Properties

Label 162.2.g.a.7.4
Level $162$
Weight $2$
Character 162.7
Analytic conductor $1.294$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(4\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 7.4
Character \(\chi\) \(=\) 162.7
Dual form 162.2.g.a.139.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.597159 - 0.802123i) q^{2} +(1.64484 - 0.542681i) q^{3} +(-0.286803 + 0.957990i) q^{4} +(-1.45045 + 0.953973i) q^{5} +(-1.41753 - 0.995298i) q^{6} +(2.66288 - 2.82248i) q^{7} +(0.939693 - 0.342020i) q^{8} +(2.41100 - 1.78525i) q^{9} +O(q^{10})\) \(q+(-0.597159 - 0.802123i) q^{2} +(1.64484 - 0.542681i) q^{3} +(-0.286803 + 0.957990i) q^{4} +(-1.45045 + 0.953973i) q^{5} +(-1.41753 - 0.995298i) q^{6} +(2.66288 - 2.82248i) q^{7} +(0.939693 - 0.342020i) q^{8} +(2.41100 - 1.78525i) q^{9} +(1.63135 + 0.593763i) q^{10} +(1.28498 - 0.645340i) q^{11} +(0.0481371 + 1.73138i) q^{12} +(-0.271082 - 0.628438i) q^{13} +(-3.85414 - 0.450484i) q^{14} +(-1.86805 + 2.35626i) q^{15} +(-0.835488 - 0.549509i) q^{16} +(-4.76609 + 3.99923i) q^{17} +(-2.87173 - 0.867840i) q^{18} +(1.04702 + 0.878553i) q^{19} +(-0.497904 - 1.66311i) q^{20} +(2.84830 - 6.08763i) q^{21} +(-1.28498 - 0.645340i) q^{22} +(0.559525 + 0.593062i) q^{23} +(1.36004 - 1.07252i) q^{24} +(-0.786670 + 1.82371i) q^{25} +(-0.342206 + 0.592718i) q^{26} +(2.99688 - 4.24484i) q^{27} +(1.94019 + 3.36051i) q^{28} +(-2.07235 + 0.242223i) q^{29} +(3.00553 + 0.0913425i) q^{30} +(-4.68397 + 1.11012i) q^{31} +(0.0581448 + 0.998308i) q^{32} +(1.76337 - 1.75881i) q^{33} +(6.05398 + 1.43482i) q^{34} +(-1.16978 + 6.63418i) q^{35} +(1.01877 + 2.82172i) q^{36} +(1.22447 + 6.94432i) q^{37} +(0.0794716 - 1.36447i) q^{38} +(-0.786927 - 0.886569i) q^{39} +(-1.03670 + 1.39252i) q^{40} +(3.89565 - 5.23277i) q^{41} +(-6.58391 + 1.35059i) q^{42} +(-0.738710 + 12.6832i) q^{43} +(0.249693 + 1.41608i) q^{44} +(-1.79394 + 4.88943i) q^{45} +(0.141583 - 0.802960i) q^{46} +(-11.7680 - 2.78906i) q^{47} +(-1.67245 - 0.450451i) q^{48} +(-0.468492 - 8.04370i) q^{49} +(1.93260 - 0.458036i) q^{50} +(-5.66915 + 9.16455i) q^{51} +(0.679784 - 0.0794554i) q^{52} +(0.343696 + 0.595300i) q^{53} +(-5.19450 + 0.130976i) q^{54} +(-1.24815 + 2.16186i) q^{55} +(1.53694 - 3.56303i) q^{56} +(2.19895 + 0.876882i) q^{57} +(1.43181 + 1.51763i) q^{58} +(13.5557 + 6.80793i) q^{59} +(-1.72151 - 2.46535i) q^{60} +(-4.19072 - 13.9980i) q^{61} +(3.68753 + 3.09420i) q^{62} +(1.38136 - 11.5589i) q^{63} +(0.766044 - 0.642788i) q^{64} +(0.992703 + 0.652911i) q^{65} +(-2.46380 - 0.364148i) q^{66} +(-8.84227 - 1.03351i) q^{67} +(-2.46429 - 5.71286i) q^{68} +(1.24217 + 0.671848i) q^{69} +(6.01997 - 3.02334i) q^{70} +(4.58515 + 1.66886i) q^{71} +(1.65500 - 2.50219i) q^{72} +(9.38954 - 3.41751i) q^{73} +(4.83899 - 5.12903i) q^{74} +(-0.304256 + 3.42662i) q^{75} +(-1.14193 + 0.751061i) q^{76} +(1.60027 - 5.34529i) q^{77} +(-0.241217 + 1.16064i) q^{78} +(-3.68901 - 4.95520i) q^{79} +1.73605 q^{80} +(2.62580 - 8.60844i) q^{81} -6.52365 q^{82} +(4.45274 + 5.98107i) q^{83} +(5.01498 + 4.47459i) q^{84} +(3.09780 - 10.3474i) q^{85} +(10.6146 - 6.98132i) q^{86} +(-3.27723 + 1.52304i) q^{87} +(0.986764 - 1.04591i) q^{88} +(-6.11142 + 2.22437i) q^{89} +(4.99319 - 1.48080i) q^{90} +(-2.49562 - 0.908330i) q^{91} +(-0.728620 + 0.365927i) q^{92} +(-7.10194 + 4.36787i) q^{93} +(4.79017 + 11.1049i) q^{94} +(-2.35676 - 0.275466i) q^{95} +(0.637402 + 1.61050i) q^{96} +(-7.98430 - 5.25136i) q^{97} +(-6.17228 + 5.17916i) q^{98} +(1.94598 - 3.84991i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 9 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 9 q^{6} + 18 q^{13} - 9 q^{20} - 81 q^{23} + 18 q^{25} - 27 q^{26} - 27 q^{27} + 18 q^{28} - 27 q^{29} - 63 q^{30} - 54 q^{31} + 9 q^{33} - 27 q^{35} - 9 q^{36} + 9 q^{38} - 9 q^{41} + 9 q^{42} + 36 q^{43} - 117 q^{45} - 18 q^{46} - 27 q^{47} + 9 q^{48} - 27 q^{51} - 36 q^{52} - 27 q^{53} + 54 q^{55} + 27 q^{57} + 9 q^{58} - 18 q^{59} + 9 q^{63} + 9 q^{65} + 36 q^{66} - 135 q^{67} - 18 q^{68} + 108 q^{69} + 18 q^{70} + 72 q^{71} + 54 q^{72} + 36 q^{73} + 99 q^{74} - 36 q^{75} - 9 q^{76} + 144 q^{77} + 90 q^{78} - 9 q^{79} + 18 q^{80} - 72 q^{82} + 99 q^{83} + 18 q^{84} + 9 q^{85} + 72 q^{86} + 207 q^{87} - 9 q^{88} + 126 q^{89} - 18 q^{90} + 63 q^{91} + 36 q^{92} + 81 q^{93} + 18 q^{94} + 45 q^{95} - 171 q^{97} + 36 q^{98} + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{8}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.597159 0.802123i −0.422255 0.567187i
\(3\) 1.64484 0.542681i 0.949649 0.313317i
\(4\) −0.286803 + 0.957990i −0.143402 + 0.478995i
\(5\) −1.45045 + 0.953973i −0.648659 + 0.426630i −0.830745 0.556653i \(-0.812085\pi\)
0.182086 + 0.983283i \(0.441715\pi\)
\(6\) −1.41753 0.995298i −0.578703 0.406329i
\(7\) 2.66288 2.82248i 1.00647 1.06680i 0.00870908 0.999962i \(-0.497228\pi\)
0.997764 0.0668370i \(-0.0212907\pi\)
\(8\) 0.939693 0.342020i 0.332232 0.120922i
\(9\) 2.41100 1.78525i 0.803665 0.595082i
\(10\) 1.63135 + 0.593763i 0.515878 + 0.187764i
\(11\) 1.28498 0.645340i 0.387435 0.194577i −0.244410 0.969672i \(-0.578594\pi\)
0.631845 + 0.775095i \(0.282298\pi\)
\(12\) 0.0481371 + 1.73138i 0.0138960 + 0.499807i
\(13\) −0.271082 0.628438i −0.0751846 0.174297i 0.876479 0.481440i \(-0.159886\pi\)
−0.951663 + 0.307143i \(0.900627\pi\)
\(14\) −3.85414 0.450484i −1.03006 0.120397i
\(15\) −1.86805 + 2.35626i −0.482328 + 0.608384i
\(16\) −0.835488 0.549509i −0.208872 0.137377i
\(17\) −4.76609 + 3.99923i −1.15595 + 0.969955i −0.999842 0.0177857i \(-0.994338\pi\)
−0.156105 + 0.987740i \(0.549894\pi\)
\(18\) −2.87173 0.867840i −0.676874 0.204552i
\(19\) 1.04702 + 0.878553i 0.240203 + 0.201554i 0.754940 0.655794i \(-0.227666\pi\)
−0.514737 + 0.857348i \(0.672110\pi\)
\(20\) −0.497904 1.66311i −0.111335 0.371884i
\(21\) 2.84830 6.08763i 0.621550 1.32843i
\(22\) −1.28498 0.645340i −0.273958 0.137587i
\(23\) 0.559525 + 0.593062i 0.116669 + 0.123662i 0.783075 0.621927i \(-0.213650\pi\)
−0.666406 + 0.745589i \(0.732168\pi\)
\(24\) 1.36004 1.07252i 0.277616 0.218928i
\(25\) −0.786670 + 1.82371i −0.157334 + 0.364741i
\(26\) −0.342206 + 0.592718i −0.0671121 + 0.116242i
\(27\) 2.99688 4.24484i 0.576750 0.816921i
\(28\) 1.94019 + 3.36051i 0.366661 + 0.635076i
\(29\) −2.07235 + 0.242223i −0.384826 + 0.0449797i −0.306307 0.951933i \(-0.599093\pi\)
