4479 + 9.47008i −0.554472 + 0.421831i
\(505\) 7.10708 2.58676i 0.316261 0.115109i
\(506\) 1.58544 + 2.12961i 0.0704813 + 0.0946728i
\(507\) −0.751831 3.54777i −0.0333900 0.157562i
\(508\) −1.22694 + 0.290791i −0.0544369 + 0.0129018i
\(509\) 15.6362 + 36.2487i 0.693061 + 1.60670i 0.791225 + 0.611526i \(0.209444\pi\)
−0.0981636 + 0.995170i \(0.531297\pi\)
\(510\) 1.12431 + 2.37869i 0.0497854 + 0.105330i
\(511\) −46.8561 30.8177i −2.07279 1.36330i
\(512\) 0.500000 0.866025i 0.0220971 0.0382733i
\(513\) −1.70688 2.35842i −0.0753607 0.104127i
\(514\) −10.6795 18.4975i −0.471054 0.815890i
\(515\) 0.176145 3.02430i 0.00776190 0.133267i
\(516\) 12.0118 + 11.8874i 0.528788 + 0.523312i
\(517\) −7.81361 0.913281i −0.343642 0.0401660i
\(518\) 15.3554 + 16.2758i 0.674680 + 0.715119i
\(519\) −19.7572 + 7.96834i −0.867244 + 0.349772i
\(520\) −3.52257 + 0.411729i −0.154475 + 0.0180555i
\(521\) 12.7620 + 10.7086i 0.559113 + 0.469152i 0.878013 0.478637i \(-0.158869\pi\)
−0.318900 + 0.947788i \(0.603313\pi\)
\(522\) −21.2654 + 1.46084i −0.930759 + 0.0639394i
\(523\) −7.28396 + 6.11197i −0.318505 + 0.267258i −0.787997 0.615679i \(-0.788882\pi\)
0.469491 + 0.882937i \(0.344437\pi\)
\(524\) 1.84152 1.95190i 0.0804471 0.0852690i
\(525\) 12.6567 32.3486i 0.552384 1.41181i
\(526\) 1.64591 + 0.826605i 0.0717649 + 0.0360417i
\(527\) −3.42962 1.72242i −0.149396 0.0750297i
\(528\) −6.13287 7.67384i −0.266899 0.333961i
\(529\) 15.6332 16.5702i 0.679703 0.720443i
\(530\) 6.52525 5.47533i 0.283439 0.237833i
\(531\) −0.347623 + 3.26889i −0.0150856 + 0.141858i
\(532\) −2.23765 1.87761i −0.0970146 0.0814049i
\(533\) −21.2353 + 2.48205i −0.919801 + 0.107509i
\(534\) 7.64978 + 5.98421i 0.331038 + 0.258962i
\(535\) 6.20020 + 6.57183i 0.268058 + 0.284125i
\(536\) 1.72415 + 0.201524i 0.0744720 + 0.00870453i
\(537\) 36.1337 9.88386i 1.55928 0.426520i
\(538\) −0.750754 + 12.8899i −0.0323673 + 0.555725i
\(539\) 57.2298 + 99.1249i 2.46506 + 4.26961i
\(540\) 3.39227 4.43072i 0.145980 0.190668i
\(541\) −6.49225 + 11.2449i −0.279124 + 0.483456i −0.971167 0.238399i \(-0.923377\pi\)
0.692044 + 0.721856i \(0.256711\pi\)
\(542\) 5.13469 + 3.37714i 0.220554 + 0.145061i
\(543\) −9.45832 + 13.6587i −0.405895 + 0.586149i
\(544\) −0.560244 1.29879i −0.0240202 0.0556852i
\(545\) −17.6042 + 4.17226i −0.754079 + 0.178720i
\(546\) −28.3565 9.23279i −1.21355 0.395127i
\(547\) 5.30799 + 7.12987i 0.226953 + 0.304851i 0.900984 0.433852i \(-0.142846\pi\)
−0.674031 + 0.738703i \(0.735439\pi\)
\(548\) −17.9238 + 6.52373i −0.765666 + 0.278680i
\(549\) 24.1324 7.49937i 1.02994 0.320065i