−0.0785192 + 0.996913i \(0.525019\pi\)
\(30\) 3.00553 + 0.0913425i 0.548733 + 0.0166768i
\(31\) −4.68397 + 1.11012i −0.841266 + 0.199384i −0.628588 0.777739i \(-0.716367\pi\)
−0.212678 + 0.977122i \(0.568219\pi\)
\(32\) 0.0581448 + 0.998308i 0.0102787 + 0.176478i
\(33\) 1.76337 1.75881i 0.306963 0.306170i
\(34\) 6.05398 + 1.43482i 1.03825 + 0.246070i
\(35\) −1.16978 + 6.63418i −0.197730 + 1.12138i
\(36\) 1.01877 + 2.82172i 0.169794 + 0.470287i
\(37\) 1.22447 + 6.94432i 0.201302 + 1.14164i 0.903154 + 0.429316i \(0.141245\pi\)
−0.701853 + 0.712322i \(0.747643\pi\)
\(38\) 0.0794716 1.36447i 0.0128920 0.221347i
\(39\) −0.786927 0.886569i −0.126009 0.141965i
\(40\) −1.03670 + 1.39252i −0.163916 + 0.220177i
\(41\) 3.89565 5.23277i 0.608399 0.817222i −0.386046 0.922480i \(-0.626159\pi\)
0.994445 + 0.105258i \(0.0335668\pi\)
\(42\) −6.58391 + 1.35059i −1.01592 + 0.208401i
\(43\) −0.738710 + 12.6832i −0.112652 + 1.93416i 0.191408 + 0.981511i \(0.438695\pi\)
−0.304060 + 0.952653i \(0.598342\pi\)
\(44\) 0.249693 + 1.41608i 0.0376427 + 0.213482i
\(45\) −1.79394 + 4.88943i −0.267425 + 0.728873i
\(46\) 0.141583 0.802960i 0.0208753 0.118390i
\(47\) −11.7680 2.78906i −1.71653 0.406826i −0.749607 0.661883i \(-0.769758\pi\)
−0.966926 + 0.255057i \(0.917906\pi\)
\(48\) −1.67245 0.450451i −0.241398 0.0650170i
\(49\) −0.468492 8.04370i −0.0669275 1.14910i
\(50\) 1.93260 0.458036i 0.273312 0.0647760i
\(51\) −5.66915 + 9.16455i −0.793840 + 1.28329i
\(52\) 0.679784 0.0794554i 0.0942691 0.0110185i
\(53\) 0.343696 + 0.595300i 0.0472103 + 0.0817707i 0.888665 0.458557i \(-0.151634\pi\)
−0.841455 + 0.540328i \(0.818300\pi\)
\(54\) −5.19450 + 0.130976i −0.706882 + 0.0178236i
\(55\) −1.24815 + 2.16186i −0.168301 + 0.291506i
\(56\) 1.53694 3.56303i 0.205382 0.476129i
\(57\) 2.19895 + 0.876882i 0.291258 + 0.116146i
\(58\) 1.43181 + 1.51763i 0.188006 + 0.199275i
\(59\) 13.5557 + 6.80793i 1.76480 + 0.886316i 0.953334 + 0.301918i \(0.0976270\pi\)
0.811467 + 0.584398i \(0.198669\pi\)
\(60\) −1.72151 2.46535i −0.222246 0.318276i
\(61\) −4.19072 13.9980i −0.536566 1.79226i −0.606955 0.794736i \(-0.707609\pi\)
0.0703885 0.997520i \(-0.477576\pi\)
\(62\) 3.68753 + 3.09420i 0.468316 + 0.392964i
\(63\) 1.38136 11.5589i 0.174034 1.45628i
\(64\) 0.766044 0.642788i 0.0957556 0.0803485i
\(65\) 0.992703 + 0.652911i 0.123130 + 0.0809836i
\(66\) −2.46380 0.364148i −0.303272 0.0448235i
\(67\) −8.84227 1.03351i −1.08026 0.126264i −0.442701 0.896669i \(-0.645980\pi\)
−0.637554 + 0.770406i \(0.720054\pi\)
\(68\) −2.46429 5.71286i −0.298839 0.692786i
\(69\) 1.24217 + 0.671848i 0.149540 + 0.0808810i
\(70\) 6.01997 3.02334i 0.719524 0.361359i
\(71\) 4.58515 + 1.66886i 0.544157 + 0.198057i 0.599449 0.800413i \(-0.295387\pi\)
−0.0552913 + 0.998470i \(0.517609\pi\)
\(72\) 1.65500 2.50219i 0.195044 0.294886i
\(73\) 9.38954 3.41751i 1.09896 0.399990i 0.272029 0.962289i \(-0.412305\pi\)
0.826934 + 0.562300i \(0.190083\pi\)
\(74\) 4.83899 5.12903i 0.562522 0.596238i
\(75\) −0.304256 + 3.42662i −0.0351325 + 0.395672i
\(76\) −1.14193 + 0.751061i −0.130989 + 0.0861526i
\(77\) 1.60027 5.34529i 0.182368 0.609152i
\(78\) −0.241217 + 1.16064i −0.0273125 + 0.131416i
\(79\) −3.68901 4.95520i −0.415046 0.557504i 0.544607 0.838692i \(-0.316679\pi\)
−0.959653 + 0.281188i \(0.909272\pi\)
\(80\) 1.73605 0.194096
\(81\) 2.62580 8.60844i 0.291755 0.956493i
\(82\) −6.52365 −0.720417
\(83\) 4.45274 + 5.98107i 0.488752 + 0.656508i 0.976258 0.216612i \(-0.0695006\pi\)
−0.487506 + 0.873120i \(0.662093\pi\)
\(84\) 5.01498 + 4.47459i 0.547179 + 0.488218i
\(85\) 3.09780 10.3474i 0.336004 1.12233i
\(86\) 10.6146 6.98132i 1.14460 0.752815i
\(87\) −3.27723 + 1.52304i −0.351356 + 0.163287i
\(88\) 0.986764 1.04591i 0.105189 0.111494i
\(89\) −6.11142 + 2.22437i −0.647809 + 0.235783i −0.644964 0.764213i \(-0.723128\pi\)
−0.00284473 + 0.999996i \(0.500906\pi\)
\(90\) 4.99319 1.48080i 0.526329 0.156090i
\(91\) −2.49562 0.908330i −0.261612 0.0952188i
\(92\) −0.728620 + 0.365927i −0.0759639 + 0.0381505i
\(93\) −7.10194 + 4.36787i −0.736437 + 0.452927i
\(94\) 4.79017 + 11.1049i 0.494068 + 1.14538i
\(95\) −2.35676 0.275466i −0.241799 0.0282622i
\(96\) 0.637402 + 1.61050i 0.0650545 + 0.164371i
\(97\) −7.98430 5.25136i −0.810683 0.533195i 0.0751643 0.997171i \(-0.476052\pi\)
−0.885848 + 0.463976i \(0.846422\pi\)
\(98\) −6.17228 + 5.17916i −0.623494 + 0.523174i
\(99\) 1.94598 3.84991i 0.195579 0.386931i
\(100\) −1.52147 1.27667i −0.152147 0.127667i
\(101\) −4.47597 14.9508i −0.445376 1.48766i −0.826394 0.563092i \(-0.809612\pi\)
0.381019 0.924567i \(-0.375573\pi\)
\(102\) 10.7365 0.925331i 1.06307 0.0916214i
\(103\) −11.8658 5.95922i −1.16917 0.587179i −0.245135 0.969489i \(-0.578832\pi\)
−0.924034 + 0.382310i \(0.875129\pi\)
\(104\) −0.469672 0.497823i −0.0460551 0.0488156i
\(105\) 1.67613 + 11.5470i 0.163574 + 1.12687i
\(106\) 0.272262 0.631175i 0.0264445 0.0613051i
\(107\) 6.61983 11.4659i 0.639963 1.10845i −0.345477 0.938427i \(-0.612283\pi\)
0.985440 0.170022i \(-0.0543838\pi\)
\(108\) 3.20700 + 4.08842i 0.308594 + 0.393408i
\(109\) 7.05417 + 12.2182i 0.675667 + 1.17029i 0.976273 + 0.216541i \(0.0694777\pi\)
−0.300606 + 0.953748i \(0.597189\pi\)
\(110\) 2.47943 0.289803i 0.236404 0.0276317i
\(111\) 5.78260 + 10.7578i 0.548860 + 1.02108i
\(112\) −3.77578 + 0.894877i −0.356778 + 0.0845579i
\(113\) 0.105133 + 1.80506i 0.00989007 + 0.169806i 0.999636 + 0.0269688i \(0.00858548\pi\)
−0.989746 + 0.142837i \(0.954377\pi\)
\(114\) −0.609756 2.28747i −0.0571089 0.214241i
\(115\) −1.37733 0.326432i −0.128436 0.0304400i
\(116\) 0.362310 2.05476i 0.0336396 0.190780i
\(117\) −1.77549 1.03121i −0.164144 0.0953358i
\(118\) −2.63410 14.9387i −0.242489 1.37522i
\(119\) −1.40376 + 24.1017i −0.128683 + 2.20940i
\(120\) −0.949502 + 2.85307i −0.0866773 + 0.260449i
\(121\) −5.33404 + 7.16486i −0.484913 + 0.651351i
\(122\) −8.72557 + 11.7205i −0.789976 + 1.06112i
\(123\) 3.56800 10.7212i 0.321716 0.966695i
\(124\) 0.279893 4.80558i 0.0251351 0.431554i
\(125\) −2.10605 11.9440i −0.188371 1.06831i
\(126\) −10.0965 + 5.79447i −0.899471 + 0.516213i
\(127\) 0.00211844 0.0120143i 0.000187981 0.00106609i −0.984714 0.174181i \(-0.944272\pi\)
0.984902 + 0.173115i \(0.0553833\pi\)
\(128\) −0.973045 0.230616i −0.0860058 0.0203838i
\(129\) 5.66785 + 21.2626i 0.499026 + 1.87207i
\(130\) −0.0690860 1.18616i −0.00605925 0.104033i
\(131\) 6.59557 1.56318i 0.576257 0.136575i 0.0678550 0.997695i \(-0.478384\pi\)
0.508402 + 0.861120i \(0.330236\pi\)
\(132\) 1.17918 + 2.19372i 0.102635 + 0.190939i
\(133\) 5.26779 0.615716i 0.456775 0.0533893i
\(134\) 4.45123 + 7.70976i 0.384528 + 0.666022i
\(135\) −0.297348 + 9.01586i −0.0255916 + 0.775962i
\(136\) −3.11085 + 5.38814i −0.266753 + 0.462029i
\(137\) 2.53261 5.87124i 0.216375 0.501614i −0.775111 0.631825i \(-0.782306\pi\)
0.991486 + 0.130211i \(0.0415654\pi\)
\(138\) −0.202869 1.39757i −0.0172693 0.118969i
\(139\) 12.0078 + 12.7276i 1.01849 + 1.07954i 0.996813 + 0.0797718i \(0.0254192\pi\)
0.0216773 + 0.999765i \(0.493099\pi\)
\(140\) −6.01997 3.02334i −0.508781 0.255519i
\(141\) −20.8700 + 1.79869i −1.75757 + 0.151477i
\(142\) −1.39943 4.67443i −0.117438 0.392269i
\(143\) −0.753890 0.632589i −0.0630435 0.0528998i
\(144\) −2.99537 + 0.166688i −0.249614 + 0.0138906i
\(145\) 2.77476 2.32830i 0.230431 0.193355i
\(146\) −8.34831 5.49077i −0.690911 0.454419i
\(147\) −5.13576 12.9764i −0.423590 1.07027i
\(148\) −7.00376 0.818623i −0.575706 0.0672904i
\(149\) 4.44323 + 10.3006i 0.364003 + 0.843854i 0.997537 + 0.0701394i \(0.0223444\pi\)
−0.633534 + 0.773715i \(0.718396\pi\)
\(150\) 2.93026 1.80218i 0.239255 0.147148i
\(151\) 4.65881 2.33974i 0.379129 0.190406i −0.249021 0.968498i \(-0.580109\pi\)
0.628150 + 0.778092i \(0.283812\pi\)
\(152\) 1.28436 + 0.467468i 0.104175 + 0.0379167i
\(153\) −4.35142 + 18.1508i −0.351792 + 1.46740i
\(154\) −5.24320 + 1.90837i −0.422509 + 0.153781i
\(155\) 5.73482 6.07855i 0.460632 0.488241i
\(156\) 1.07502 0.499597i 0.0860703 0.0399998i
\(157\) 14.1684 9.31868i 1.13076 0.743712i 0.160801 0.986987i \(-0.448592\pi\)
0.969957 + 0.243275i \(0.0782218\pi\)
\(158\) −1.77176 + 5.91808i −0.140953 + 0.470817i
\(159\) 0.888383 + 0.792655i 0.0704534 + 0.0628616i
\(160\) −1.03670 1.39252i −0.0819580 0.110089i
\(161\) 3.16385 0.249347
\(162\) −8.47304 + 3.03439i −0.665705 + 0.238404i
\(163\) −16.5418 −1.29565 −0.647825 0.761789i \(-0.724321\pi\)
−0.647825 + 0.761789i \(0.724321\pi\)
\(164\) 3.89565 + 5.23277i 0.304200 + 0.408611i
\(165\) −0.879809 + 4.23327i −0.0684931 + 0.329560i
\(166\) 2.13856 7.14330i 0.165985 0.554427i
\(167\) 11.8653 7.80391i 0.918162 0.603884i −3.90682e−5 1.00000i \(-0.500012\pi\)
0.918201 + 0.396116i \(0.129642\pi\)
\(168\) 0.594433 6.69467i 0.0458615 0.516505i
\(169\) 8.59969 9.11514i 0.661515 0.701165i
\(170\) −10.1498 + 3.69421i −0.778451 + 0.283333i
\(171\) 4.09279 + 0.249002i 0.312984 + 0.0190416i
\(172\) −11.9385 4.34525i −0.910300 0.331322i
\(173\) −8.24942 + 4.14301i −0.627191 + 0.314987i −0.733853 0.679308i \(-0.762280\pi\)
0.106662 + 0.994295i \(0.465984\pi\)
\(174\) 3.17870 + 1.71925i 0.240976 + 0.130336i
\(175\) 3.05258 + 7.07667i 0.230753 + 0.534946i
\(176\) −1.42820 0.166933i −0.107655 0.0125830i
\(177\) 25.9915 + 3.84153i 1.95364 + 0.288747i
\(178\) 5.43371 + 3.57381i 0.407274 + 0.267868i
\(179\) 0.945576 0.793432i 0.0706756 0.0593039i −0.606765 0.794881i \(-0.707533\pi\)
0.677441 + 0.735577i \(0.263089\pi\)
\(180\) −4.16951 3.12088i −0.310777 0.232617i
\(181\) 2.84970 + 2.39118i 0.211816 + 0.177735i 0.742523 0.669821i \(-0.233629\pi\)
−0.530707 + 0.847556i \(0.678073\pi\)
\(182\) 0.761686 + 2.54421i 0.0564599 + 0.188589i
\(183\) −14.4895 20.7502i −1.07109 1.53390i
\(184\) 0.728620 + 0.365927i 0.0537146 + 0.0269765i
\(185\) −8.40072 8.90424i −0.617633 0.654653i
\(186\) 7.74455 + 3.08832i 0.567858 + 0.226446i
\(187\) −3.54346 + 8.21466i −0.259123 + 0.600716i
\(188\) 6.04698 10.4737i 0.441021 0.763871i
\(189\) −4.00068 19.7622i −0.291007 1.43749i
\(190\) 1.18640 + 2.05491i 0.0860707 + 0.149079i
\(191\) −9.12896 + 1.06702i −0.660548 + 0.0772070i −0.439761 0.898115i \(-0.644937\pi\)
−0.220787 + 0.975322i \(0.570863\pi\)
\(192\) 0.911192 1.47300i 0.0657596 0.106305i
\(193\) 2.86602 0.679258i 0.206300 0.0488941i −0.126166 0.992009i \(-0.540267\pi\)
0.332467 + 0.943115i \(0.392119\pi\)
\(194\) 0.555659 + 9.54029i 0.0398940 + 0.684953i
\(195\) 1.98716 + 0.535213i 0.142303 + 0.0383274i
\(196\) 7.84015 + 1.85815i 0.560011 + 0.132725i
\(197\) −1.30527 + 7.40253i −0.0929963 + 0.527408i 0.902347 + 0.431011i \(0.141843\pi\)
−0.995343 + 0.0963973i \(0.969268\pi\)
\(198\) −4.25016 + 0.738089i −0.302046 + 0.0524537i
\(199\) −1.01029 5.72961i −0.0716172 0.406162i −0.999450 0.0331648i \(-0.989441\pi\)
0.927833 0.372997i \(-0.121670\pi\)
\(200\) −0.115484 + 1.98278i −0.00816594 + 0.140204i
\(201\) −15.1050 + 3.09857i −1.06542 + 0.218556i
\(202\) −9.31951 + 12.5183i −0.655718 + 0.880783i
\(203\) −4.83474 + 6.49419i −0.339333 + 0.455803i
\(204\) −7.15361 8.05941i −0.500853 0.564272i
\(205\) −0.658511 + 11.3062i −0.0459924 + 0.789660i
\(206\) 2.30572 + 13.0764i 0.160647 + 0.911077i
\(207\) 2.40777 + 0.430979i 0.167352 + 0.0299551i
\(208\) −0.118847 + 0.674014i −0.00824055 + 0.0467345i
\(209\) 1.91236 + 0.453238i 0.132281 + 0.0313511i
\(210\) 8.26118 8.23984i 0.570076 0.568603i
\(211\) 0.384871 + 6.60798i 0.0264956 + 0.454912i 0.985299 + 0.170840i \(0.0546482\pi\)
−0.958803 + 0.284071i \(0.908315\pi\)
\(212\) −0.668864 + 0.158524i −0.0459378 + 0.0108875i
\(213\) 8.44750 + 0.256732i 0.578813 + 0.0175910i
\(214\) −13.1501 + 1.53703i −0.898925 + 0.105069i
\(215\) −11.0279 19.1009i −0.752099 1.30267i
\(216\) 1.36433 5.01384i 0.0928306 0.341149i
\(217\) −9.33954 + 16.1766i −0.634009 + 1.09814i
\(218\) 5.58803 12.9545i 0.378469 0.877390i
\(219\) 13.5897 10.7168i 0.918305 0.724173i
\(220\) −1.71307 1.81575i −0.115495 0.122418i
\(221\) 3.80527 + 1.91108i 0.255970 + 0.128553i
\(222\) 5.17594 11.0625i 0.347386 0.742464i
\(223\) 2.53058 + 8.45273i 0.169460 + 0.566036i 0.999959 + 0.00901651i \(0.00287008\pi\)
−0.830499 + 0.557020i \(0.811945\pi\)
\(224\) 2.97254 + 2.49426i 0.198611 + 0.166655i
\(225\) 1.35911 + 5.80135i 0.0906071 + 0.386757i
\(226\) 1.38510 1.16224i 0.0921356 0.0773109i
\(227\) 6.17545 + 4.06165i 0.409879 + 0.269581i 0.737660 0.675172i \(-0.235931\pi\)
−0.327782 + 0.944754i \(0.606301\pi\)
\(228\) −1.47071 + 1.85508i −0.0974002 + 0.122856i
\(229\) 2.57921 + 0.301467i 0.170439 + 0.0199215i 0.200884 0.979615i \(-0.435618\pi\)
−0.0304453 + 0.999536i \(0.509693\pi\)
\(230\) 0.560643 + 1.29972i 0.0369677 + 0.0857008i
\(231\) −0.268591 9.66058i −0.0176720 0.635620i