\(550\) 20.5012 + 7.46181i 0.874172 + 0.318173i
\(551\) −1.14172 3.81363i −0.0486391 0.162466i
\(552\) 0.535861 0.608490i 0.0228078 0.0258991i
\(553\) −0.678138 11.6432i −0.0288374 0.495118i
\(554\) 8.94428 5.88274i 0.380006 0.249934i
\(555\) −6.81640 4.15560i −0.289340 0.176395i
\(556\) −12.5487 2.97410i −0.532185 0.126130i
\(557\) −4.15726 23.5770i −0.176149 0.998989i −0.936810 0.349839i \(-0.886236\pi\)
0.760661 0.649149i \(-0.224875\pi\)
\(558\) 0.0847388 + 8.13935i 0.00358728 + 0.344566i
\(559\) −5.59525 + 31.7322i −0.236654 + 1.34213i
\(560\) 2.21762 5.14102i 0.0937115 0.217248i
\(561\) −13.8868 + 0.476423i −0.586301 + 0.0201146i
\(562\) −3.91682 + 13.0831i −0.165221 + 0.551877i
\(563\) 15.4509 20.7541i 0.651177 0.874683i −0.346820 0.937932i \(-0.612739\pi\)
0.997998 + 0.0632486i \(0.0201461\pi\)
\(564\) 0.221843 + 2.39220i 0.00934129 + 0.100730i
\(565\) 6.55632 3.29271i 0.275826 0.138525i
\(566\) 14.1901 0.596453
\(567\) 41.4836 21.9270i 1.74215 0.920849i
\(568\) −7.62690 −0.320018
\(569\) 22.1765 11.1375i 0.929688 0.466907i 0.0815422 0.996670i \(-0.474015\pi\)
0.848146 + 0.529763i \(0.177719\pi\)
\(570\) 0.946795 + 0.435512i 0.0396569 + 0.0182416i
\(571\) −6.40856 + 8.60819i −0.268190 + 0.360242i −0.915733 0.401787i \(-0.868389\pi\)
0.647543 + 0.762029i \(0.275797\pi\)
\(572\) 5.37185 17.9432i 0.224608 0.750244i
\(573\) −3.52293 5.64555i −0.147172 0.235846i
\(574\) 13.3686 30.9918i 0.557994 1.29357i
\(575\) −0.312692 + 1.77336i −0.0130402 + 0.0739544i
\(576\) −1.90433 + 2.31808i −0.0793472 + 0.0965868i
\(577\) −4.65875 26.4211i −0.193946 1.09992i −0.913912 0.405913i \(-0.866953\pi\)
0.719965 0.694010i \(-0.244158\pi\)
\(578\) 14.5950 + 3.45907i 0.607070 + 0.143878i
\(579\) 10.1677 5.55087i 0.422554 0.230686i
\(580\) 6.37504 4.19293i 0.264709 0.174102i
\(581\) −3.50584 60.1930i −0.145447 2.49723i
\(582\) −2.79054 0.561072i −0.115672 0.0232572i
\(583\) 12.9021 + 43.0961i 0.534351 + 1.78486i
\(584\) −10.1083 3.67911i −0.418283 0.152243i
\(585\) 10.6275 + 0.508031i 0.439393 + 0.0210045i
\(586\) −4.65447 + 1.69409i −0.192275 + 0.0699822i
\(587\) −27.2567 36.6120i −1.12500 1.51114i −0.831788 0.555094i \(-0.812682\pi\)
−0.293215 0.956047i \(-0.594725\pi\)
\(588\) 25.9910 23.3736i 1.07185 0.963910i
\(589\) −1.47921 + 0.350578i −0.0609496 + 0.0144453i
\(590\) −0.466093 1.08053i −0.0191888 0.0444845i
\(591\) 11.0891 + 0.912034i 0.456145 + 0.0375160i
\(592\) 3.58584 + 2.35844i 0.147377 + 0.0969313i
\(593\) −11.1174 + 19.2559i −0.456537 + 0.790745i −0.998775 0.0494800i \(-0.984244\pi\)
0.542238 + 0.840225i \(0.317577\pi\)