\(232\) −1.86453 + 0.936401i −0.122412 + 0.0614777i
\(233\) −16.7191 6.08524i −1.09530 0.398657i −0.269719 0.962939i \(-0.586931\pi\)
−0.825582 + 0.564282i \(0.809153\pi\)
\(234\) 0.233091 + 2.03996i 0.0152376 + 0.133357i
\(235\) 19.7295 7.18094i 1.28701 0.468433i
\(236\) −10.4097 + 11.0337i −0.677616 + 0.718231i
\(237\) −8.75692 6.14856i −0.568823 0.399392i
\(238\) 20.1708 13.2665i 1.30748 0.859941i
\(239\) 4.64030 15.4997i 0.300156 1.00259i −0.666284 0.745698i \(-0.732116\pi\)
0.966440 0.256893i \(-0.0826987\pi\)
\(240\) 2.85552 0.942119i 0.184323 0.0608135i
\(241\) 2.54961 + 3.42473i 0.164235 + 0.220606i 0.876620 0.481182i \(-0.159793\pi\)
−0.712385 + 0.701789i \(0.752385\pi\)
\(242\) 8.93237 0.574194
\(243\) −0.352620 15.5845i −0.0226206 0.999744i
\(244\) 14.6118 0.935426
\(245\) 8.35300 + 11.2200i 0.533654 + 0.716821i
\(246\) −10.7304 + 3.54026i −0.684143 + 0.225719i
\(247\) 0.268289 0.896147i 0.0170708 0.0570204i
\(248\) −4.02181 + 2.64518i −0.255385 + 0.167969i
\(249\) 10.5699 + 7.42149i 0.669838 + 0.470318i
\(250\) −8.32292 + 8.82178i −0.526388 + 0.557939i
\(251\) 0.929843 0.338435i 0.0586912 0.0213618i −0.312508 0.949915i \(-0.601169\pi\)
0.371199 + 0.928553i \(0.378947\pi\)
\(252\) 10.6771 + 4.63845i 0.672595 + 0.292195i
\(253\) 1.10170 + 0.400987i 0.0692635 + 0.0252098i
\(254\) −0.0109020 + 0.00547517i −0.000684050 + 0.000343543i
\(255\) −0.519936 18.7009i −0.0325597 1.17110i
\(256\) 0.396080 + 0.918216i 0.0247550 + 0.0573885i
\(257\) −6.73625 0.787355i −0.420196 0.0491139i −0.0966320 0.995320i \(-0.530807\pi\)
−0.323564 + 0.946206i \(0.604881\pi\)
\(258\) 13.6707 17.2435i 0.851098 1.07353i
\(259\) 22.8608 + 15.0358i 1.42050 + 0.934280i
\(260\) −0.910192 + 0.763742i −0.0564477 + 0.0473653i
\(261\) −4.56400 + 4.28365i −0.282505 + 0.265152i
\(262\) −5.19246 4.35699i −0.320791 0.269176i
\(263\) 2.72961 + 9.11754i 0.168315 + 0.562212i 0.999976 + 0.00692776i \(0.00220519\pi\)
−0.831661 + 0.555284i \(0.812610\pi\)
\(264\) 1.05547 2.25585i 0.0649600 0.138838i
\(265\) −1.06641 0.535573i −0.0655092 0.0329000i
\(266\) −3.63958 3.85773i −0.223157 0.236533i
\(267\) −8.84518 + 6.97529i −0.541316 + 0.426881i
\(268\) 3.52609 8.17439i 0.215390 0.499330i
\(269\) 5.97364 10.3467i 0.364220 0.630847i −0.624431 0.781080i \(-0.714669\pi\)
0.988651 + 0.150233i \(0.0480024\pi\)
\(270\) 7.40940 5.14539i 0.450921 0.313138i
\(271\) 2.73992 + 4.74568i 0.166438 + 0.288279i 0.937165 0.348886i \(-0.113440\pi\)
−0.770727 + 0.637166i \(0.780107\pi\)
\(272\) 6.17962 0.722294i 0.374695 0.0437955i
\(273\) −4.59782 0.139734i −0.278273 0.00845711i
\(274\) −6.22183 + 1.47460i −0.375874 + 0.0890839i
\(275\) 0.166057 + 2.85109i 0.0100136 + 0.171927i
\(276\) −0.999882 + 0.997299i −0.0601858 + 0.0600304i
\(277\) −11.1125 2.63371i −0.667685 0.158244i −0.117225 0.993105i \(-0.537400\pi\)
−0.550461 + 0.834861i \(0.685548\pi\)
\(278\) 3.03849 17.2321i 0.182236 1.03351i
\(279\) −9.31119 + 11.0385i −0.557446 + 0.660860i
\(280\) 1.16978 + 6.63418i 0.0699080 + 0.396468i
\(281\) −0.219442 + 3.76767i −0.0130908 + 0.224760i 0.985417 + 0.170155i \(0.0544270\pi\)
−0.998508 + 0.0546050i \(0.982610\pi\)
\(282\) 13.9055 + 15.6662i 0.828058 + 0.932908i
\(283\) 17.2575 23.1809i 1.02585 1.37796i 0.102184 0.994765i \(-0.467417\pi\)
0.923668 0.383194i \(-0.125176\pi\)
\(284\) −2.91379 + 3.91389i −0.172901 + 0.232247i
\(285\) −4.02598 + 0.825872i −0.238479 + 0.0489204i
\(286\) −0.0572223 + 0.982469i −0.00338363 + 0.0580946i
\(287\) −4.39577 24.9297i −0.259474 1.47155i
\(288\) 1.92241 + 2.30311i 0.113279 + 0.135712i
\(289\) 3.76980 21.3796i 0.221753 1.25762i
\(290\) −3.52455 0.835334i −0.206969 0.0490525i
\(291\) −15.9827 4.30472i −0.936923 0.252347i
\(292\) 0.580991 + 9.97523i 0.0339999 + 0.583756i
\(293\) −19.6389 + 4.65452i −1.14732 + 0.271920i −0.759935 0.649999i \(-0.774769\pi\)
−0.387384 + 0.921918i \(0.626621\pi\)
\(294\) −7.34178 + 11.8685i −0.428181 + 0.692183i
\(295\) −26.1564 + 3.05724i −1.52288 + 0.178000i
\(296\) 3.52572 + 6.10673i 0.204928 + 0.354946i
\(297\) 1.11156 7.38854i 0.0644992 0.428726i
\(298\) 5.60900 9.71508i 0.324921 0.562779i
\(299\) 0.221026 0.512395i 0.0127822 0.0296326i
\(300\) −3.19540 1.27424i −0.184487 0.0735682i
\(301\) 33.8309 + 35.8587i 1.94998 + 2.06686i
\(302\) −4.65881 2.33974i −0.268085 0.134637i
\(303\) −15.4758 22.1626i −0.889059 1.27321i
\(304\) −0.391999 1.30937i −0.0224827 0.0750973i
\(305\) 19.4321 + 16.3055i 1.11268 + 0.933648i
\(306\) 17.1576 7.34850i 0.980837 0.420086i
\(307\) −5.43014 + 4.55643i −0.309915 + 0.260049i −0.784457 0.620183i \(-0.787058\pi\)
0.474542 + 0.880233i \(0.342614\pi\)
\(308\) 4.66177 + 3.06609i 0.265629 + 0.174707i
\(309\) −22.7512 3.36263i −1.29427 0.191293i
\(310\) −8.30035 0.970171i −0.471428 0.0551020i
\(311\) −5.49630 12.7418i −0.311666 0.722524i 0.688330 0.725398i \(-0.258344\pi\)
−0.999996 + 0.00287432i \(0.999085\pi\)
\(312\) −1.04269 0.563958i −0.0590310 0.0319278i
\(313\) −27.7117 + 13.9174i −1.56636 + 0.786656i −0.999314 0.0370299i \(-0.988210\pi\)
−0.567046 + 0.823686i \(0.691914\pi\)
\(314\) −15.9355 5.80004i −0.899292 0.327315i
\(315\) 9.02329 + 18.0833i 0.508405 + 1.01888i
\(316\) 5.80505 2.11287i 0.326560 0.118858i
\(317\) 7.57842 8.03265i 0.425646 0.451159i −0.478687 0.877986i \(-0.658887\pi\)
0.904333 + 0.426827i \(0.140369\pi\)
\(318\) 0.105301 1.18593i 0.00590501 0.0665038i
\(319\) −2.50661 + 1.64862i −0.140343 + 0.0923051i
\(320\) −0.497904 + 1.66311i −0.0278337 + 0.0929709i
\(321\) 4.66625 22.4520i 0.260444 1.25315i
\(322\) −1.88932 2.53780i −0.105288 0.141426i
\(323\) −8.50372 −0.473160
\(324\) 7.49371 + 4.98441i 0.416317 + 0.276912i
\(325\) 1.35934 0.0754026
\(326\) 9.87805 + 13.2685i 0.547095 + 0.734876i
\(327\) 18.2336 + 16.2688i 1.00832 + 0.899666i
\(328\) 1.87100 6.24959i 0.103309 0.345076i
\(329\) −39.2087 + 25.7880i −2.16165 + 1.42174i
\(330\) 3.92099 1.82222i 0.215843 0.100310i
\(331\) 2.83698 3.00702i 0.155934 0.165281i −0.644697 0.764439i \(-0.723016\pi\)
0.800631 + 0.599158i \(0.204498\pi\)
\(332\) −7.00687 + 2.55029i −0.384552 + 0.139965i
\(333\) 15.3495 + 14.5567i 0.841148 + 0.797704i
\(334\) −13.3451 4.85723i −0.730213 0.265776i
\(335\) 13.8112 6.93623i 0.754585 0.378967i
\(336\) −5.72492 + 3.52097i −0.312320 + 0.192085i
\(337\) −6.54309 15.1686i −0.356425 0.826286i −0.998233 0.0594206i \(-0.981075\pi\)
0.641808 0.766865i \(-0.278185\pi\)