\(594\) 14.3900 + 25.7182i 0.590428 + 1.05523i
\(595\) −3.95976 6.85850i −0.162334 0.281171i
\(596\) −0.286983 + 4.92731i −0.0117553 + 0.201830i
\(597\) −8.90109 + 33.9247i −0.364298 + 1.38845i
\(598\) 1.53549 + 0.179473i 0.0627909 + 0.00733920i
\(599\) 4.24691 + 4.50146i 0.173524 + 0.183925i 0.808299 0.588773i \(-0.200389\pi\)
−0.634775 + 0.772697i \(0.718907\pi\)
\(600\) 0.931309 6.59729i 0.0380205 0.269333i
\(601\) −5.78820 + 0.676543i −0.236106 + 0.0275968i −0.233323 0.972399i \(-0.574960\pi\)
−0.00278278 + 0.999996i \(0.500886\pi\)
\(602\) −38.9674 32.6975i −1.58819 1.33265i
\(603\) −5.00417 1.44156i −0.203786 0.0587048i
\(604\) 6.23451 5.23138i 0.253679 0.212862i
\(605\) 15.5990 16.5340i 0.634191 0.672203i
\(606\) 12.0601 1.83071i 0.489907 0.0743676i
\(607\) 7.03531 + 3.53326i 0.285554 + 0.143411i 0.585811 0.810448i \(-0.300776\pi\)
−0.300257 + 0.953858i \(0.597072\pi\)
\(608\) −0.500683 0.251452i −0.0203054 0.0101977i
\(609\) 63.4341 9.62926i 2.57048 0.390197i
\(610\) −6.20788 + 6.57996i −0.251350 + 0.266415i
\(611\) −3.50903 + 2.94442i −0.141960 + 0.119119i
\(612\) 1.02153 + 4.11862i 0.0412929 + 0.166485i
\(613\) −34.1027 28.6156i −1.37740 1.15577i −0.970164 0.242449i \(-0.922049\pi\)
−0.407233 0.913324i \(-0.633506\pi\)
\(614\) −31.5421 + 3.68674i −1.27293 + 0.148785i
\(615\) −1.68322 + 11.9237i −0.0678739 + 0.480811i
\(616\) 20.2915 + 21.5078i 0.817570 + 0.866573i
\(617\) 9.49110 + 1.10935i 0.382097 + 0.0446608i 0.304974 0.952361i \(-0.401352\pi\)
0.0771236 + 0.997022i \(0.475426\pi\)
\(618\) 1.24000 4.72602i 0.0498802 0.190108i
\(619\) −2.09189 + 35.9163i −0.0840800 + 1.44360i 0.647616 + 0.761967i \(0.275766\pi\)
−0.731696 + 0.681631i \(0.761271\pi\)
\(620\) −1.45690 2.52343i −0.0585107 0.101344i
\(621\) −1.88424 + 1.53828i −0.0756118 + 0.0617292i
\(622\) −8.51684 + 14.7516i −0.341494 + 0.591485i
\(623\) −24.4253 16.0647i −0.978577 0.643620i
\(624\) −5.70077 0.468865i −0.228213 0.0187696i
\(625\) 3.57690 + 8.29218i 0.143076 + 0.331687i
\(626\) 24.5742 5.82419i 0.982183 0.232782i
\(627\) −4.09242 + 3.68029i −0.163435 + 0.146977i
\(628\) 4.28638 + 5.75761i 0.171045 + 0.229753i
\(629\) 5.70467 2.07633i 0.227460 0.0827887i
\(630\) −9.08337 + 14.1288i −0.361890 + 0.562905i
\(631\) 17.4364 + 6.34633i 0.694133 + 0.252644i 0.664904 0.746929i \(-0.268473\pi\)
0.0292289 + 0.999573i \(0.490695\pi\)
\(632\) −0.641588 2.14305i −0.0255210 0.0852460i
\(633\) −12.3375 2.48059i −0.490370 0.0985947i
\(634\) 0.948922 + 16.2924i 0.0376865 + 0.647052i
\(635\) −1.13136 + 0.744108i −0.0448967 + 0.0295290i
\(636\) 12.0584 6.58308i 0.478147 0.261036i
\(637\) 64.8514 + 15.3701i 2.56950 + 0.608984i
\(638\) 6.99756 + 39.6851i 0.277036 + 1.57115i
\(639\) 22.5732 + 3.73840i 0.892983 + 0.147889i
\(640\) 0.186483 1.05760i 0.00737139 0.0418052i
\(641\) −15.5596 + 36.0713i −0.614568 + 1.42473i 0.272075 + 0.962276i \(0.412290\pi\)
−0.886643 + 0.462454i \(0.846969\pi\)
\(642\) 7.71444 + 12.3625i 0.304465 + 0.487910i
\(643\) −12.2189 + 40.8138i −0.481865 + 1.60954i 0.278769 + 0.960358i \(0.410074\pi\)
−0.760633 + 0.649182i \(0.775111\pi\)
\(644\) −1.45741 + 1.95764i −0.0574300 + 0.0771418i
\(645\) 16.4879 + 7.58418i 0.649209 + 0.298627i
\(646\) −0.708202 + 0.355672i −0.0278638 + 0.0139937i
\(647\) 21.4942 0.845023 0.422512 0.906357i \(-0.361149\pi\)
0.422512 + 0.906357i \(0.361149\pi\)
\(648\) 6.77246 5.92737i 0.266047 0.232849i
\(649\) 6.21475 0.243950
\(650\) 11.3523 5.70136i 0.445276 0.223626i
\(651\) −2.26245 24.3966i −0.0886722 0.956176i
\(652\) −1.29367 + 1.73770i −0.0506640 + 0.0680535i
\(653\) 14.3632 47.9765i 0.562077 1.87747i 0.0899279 0.995948i \(-0.471336\pi\)
0.472149 0.881519i \(-0.343478\pi\)
\(654\) −29.1621 + 1.00048i −1.14033 + 0.0391219i
\(655\) 1.14143 2.64614i 0.0445995 0.103393i
\(656\) 1.12418 6.37557i 0.0438920 0.248924i
\(657\) 28.1139 + 15.8437i 1.09683 + 0.618120i
\(658\) −1.25574 7.12168i −0.0489540 0.277632i
\(659\) 19.5762 + 4.63965i 0.762582 + 0.180735i 0.593464 0.804861i \(-0.297760\pi\)
0.169118 + 0.985596i \(0.445908\pi\)
\(660\) −9.00757 5.49144i −0.350619 0.213754i
\(661\) 35.3424 23.2451i 1.37466 0.904128i 0.374923 0.927056i \(-0.377669\pi\)
0.999737 + 0.0229283i \(0.00729894\pi\)
\(662\) −1.33454 22.9132i −0.0518684 0.890546i
\(663\) −5.34720 + 6.07195i −0.207668 + 0.235815i
\(664\) −3.31688 11.0792i −0.128720 0.429955i
\(665\) −2.94777 1.07290i −0.114310 0.0416053i
\(666\) −9.45694 8.73788i −0.366449 0.338586i
\(667\) −3.12548 + 1.13758i −0.121019 + 0.0440473i
\(668\) 7.90430 + 10.6173i 0.305827 + 0.410797i
\(669\) −28.0477 9.13226i −1.08439 0.353074i
\(670\) 1.81394 0.429913i 0.0700788 0.0166090i
\(671\) −18.9227 43.8677i −0.730502 1.69349i
\(672\) 5.14092 7.42394i 0.198315 0.286385i
\(673\) −21.7023 14.2738i −0.836561 0.550215i 0.0574045 0.998351i \(-0.481718\pi\)
−0.893965 + 0.448136i \(0.852088\pi\)
\(674\) −13.6274 + 23.6034i −0.524909 + 0.909169i
\(675\) −5.99011 + 19.0694i −0.230559 + 0.733982i
\(676\) 1.04690 + 1.81328i 0.0402653 + 0.0697415i
\(677\) 1.09343 18.7734i 0.0420238 0.721522i −0.909832 0.414976i \(-0.863790\pi\)
0.951856 0.306545i \(-0.0991731\pi\)
\(678\) 11.4136 3.12204i 0.438338 0.119901i