\(338\) −12.4468 1.45483i −0.677019 0.0791322i
\(339\) 1.15250 + 2.91198i 0.0625952 + 0.158157i
\(340\) 9.02423 + 5.93533i 0.489407 + 0.321888i
\(341\) −5.30239 + 4.44923i −0.287140 + 0.240939i
\(342\) −2.24432 3.43162i −0.121359 0.185561i
\(343\) −3.14298 2.63727i −0.169705 0.142399i
\(344\) 3.64374 + 12.1709i 0.196457 + 0.656212i
\(345\) −2.44263 + 0.210519i −0.131507 + 0.0113340i
\(346\) 8.24942 + 4.14301i 0.443491 + 0.222730i
\(347\) 0.860506 + 0.912083i 0.0461944 + 0.0489632i 0.750059 0.661371i \(-0.230025\pi\)
−0.703864 + 0.710334i \(0.748544\pi\)
\(348\) −0.519138 3.57637i −0.0278287 0.191714i
\(349\) −5.91657 + 13.7162i −0.316707 + 0.734209i 0.683285 + 0.730152i \(0.260551\pi\)
−0.999992 + 0.00405704i \(0.998709\pi\)
\(350\) 3.85349 6.67444i 0.205978 0.356764i
\(351\) −3.48002 0.732656i −0.185750 0.0391063i
\(352\) 0.718963 + 1.24528i 0.0383208 + 0.0663737i
\(353\) −19.3462 + 2.26125i −1.02969 + 0.120354i −0.614126 0.789208i \(-0.710491\pi\)
−0.415569 + 0.909562i \(0.636417\pi\)
\(354\) −12.4396 23.1424i −0.661160 1.23000i
\(355\) −8.24256 + 1.95352i −0.437470 + 0.103682i
\(356\) −0.378153 6.49263i −0.0200421 0.344109i
\(357\) 10.7705 + 40.4052i 0.570038 + 2.13847i
\(358\) −1.20109 0.284663i −0.0634795 0.0150449i
\(359\) −4.07481 + 23.1094i −0.215060 + 1.21967i 0.665742 + 0.746182i \(0.268115\pi\)
−0.880802 + 0.473484i \(0.842996\pi\)
\(360\) −0.0134709 + 5.20812i −0.000709979 + 0.274492i
\(361\) −2.97492 16.8716i −0.156575 0.887980i
\(362\) 0.216300 3.71372i 0.0113685 0.195189i
\(363\) −4.88541 + 14.6797i −0.256418 + 0.770486i
\(364\) 1.58592 2.13026i 0.0831248 0.111656i
\(365\) −10.3588 + 13.9143i −0.542204 + 0.728307i
\(366\) −7.99169 + 24.0135i −0.417732 + 1.25521i
\(367\) 0.195855 3.36271i 0.0102236 0.175532i −0.989331 0.145686i \(-0.953461\pi\)
0.999555 0.0298463i \(-0.00950177\pi\)
\(368\) −0.141583 0.802960i −0.00738055 0.0418572i
\(369\) 0.0506205 19.5709i 0.00263520 1.01882i
\(370\) −2.12574 + 12.0557i −0.110512 + 0.626744i
\(371\) 2.59545 + 0.615132i 0.134749 + 0.0319361i
\(372\) −2.14752 8.05630i −0.111344 0.417700i
\(373\) 0.545964 + 9.37385i 0.0282690 + 0.485359i 0.982497 + 0.186279i \(0.0596428\pi\)
−0.954228 + 0.299080i \(0.903320\pi\)
\(374\) 8.70518 2.06317i 0.450134 0.106684i
\(375\) −9.94590 18.5031i −0.513604 0.955495i
\(376\) −12.0122 + 1.40402i −0.619481 + 0.0724069i
\(377\) 0.713999 + 1.23668i 0.0367728 + 0.0636924i
\(378\) −13.4626 + 15.0102i −0.692444 + 0.772040i
\(379\) 13.6284 23.6051i 0.700046 1.21252i −0.268404 0.963306i \(-0.586496\pi\)
0.968450 0.249209i \(-0.0801705\pi\)
\(380\) 0.939820 2.17875i 0.0482117 0.111767i
\(381\) −0.00303542 0.0209112i −0.000155509 0.00107131i
\(382\) 6.30732 + 6.68537i 0.322710 + 0.342053i
\(383\) 14.7824 + 7.42400i 0.755346 + 0.379349i 0.784421 0.620228i \(-0.212960\pi\)
−0.0290757 + 0.999577i \(0.509256\pi\)
\(384\) −1.72565 + 0.148727i −0.0880619 + 0.00758967i
\(385\) 2.77815 + 9.27967i 0.141588 + 0.472936i
\(386\) −2.25631 1.89327i −0.114843 0.0963650i
\(387\) 20.8615 + 31.8978i 1.06045 + 1.62146i
\(388\) 7.32067 6.14277i 0.371651 0.311852i
\(389\) −2.64143 1.73729i −0.133926 0.0880843i 0.480778 0.876842i \(-0.340354\pi\)
−0.614704 + 0.788758i \(0.710725\pi\)
\(390\) −0.757342 1.91355i −0.0383495 0.0968966i
\(391\) −5.03853 0.588920i −0.254810 0.0297830i
\(392\) −3.19135 7.39838i −0.161187 0.373674i
\(393\) 10.0003 6.15046i 0.504451 0.310250i
\(394\) 6.71719 3.37350i 0.338407 0.169954i
\(395\) 10.0778 + 3.66803i 0.507071 + 0.184559i
\(396\) 3.13006 + 2.96840i 0.157291 + 0.149168i
\(397\) −3.59675 + 1.30911i −0.180516 + 0.0657024i −0.430697 0.902497i \(-0.641732\pi\)
0.250181 + 0.968199i \(0.419510\pi\)
\(398\) −3.99256 + 4.23186i −0.200129 + 0.212124i
\(399\) 8.33053 3.87148i 0.417048 0.193816i
\(400\) 1.65940 1.09140i 0.0829698 0.0545701i
\(401\) 5.53963 18.5036i 0.276636 0.924028i −0.700900 0.713259i \(-0.747218\pi\)
0.977536 0.210769i \(-0.0675967\pi\)
\(402\) 11.5055 + 10.2657i 0.573842 + 0.512008i
\(403\) 1.96738 + 2.64265i 0.0980023 + 0.131640i
\(404\) 15.6064 0.776449
\(405\) 4.40365 + 14.9910i 0.218819 + 0.744909i
\(406\) 8.09625 0.401810
\(407\) 6.05486 + 8.13309i 0.300128 + 0.403142i
\(408\) −2.19280 + 10.5508i −0.108560 + 0.522344i
\(409\) 9.84234 32.8757i 0.486672 1.62560i −0.263716 0.964600i \(-0.584948\pi\)
0.750388 0.660998i \(-0.229867\pi\)
\(410\) 9.46220 6.22339i 0.467305 0.307351i
\(411\) 0.979522 11.0317i 0.0483163 0.544151i
\(412\) 9.11201 9.65816i 0.448916 0.475824i
\(413\) 55.3124 20.1321i 2.72175 0.990635i
\(414\) −1.09212 2.18869i −0.0536749 0.107568i
\(415\) −12.1642 4.42742i −0.597119 0.217334i
\(416\) 0.611613 0.307164i 0.0299868 0.0150599i
\(417\) 26.6579 + 14.4184i 1.30545 + 0.706070i
\(418\) −0.778430 1.80460i −0.0380743 0.0882661i
\(419\) −5.62863 0.657892i −0.274976 0.0321401i −0.0225129 0.999747i \(-0.507167\pi\)
−0.252464 + 0.967606i \(0.581241\pi\)
\(420\) −11.5426 1.70599i −0.563221 0.0832439i
\(421\) 1.40613 + 0.924823i 0.0685303 + 0.0450731i 0.583312 0.812248i \(-0.301757\pi\)
−0.514781 + 0.857321i \(0.672127\pi\)
\(422\) 5.07058 4.25472i 0.246832 0.207117i
\(423\) −33.3516 + 14.2843i −1.62161 + 0.694526i
\(424\) 0.526573 + 0.441848i 0.0255727 + 0.0214580i
\(425\) −3.54407 11.8380i −0.171913 0.574229i
\(426\) −4.83857 6.92924i −0.234429 0.335723i
\(427\) −50.6684 25.4466i −2.45202 1.23145i
\(428\) 9.08561 + 9.63018i 0.439169 + 0.465492i
\(429\) −1.58332 0.631386i −0.0764435 0.0304836i
\(430\) −8.73588 + 20.2521i −0.421282 + 0.976641i
\(431\) −18.2224 + 31.5621i −0.877741 + 1.52029i −0.0239268 + 0.999714i \(0.507617\pi\)
−0.853814 + 0.520578i \(0.825716\pi\)
\(432\) −4.83644 + 1.89970i −0.232693 + 0.0913994i
\(433\) −14.6370 25.3520i −0.703410 1.21834i −0.967262 0.253778i \(-0.918327\pi\)
0.263853 0.964563i \(-0.415007\pi\)
\(434\) 18.5528 2.16851i 0.890561 0.104092i
\(435\) 3.30051 5.33549i 0.158247 0.255817i
\(436\) −13.7281 + 3.25361i −0.657454 + 0.155820i
\(437\) 0.0647969 + 1.11252i 0.00309965 + 0.0532190i
\(438\) −16.7114 4.50097i −0.798500 0.215065i
\(439\) −14.0869 3.33866i −0.672333 0.159346i −0.119750 0.992804i \(-0.538209\pi\)
−0.552582 + 0.833458i \(0.686358\pi\)
\(440\) −0.433479 + 2.45838i −0.0206653 + 0.117199i
\(441\) −15.4895 18.5570i −0.737596 0.883665i
\(442\) −0.739429 4.19351i −0.0351710 0.199465i