\(679\) 8.50986 + 0.994660i 0.326578 + 0.0381715i
\(680\) −1.04241 1.10489i −0.0399748 0.0423708i
\(681\) 4.69220 + 3.67058i 0.179805 + 0.140657i
\(682\) 15.2844 1.78649i 0.585270 0.0684083i
\(683\) 25.0008 + 20.9782i 0.956630 + 0.802708i 0.980402 0.197009i \(-0.0631229\pi\)
−0.0237714 + 0.999717i \(0.507567\pi\)
\(684\) 1.35861 + 0.989635i 0.0519478 + 0.0378396i
\(685\) −15.6916 + 13.1668i −0.599545 + 0.503078i
\(686\) −47.1597 + 49.9863i −1.80057 + 1.90849i
\(687\) −25.7491 32.2189i −0.982390 1.22923i
\(688\) −8.71909 4.37889i −0.332412 0.166944i
\(689\) 23.4083 + 11.7561i 0.891785 + 0.447871i
\(690\) 0.317264 0.810878i 0.0120780 0.0308696i
\(691\) −1.26019 + 1.33573i −0.0479400 + 0.0508134i −0.750900 0.660416i \(-0.770380\pi\)
0.702960 + 0.711230i \(0.251861\pi\)
\(692\) 9.42204 7.90603i 0.358172 0.300542i
\(693\) −49.5144 73.6024i −1.88090 2.79592i
\(694\) −8.72026 7.31717i −0.331017 0.277756i
\(695\) −13.7559 + 1.60784i −0.521792 + 0.0609887i
\(696\) 11.4132 4.60310i 0.432616 0.174480i
\(697\) −6.28403 6.66069i −0.238025 0.252292i
\(698\) −14.6249 1.70941i −0.553562 0.0647021i
\(699\) −16.0990 15.9323i −0.608920 0.602614i
\(700\) −1.16610 + 20.0212i −0.0440744 + 0.756729i
\(701\) −3.97145 6.87876i −0.150000 0.259807i 0.781227 0.624247i \(-0.214594\pi\)
−0.931227 + 0.364440i \(0.881261\pi\)
\(702\) 16.6427 + 4.18198i 0.628137 + 0.157839i
\(703\) 1.20233 2.08250i 0.0453468 0.0785429i
\(704\) 4.73852 + 3.11658i 0.178590 + 0.117460i
\(705\) 1.10253 + 2.33260i 0.0415235 + 0.0878507i
\(706\) −7.69379 17.8362i −0.289560 0.671275i
\(707\) −35.7276 + 8.46760i −1.34368 + 0.318457i
\(708\) −0.393466 1.85670i −0.0147874 0.0697792i
\(709\) −1.43165 1.92304i −0.0537667 0.0722213i 0.774427 0.632664i \(-0.218038\pi\)
−0.828193 + 0.560443i \(0.810631\pi\)
\(710\) −7.69667 + 2.80136i −0.288851 + 0.105133i
\(711\) 0.848461 + 6.65724i 0.0318198 + 0.249666i
\(712\) −5.26926 1.91785i −0.197474 0.0718746i
\(713\) 0.364278 + 1.21677i 0.0136423 + 0.0455685i
\(714\) −4.08071 12.1035i −0.152717 0.452963i
\(715\) −1.16955 20.0804i −0.0437388 0.750966i
\(716\) −18.0701 + 11.8849i −0.675310 + 0.444158i
\(717\) 0.616389 25.8032i 0.0230195 0.963639i
\(718\) 16.2643 + 3.85470i 0.606977 + 0.143856i
\(719\) −4.31555 24.4747i −0.160943 0.912752i −0.953150 0.302499i \(-0.902179\pi\)
0.792207 0.610253i \(-0.208932\pi\)
\(720\) −1.07032 + 3.03875i −0.0398886 + 0.113248i
\(721\) −2.55386 + 14.4837i −0.0951107 + 0.539399i
\(722\) 7.40118 17.1579i 0.275443 0.638550i
\(723\) −3.14742 + 5.91070i −0.117054 + 0.219821i
\(724\) 2.75101 9.18902i 0.102241 0.341507i