\(443\) −0.357549 + 6.13887i −0.0169877 + 0.291667i 0.979105 + 0.203354i \(0.0651844\pi\)
−0.996093 + 0.0883123i \(0.971853\pi\)
\(444\) −11.9643 + 2.45431i −0.567801 + 0.116476i
\(445\) 6.74229 9.05646i 0.319615 0.429318i
\(446\) 5.26897 7.07745i 0.249493 0.335127i
\(447\) 12.8983 + 14.5315i 0.610069 + 0.687317i
\(448\) 0.225624 3.87381i 0.0106597 0.183020i
\(449\) 1.36368 + 7.73382i 0.0643561 + 0.364982i 0.999930 + 0.0118501i \(0.00377209\pi\)
−0.935574 + 0.353132i \(0.885117\pi\)
\(450\) 3.84179 4.55450i 0.181104 0.214701i
\(451\) 1.62891 9.23802i 0.0767024 0.435001i
\(452\) −1.75938 0.416981i −0.0827544 0.0196132i
\(453\) 6.39327 6.37675i 0.300382 0.299606i
\(454\) −0.429773 7.37892i −0.0201703 0.346310i
\(455\) 4.48628 1.06327i 0.210320 0.0498467i
\(456\) 2.36625 + 0.0719137i 0.110810 + 0.00336767i
\(457\) 16.9415 1.98018i 0.792491 0.0926289i 0.289791 0.957090i \(-0.406414\pi\)
0.502700 + 0.864461i \(0.332340\pi\)
\(458\) −1.29839 2.24887i −0.0606696 0.105083i
\(459\) 2.69267 + 32.2165i 0.125683 + 1.50374i
\(460\) 0.707740 1.22584i 0.0329985 0.0571552i
\(461\) 12.8960 29.8963i 0.600627 1.39241i −0.298368 0.954451i \(-0.596442\pi\)
0.898995 0.437959i \(-0.144299\pi\)
\(462\) −7.58859 + 5.98434i −0.353053 + 0.278417i
\(463\) 14.6679 + 15.5471i 0.681676 + 0.722534i 0.972153 0.234348i \(-0.0752955\pi\)
−0.290477 + 0.956882i \(0.593814\pi\)
\(464\) 1.86453 + 0.936401i 0.0865585 + 0.0434713i
\(465\) 6.13414 13.1104i 0.284464 0.607981i
\(466\) 5.10282 + 17.0446i 0.236383 + 0.789576i
\(467\) −14.7122 12.3450i −0.680798 0.571258i 0.235441 0.971889i \(-0.424346\pi\)
−0.916239 + 0.400631i \(0.868791\pi\)
\(468\) 1.49711 1.40515i 0.0692039 0.0649530i
\(469\) −26.4630 + 22.2051i −1.22195 + 1.02533i
\(470\) −17.5416 11.5373i −0.809135 0.532176i
\(471\) 18.2476 23.0166i 0.840806 1.06055i
\(472\) 15.0666 + 1.76104i 0.693498 + 0.0810583i
\(473\) 7.23572 + 16.7743i 0.332699 + 0.771283i
\(474\) 0.297372 + 10.6958i 0.0136588 + 0.491274i
\(475\) −2.42588 + 1.21832i −0.111307 + 0.0559005i
\(476\) −22.6865 8.25723i −1.03984 0.378469i
\(477\) 1.89141 + 0.821682i 0.0866015 + 0.0376222i
\(478\) −15.2036 + 5.53367i −0.695399 + 0.253104i
\(479\) 6.09926 6.46484i 0.278682 0.295386i −0.572880 0.819639i \(-0.694174\pi\)
0.851562 + 0.524253i \(0.175655\pi\)
\(480\) −2.46089 1.72788i −0.112324 0.0788667i
\(481\) 4.03214 2.65198i 0.183850 0.120920i
\(482\) 1.22453 4.09021i 0.0557757 0.186304i
\(483\) 5.20403 1.71696i 0.236792 0.0781245i
\(484\) −5.33404 7.16486i −0.242456 0.325676i
\(485\) 16.5905 0.753334
\(486\) −12.2901 + 9.58924i −0.557490 + 0.434977i
\(487\) −16.6394 −0.754001 −0.377001 0.926213i \(-0.623045\pi\)
−0.377001 + 0.926213i \(0.623045\pi\)
\(488\) −8.72557 11.7205i −0.394988 0.530561i
\(489\) −27.2085 + 8.97689i −1.23041 + 0.405949i
\(490\) 4.01178 13.4003i 0.181234 0.605363i
\(491\) −1.20852 + 0.794853i −0.0545395 + 0.0358712i −0.576486 0.817107i \(-0.695576\pi\)
0.521946 + 0.852978i \(0.325206\pi\)
\(492\) 9.24745 + 6.49298i 0.416907 + 0.292726i
\(493\) 8.90831 9.44226i 0.401210 0.425258i
\(494\) −0.879031 + 0.319941i −0.0395495 + 0.0143948i
\(495\) 0.850168 + 7.44051i 0.0382122 + 0.334426i
\(496\) 4.52342 + 1.64639i 0.203108 + 0.0739251i
\(497\) 16.9200 8.49756i 0.758967 0.381167i
\(498\) −0.358937 12.9101i −0.0160843 0.578517i
\(499\) 11.0945 + 25.7199i 0.496658 + 1.15138i 0.963661 + 0.267127i \(0.0860744\pi\)
−0.467003 + 0.884256i \(0.654666\pi\)
\(500\) 12.0463 + 1.40801i 0.538725 + 0.0629679i
\(501\) 15.2814 19.2752i 0.682724 0.861153i
\(502\) −0.826731 0.543749i −0.0368988 0.0242687i
\(503\) 24.3836 20.4603i 1.08721 0.912278i 0.0907113 0.995877i \(-0.471086\pi\)
0.996499 + 0.0835990i \(0.0266415\pi\)
\(504\) −2.65532 11.3343i −0.118277 0.504868i
\(505\) 20.7548 + 17.4154i 0.923577 + 0.774973i
\(506\) −0.336250 1.12315i −0.0149482 0.0499303i
\(507\) 9.19850 19.6598i 0.408520 0.873124i
\(508\) 0.0109020 + 0.00547517i 0.000483697 + 0.000242922i
\(509\) −17.1496 18.1775i −0.760140 0.805702i 0.225556 0.974230i \(-0.427580\pi\)
−0.985697 + 0.168528i \(0.946099\pi\)
\(510\) −14.6899 + 11.5845i −0.650482 + 0.512969i
\(511\) 15.3573 35.6022i 0.679367 1.57495i
\(512\) 0.500000 0.866025i 0.0220971 0.0382733i
\(513\) 6.86711 1.81151i 0.303190 0.0799802i
\(514\) 3.39106 + 5.87348i 0.149573 + 0.259068i
\(515\) 22.8956 2.67611i 1.00890 0.117924i
\(516\) −21.9949 0.668458i −0.968274 0.0294272i
\(517\) −16.9214 + 4.01046i −0.744204 + 0.176380i
\(518\) −1.59097 27.3160i −0.0699034 1.20020i
\(519\) −11.3206 + 11.2914i −0.496921 + 0.495637i
\(520\) 1.15614 + 0.274011i 0.0507003 + 0.0120162i
\(521\) −3.55429 + 20.1574i −0.155716 + 0.883111i 0.802412 + 0.596771i \(0.203550\pi\)
−0.958128 + 0.286340i \(0.907561\pi\)
\(522\) 6.16145 + 1.10287i 0.269679 + 0.0482713i
\(523\) 2.95674 + 16.7685i 0.129289 + 0.733236i 0.978667 + 0.205451i \(0.0658662\pi\)
−0.849378 + 0.527785i \(0.823023\pi\)
\(524\) −0.394122 + 6.76681i −0.0172173 + 0.295609i
\(525\) 8.86138 + 9.98342i 0.386742 + 0.435712i
\(526\) 5.68338 7.63410i 0.247807 0.332863i
\(527\) 17.8846 24.0232i 0.779066 1.04647i
\(528\) −2.43976 + 0.500480i −0.106177 + 0.0217806i
\(529\) 1.29868 22.2974i 0.0564642 0.969453i
\(530\) 0.207222 + 1.17522i 0.00900116 + 0.0510481i
\(531\) 44.8365 7.78637i 1.94574 0.337900i
\(532\) −0.920969 + 5.22307i −0.0399291 + 0.226449i
\(533\) −4.34452 1.02967i −0.188182 0.0445999i
\(534\) 10.8770 + 2.92957i 0.470694 + 0.126775i
\(535\) 1.33644 + 22.9458i 0.0577793 + 0.992033i
\(536\) −8.66250 + 2.05305i −0.374163 + 0.0886782i
\(537\) 1.12474 1.81821i 0.0485361 0.0784617i
\(538\) −11.8665 + 1.38700i −0.511601 + 0.0597976i
\(539\) −5.79293 10.0336i −0.249519 0.432180i
\(540\) −8.55182 2.87063i −0.368012 0.123532i
\(541\) −2.10201 + 3.64079i −0.0903726 + 0.156530i −0.907668 0.419689i \(-0.862139\pi\)
0.817295 + 0.576219i \(0.195472\pi\)
\(542\) 2.17045 5.03167i 0.0932289 0.216129i
\(543\) 5.98494 + 2.38663i 0.256838 + 0.102420i
\(544\) −4.26958 4.52549i −0.183057 0.194029i
\(545\) −21.8875 10.9923i −0.937558 0.470859i
\(546\) 2.63354 + 3.77146i 0.112705 + 0.161404i
\(547\) −0.308554 1.03064i −0.0131928 0.0440671i 0.951140 0.308761i \(-0.0999143\pi\)
−0.964333 + 0.264694i \(0.914729\pi\)
\(548\) 4.89823 + 4.11010i 0.209242 + 0.175575i
\(549\) −35.0936 26.2676i −1.49776 1.12107i
\(550\) 2.18776 1.83575i 0.0932866 0.0782767i
\(551\) −2.38260 1.56706i −0.101502 0.0667589i
\(552\) 1.39705 + 0.206483i 0.0594622 + 0.00878849i
\(553\) −23.8094 2.78291i −1.01248 0.118342i
\(554\) 4.52336 + 10.4863i 0.192179 + 0.445522i
\(555\) −18.6500 10.0871i −0.791648 0.428175i
\(556\) −15.6367 + 7.85307i −0.663146 + 0.333044i
\(557\) 28.0851 + 10.2222i 1.19001 + 0.433126i 0.859725 0.510757i \(-0.170635\pi\)
0.330280 + 0.943883i \(0.392857\pi\)
\(558\) 14.4145 + 0.876966i 0.610215 + 0.0371249i
\(559\) 8.17083 2.97394i 0.345589 0.125784i
\(560\) 4.62288 4.89997i 0.195352 0.207061i
\(561\) −1.37048 + 15.4348i −0.0578619 + 0.651657i
\(562\) 3.15318 2.07388i 0.133009 0.0874813i
\(563\) −8.81589 + 29.4471i −0.371546 + 1.24105i 0.544086 + 0.839030i \(0.316877\pi\)
−0.915631 + 0.402019i \(0.868308\pi\)
\(564\) 4.26245 20.5091i 0.179481 0.863588i
\(565\) −1.87447 2.51785i −0.0788596 0.105927i
\(566\) −28.8994 −1.21473
\(567\) −17.3050 30.3345i −0.726742 1.27393i
\(568\) 4.87942 0.204736
\(569\) 18.0560 + 24.2534i 0.756948 + 1.01676i 0.998920 + 0.0464740i \(0.0147985\pi\)
−0.241972 + 0.970283i \(0.577794\pi\)
\(570\) 3.06660 + 2.73616i 0.128446 + 0.114605i
\(571\) 1.23675 4.13105i 0.0517566 0.172879i −0.928204 0.372073i \(-0.878647\pi\)
0.979960 + 0.199194i \(0.0638323\pi\)
\(572\) 0.822232 0.540790i 0.0343792 0.0226116i
\(573\) −14.4366 + 6.70919i −0.603098 + 0.280280i
\(574\) −17.3717 + 18.4129i −0.725080 + 0.768540i
\(575\) −1.52173 + 0.553865i −0.0634606 + 0.0230978i
\(576\) 0.699396 2.91734i 0.0291415 0.121556i
\(577\) −3.88959 1.41570i −0.161926 0.0589362i 0.259785 0.965666i \(-0.416348\pi\)
−0.421711 + 0.906730i \(0.638570\pi\)
\(578\) −19.4003 + 9.74318i −0.806945 + 0.405263i
\(579\) 4.34551 2.67260i 0.180593 0.111070i
\(580\) 1.43468 + 3.32595i 0.0595717 + 0.138103i
\(581\) 28.7386 + 3.35906i 1.19228 + 0.139357i
\(582\) 6.09130 + 15.3907i 0.252493 + 0.637965i
\(583\) 0.825813 + 0.543145i 0.0342017 + 0.0224948i
\(584\) 7.65442 6.42282i 0.316742 0.265778i
\(585\) 3.55901 0.198053i 0.147147 0.00818850i
\(586\) 15.4611 + 12.9734i 0.638691 + 0.535925i
\(587\) 8.90846 + 29.7563i 0.367692 + 1.22818i 0.919128 + 0.393959i \(0.128895\pi\)
−0.551437 + 0.834217i \(0.685920\pi\)
\(588\) 13.9042 1.19834i 0.573398 0.0494187i
\(589\) −5.87951 2.95280i −0.242261 0.121668i
\(590\) 18.0718 + 19.1550i 0.744004 + 0.788598i
\(591\) 1.87026 + 12.8843i 0.0769321 + 0.529990i
\(592\) 2.79293 6.47475i 0.114789 0.266111i
\(593\) −19.3213 + 33.4654i −0.793430 + 1.37426i 0.130402 + 0.991461i \(0.458373\pi\)
−0.923831 + 0.382800i \(0.874960\pi\)
\(594\) −6.59029 + 3.52052i −0.270403 + 0.144449i
\(595\) −20.9563 36.2973i −0.859123 1.48805i
\(596\) −11.1422 + 1.30233i −0.456400 + 0.0533456i
\(597\) −4.77111 8.87603i −0.195268 0.363272i
\(598\) −0.542991 + 0.128691i −0.0222046 + 0.00526258i
\(599\) 2.48803 + 42.7177i 0.101658 + 1.74540i 0.535612 + 0.844464i \(0.320081\pi\)
−0.433954 + 0.900935i \(0.642882\pi\)
\(600\) 0.886065 + 3.32403i 0.0361734 + 0.135703i
\(601\) −10.4936 2.48702i −0.428041 0.101448i 0.0109480 0.999940i \(-0.496515\pi\)
−0.438989 + 0.898493i \(0.644663\pi\)
\(602\) 8.56066 48.5499i 0.348906 1.97875i
\(603\) −23.1637 + 13.2938i −0.943301 + 0.541367i
\(604\) 0.905288 + 5.13414i 0.0368356 + 0.208905i
\(605\) 0.901653 15.4808i 0.0366574 0.629383i
\(606\) −8.53567 + 25.6481i −0.346738 + 1.04188i
\(607\) −8.63415 + 11.5977i −0.350449 + 0.470735i −0.942039 0.335504i \(-0.891093\pi\)
0.591589 + 0.806239i \(0.298501\pi\)
\(608\) −0.816188 + 1.09633i −0.0331008 + 0.0444621i
\(609\) −4.42811 + 13.3056i −0.179436 + 0.539171i
\(610\) 1.47495 25.3239i 0.0597189 1.02533i
\(611\) 1.43733 + 8.15150i 0.0581481 + 0.329774i
\(612\) −16.1402 9.37431i −0.652430 0.378934i
\(613\) −6.30861 + 35.7779i −0.254802 + 1.44506i 0.541777 + 0.840522i \(0.317752\pi\)
−0.796579 + 0.604534i \(0.793359\pi\)
\(614\) 6.89748 + 1.63473i 0.278360 + 0.0659724i
\(615\) 5.05251 + 18.9543i 0.203737 + 0.764309i
\(616\) −0.324430 5.57026i −0.0130717 0.224432i
\(617\) 1.74226 0.412922i 0.0701406 0.0166236i −0.195396 0.980724i \(-0.562599\pi\)
0.265536 + 0.964101i \(0.414451\pi\)
\(618\) 10.8889 + 20.2573i 0.438014 + 0.814869i
\(619\) 41.8691 4.89380i 1.68286 0.196698i 0.779746 0.626096i \(-0.215348\pi\)
0.903116 + 0.429397i \(0.141274\pi\)
\(620\) 4.17843 + 7.23725i 0.167810 + 0.290655i
\(621\) 4.19428 0.597759i 0.168311 0.0239873i
\(622\) −6.93837 + 12.0176i −0.278203 + 0.481862i
\(623\) −9.99569 + 23.1726i −0.400469 + 0.928391i
\(624\) 0.170291 + 1.17314i 0.00681708 + 0.0469632i
\(625\) 7.63412 + 8.09169i 0.305365 + 0.323668i
\(626\) 27.7117 + 13.9174i 1.10758 + 0.556250i
\(627\) 3.39149 0.292298i 0.135443 0.0116733i
\(628\) 4.86367 + 16.2458i 0.194081 + 0.648277i
\(629\) −33.6078 28.2003i −1.34003 1.12442i
\(630\) 9.11671 18.0364i 0.363219 0.718587i
\(631\) 19.8479 16.6544i 0.790134 0.663001i −0.155644 0.987813i \(-0.549745\pi\)
0.945779 + 0.324812i \(0.105301\pi\)
\(632\) −5.16131 3.39465i −0.205306 0.135032i
\(633\) 4.21907 + 10.6602i 0.167693 + 0.423705i
\(634\) −10.9687 1.28206i −0.435623 0.0509170i
\(635\) 0.00838861 + 0.0194470i 0.000332892 + 0.000771730i
\(636\) −1.01415 + 0.623726i −0.0402135 + 0.0247323i
\(637\) −4.92797 + 2.47492i −0.195253 + 0.0980599i
\(638\) 2.81924 + 1.02612i 0.111615 + 0.0406245i
\(639\) 14.0341 4.16201i 0.555180 0.164647i
\(640\) 1.63135 0.593763i 0.0644848 0.0234705i
\(641\) −11.0581 + 11.7209i −0.436770 + 0.462950i −0.907944 0.419091i \(-0.862349\pi\)
0.471174 + 0.882040i \(0.343830\pi\)
\(642\) −20.7958 + 9.66450i −0.820743 + 0.381427i
\(643\) −21.8971 + 14.4019i −0.863537 + 0.567957i −0.902211 0.431295i \(-0.858057\pi\)
0.0386740 + 0.999252i \(0.487687\pi\)
\(644\) −0.907403 + 3.03094i −0.0357567 + 0.119436i
\(645\) −28.5049 25.4333i −1.12238 1.00144i
\(646\) 5.07807 + 6.82103i 0.199794 + 0.268370i
\(647\) −32.7231 −1.28648 −0.643240 0.765665i \(-0.722410\pi\)
−0.643240 + 0.765665i \(0.722410\pi\)
\(648\) −0.476818 8.98736i −0.0187312 0.353057i
\(649\) 21.8122 0.856203
\(650\) −0.811741 1.09036i −0.0318391 0.0427673i
\(651\) −6.58334 + 31.6762i −0.258021 + 1.24149i
\(652\) 4.74423 15.8468i 0.185798 0.620610i
\(653\) 17.7128 11.6499i 0.693157 0.455897i −0.153421 0.988161i \(-0.549029\pi\)
0.846578 + 0.532264i \(0.178659\pi\)
\(654\) 2.16125 24.3406i 0.0845116 0.951793i
\(655\) −8.07528 + 8.55930i −0.315527 + 0.334440i
\(656\) −6.13023 + 2.23122i −0.239345 + 0.0871145i