\(725\) −16.3212 + 21.9232i −0.606155 + 0.814208i
\(726\) 29.9216 21.1843i 1.11050 0.786224i
\(727\) −0.777379 + 0.390415i −0.0288314 + 0.0144797i −0.463156 0.886277i \(-0.653283\pi\)
0.434325 + 0.900756i \(0.356987\pi\)
\(728\) 17.2176 0.638126
\(729\) −22.9497 + 14.2236i −0.849990 + 0.526799i
\(730\) −11.5521 −0.427561
\(731\) −12.3329 + 6.19382i −0.456149 + 0.229087i
\(732\) −11.9078 + 8.43062i −0.440124 + 0.311605i
\(733\) 2.75679 3.70301i 0.101824 0.136774i −0.748290 0.663371i \(-0.769125\pi\)
0.850115 + 0.526597i \(0.176532\pi\)
\(734\) 2.01047 6.71545i 0.0742079 0.247872i
\(735\) 17.6436 33.1339i 0.650795 1.22216i
\(736\) −0.185413 + 0.429835i −0.00683440 + 0.0158439i
\(737\) −1.70960 + 9.69564i −0.0629740 + 0.357143i
\(738\) −6.45228 + 18.3186i −0.237512 + 0.674319i
\(739\) 6.07695 + 34.4641i 0.223544 + 1.26778i 0.865449 + 0.500997i \(0.167033\pi\)
−0.641905 + 0.766784i \(0.721856\pi\)
\(740\) 4.48489 + 1.06294i 0.164868 + 0.0390744i
\(741\) −0.0765347 + 3.20389i −0.00281157 + 0.117698i
\(742\) −34.5501 + 22.7240i −1.26837 + 0.834223i
\(743\) 2.94575 + 50.5765i 0.108069 + 1.85547i 0.422715 + 0.906263i \(0.361077\pi\)
−0.314646 + 0.949209i \(0.601886\pi\)
\(744\) −1.50141 4.45322i −0.0550443 0.163263i
\(745\) 1.52019 + 5.07779i 0.0556955 + 0.186036i
\(746\) −5.91527 2.15298i −0.216573 0.0788262i
\(747\) 4.38638 + 34.4167i 0.160489 + 1.25924i
\(748\) 7.53846 2.74378i 0.275634 0.100322i
\(749\) −26.1930 35.1833i −0.957070 1.28557i
\(750\) −3.41144 16.0980i −0.124568 0.587816i
\(751\) 41.9116 9.93324i 1.52938 0.362469i 0.622078 0.782955i \(-0.286289\pi\)
0.907299 + 0.420486i \(0.138140\pi\)
\(752\) −0.549387 1.27362i −0.0200341 0.0464442i
\(753\) 18.5500 + 39.2459i 0.676000 + 1.43020i
\(754\) 19.6043 + 12.8939i 0.713945 + 0.469569i
\(755\) 4.37006 7.56917i 0.159043 0.275470i
\(756\) −18.8544 + 19.4527i −0.685729 + 0.707487i
\(757\) 24.5670 + 42.5512i 0.892902 + 1.54655i 0.836380 + 0.548150i \(0.184668\pi\)
0.0565218 + 0.998401i \(0.481999\pi\)
\(758\) 0.493789 8.47804i 0.0179352 0.307936i
\(759\) 3.26854 + 3.23469i 0.118641 + 0.117412i
\(760\) −0.597621 0.0698519i −0.0216780 0.00253380i
\(761\) −33.9694 36.0055i −1.23139 1.30520i −0.936923 0.349536i \(-0.886339\pi\)
−0.294467 0.955662i \(-0.595142\pi\)
\(762\) −2.02547 + 0.816901i −0.0733751 + 0.0295932i
\(763\) 87.2372 10.1966i 3.15820 0.369141i
\(764\) 2.94316 + 2.46960i 0.106480 + 0.0893470i
\(765\) 2.54364 + 3.78109i 0.0919657 + 0.136706i
\(766\) −20.6415 + 17.3203i −0.745809 + 0.625808i
\(767\) 2.48333 2.63218i 0.0896680 0.0950425i
\(768\) 0.631096 1.61298i 0.0227727 0.0582035i
\(769\)