\(657\) 16.5370 25.0022i 0.645171 0.975430i
\(658\) 44.0989 + 16.0507i 1.71916 + 0.625721i
\(659\) −29.8595 + 14.9960i −1.16316 + 0.584161i −0.922329 0.386406i \(-0.873716\pi\)
−0.240831 + 0.970567i \(0.577420\pi\)
\(660\) −3.80310 2.05696i −0.148035 0.0800672i
\(661\) 2.48510 + 5.76110i 0.0966591 + 0.224081i 0.959684 0.281080i \(-0.0906925\pi\)
−0.863025 + 0.505161i \(0.831433\pi\)
\(662\) −4.10613 0.479938i −0.159589 0.0186533i
\(663\) 7.29616 + 1.07837i 0.283359 + 0.0418804i
\(664\) 6.22986 + 4.09744i 0.241765 + 0.159012i
\(665\) −7.05326 + 5.91839i −0.273514 + 0.229505i
\(666\) 2.51021 21.0049i 0.0972685 0.813922i
\(667\) −1.30318 1.09350i −0.0504595 0.0423406i
\(668\) 4.07306 + 13.6050i 0.157592 + 0.526393i
\(669\) 8.74953 + 12.5301i 0.338276 + 0.484441i
\(670\) −13.8112 6.93623i −0.533572 0.267970i
\(671\) −14.4184 15.2826i −0.556617 0.589980i
\(672\) 6.24294 + 2.48951i 0.240827 + 0.0960351i
\(673\) 13.6963 31.7515i 0.527952 1.22393i −0.420582 0.907255i \(-0.638174\pi\)
0.948534 0.316676i \(-0.102567\pi\)
\(674\) −8.25982 + 14.3064i −0.318156 + 0.551063i
\(675\) 5.38379 + 8.80473i 0.207222 + 0.338894i
\(676\) 6.26579 + 10.8527i 0.240992 + 0.417410i
\(677\) −17.7455 + 2.07415i −0.682015 + 0.0797161i −0.450044 0.893007i \(-0.648592\pi\)
−0.231971 + 0.972723i \(0.574518\pi\)
\(678\) 1.64755 2.66336i 0.0632736 0.102286i
\(679\) −36.0831 + 8.55185i −1.38474 + 0.328190i
\(680\) −0.628031 10.7829i −0.0240839 0.413504i
\(681\) 12.3618 + 3.32947i 0.473705 + 0.127586i
\(682\) 6.73520 + 1.59627i 0.257904 + 0.0611244i
\(683\) −1.39814 + 7.92922i −0.0534982 + 0.303403i −0.999802 0.0198739i \(-0.993674\pi\)
0.946304 + 0.323277i \(0.104785\pi\)
\(684\) −1.41237 + 3.84944i −0.0540032 + 0.147187i
\(685\) 1.92760 + 10.9320i 0.0736498 + 0.417689i
\(686\) −0.238560 + 4.09592i −0.00910828 + 0.156383i
\(687\) 4.40599 0.903824i 0.168099 0.0344830i
\(688\) 7.58669 10.1907i 0.289240 0.388517i
\(689\) 0.280939 0.377367i 0.0107029 0.0143765i
\(690\) 1.62750 + 1.83357i 0.0619578 + 0.0698030i
\(691\) 0.464483 7.97486i 0.0176697 0.303378i −0.977882 0.209159i \(-0.932927\pi\)
0.995551 0.0942192i \(-0.0300355\pi\)
\(692\) −1.60300 9.09108i −0.0609370 0.345591i
\(693\) −5.68440 15.7444i −0.215933 0.598078i
\(694\) 0.217744 1.23489i 0.00826547 0.0468758i
\(695\) −29.5584 7.00548i −1.12122 0.265733i
\(696\) −2.55868 + 2.55207i −0.0969866 + 0.0967361i
\(697\) 2.35999 + 40.5195i 0.0893910 + 1.53478i
\(698\) 14.5352 3.44490i 0.550164 0.130391i
\(699\) −30.8025 0.936132i −1.16506 0.0354078i
\(700\) −7.65487 + 0.894726i −0.289327 + 0.0338175i
\(701\) 7.74009 + 13.4062i 0.292339 + 0.506347i 0.974362 0.224984i \(-0.0722330\pi\)
−0.682023 + 0.731331i \(0.738900\pi\)
\(702\) 1.49045 + 3.22892i 0.0562532 + 0.121868i
\(703\) −4.81891 + 8.34659i −0.181749 + 0.314798i
\(704\) 0.569533 1.32033i 0.0214651 0.0497617i
\(705\) 28.5549 22.5183i 1.07544 0.848088i
\(706\) 13.3666 + 14.1677i 0.503057 + 0.533209i
\(707\) −54.1173 27.1788i −2.03529 1.02216i
\(708\) −11.1346 + 23.7978i −0.418463 + 0.894376i
\(709\) −6.26078 20.9125i −0.235129 0.785384i −0.991370 0.131092i \(-0.958152\pi\)
0.756242 0.654292i \(-0.227033\pi\)
\(710\) 6.48908 + 5.44499i 0.243531 + 0.204347i
\(711\) −17.7404 5.36118i −0.665318 0.201060i
\(712\) −4.98207 + 4.18046i −0.186711 + 0.156669i
\(713\) −3.27917 2.15674i −0.122806 0.0807706i
\(714\) 25.9782 32.7676i 0.972210 1.22630i
\(715\) 1.69695 + 0.198345i 0.0634623 + 0.00741768i
\(716\) 0.488906 + 1.13341i 0.0182713 + 0.0423575i
\(717\) −0.778829 28.0127i −0.0290859 1.04615i
\(718\) 20.9699 10.5315i 0.782588 0.393031i
\(719\) −26.1007 9.49987i −0.973391 0.354285i −0.194123 0.980977i \(-0.562186\pi\)
−0.779267 + 0.626692i \(0.784408\pi\)
\(720\) 4.18560 3.09927i 0.155988 0.115503i
\(721\) −48.4169 + 17.6223i −1.80314 + 0.656289i
\(722\) −11.7566 + 12.4613i −0.437536 + 0.463761i
\(723\) 6.05224 + 4.24950i 0.225085 + 0.158041i
\(724\) −3.10803 + 2.04418i −0.115509 + 0.0759714i
\(725\) 1.18851 3.96991i 0.0441403 0.147439i
\(726\) 14.6923 4.84743i 0.545283 0.179905i
\(727\) 10.8559 + 14.5820i 0.402622 + 0.540815i 0.956481 0.291795i \(-0.0942526\pi\)
−0.553859 + 0.832611i \(0.686845\pi\)
\(728\) −2.65578 −0.0984297
\(729\) −9.03740 25.4426i −0.334718 0.942318i
\(730\) 17.3468 0.642035
\(731\) −47.2021 63.4034i −1.74583 2.34506i
\(732\) 24.0341 7.92955i 0.888326 0.293085i
\(733\) 6.10800 20.4022i 0.225604 0.753571i −0.767980 0.640474i \(-0.778738\pi\)
0.993584 0.113097i \(-0.0360770\pi\)
\(734\) −2.81426 + 1.85097i −0.103876 + 0.0683205i
\(735\) 19.8282 + 13.9221i 0.731376 + 0.513526i
\(736\) −0.559525 + 0.593062i −0.0206244 + 0.0218605i
\(737\) −12.0291 + 4.37823i −0.443097 + 0.161274i
\(738\) −15.7285 + 11.6463i −0.578974 + 0.428707i
\(739\) 28.5799 + 10.4022i 1.05133 + 0.382652i 0.809164 0.587583i \(-0.199920\pi\)
0.242164 + 0.970235i \(0.422143\pi\)
\(740\) 10.9395 5.49404i 0.402145 0.201965i
\(741\) −0.0450296 1.61961i −0.00165421 0.0594980i
\(742\) −1.05648 2.44920i −0.0387846 0.0899129i
\(743\) 51.4783 + 6.01695i 1.88856 + 0.220741i 0.980278 0.197625i \(-0.0633229\pi\)
0.908279 + 0.418366i \(0.137397\pi\)
\(744\) −5.17974 + 6.53346i −0.189898 + 0.239528i
\(745\) −16.2711 10.7017i −0.596127 0.392079i
\(746\) 7.19295 6.03560i 0.263353 0.220979i
\(747\) 21.4132 + 6.47110i 0.783469 + 0.236765i
\(748\) −6.85329 5.75059i −0.250581 0.210262i
\(749\) −14.7345 49.2166i −0.538386 1.79834i
\(750\) −8.90246 + 19.0271i −0.325072 + 0.694772i
\(751\) 43.5227 + 21.8579i 1.58816 + 0.797606i 0.999938 0.0110908i \(-0.00353037\pi\)
0.588226 + 0.808697i \(0.299827\pi\)
\(752\) 8.29937 + 8.79682i 0.302647 + 0.320787i
\(753\) 1.34578 1.06128i 0.0490430 0.0386752i
\(754\) 0.565601 1.31121i 0.0205980 0.0477515i
\(755\) −4.52530 + 7.83806i −0.164693 + 0.285256i
\(756\) 20.0793 + 1.83524i 0.730279 + 0.0667471i
\(757\) 5.42011 + 9.38791i 0.196997 + 0.341209i 0.947553 0.319597i \(-0.103548\pi\)
−0.750556 + 0.660807i \(0.770214\pi\)
\(758\) −27.0726 + 3.16433i −0.983320 + 0.114934i
\(759\) 2.02973 + 0.0616865i 0.0736746 + 0.00223908i
\(760\) −2.30885 + 0.547206i −0.0837506 + 0.0198493i
\(761\) −0.813760 13.9717i −0.0294988 0.506474i −0.980405 0.196994i \(-0.936882\pi\)
0.950906 0.309480i \(-0.100155\pi\)
\(762\) −0.0149607 + 0.0149221i −0.000541970 + 0.000540570i
\(763\) 53.2700 + 12.6252i 1.92850 + 0.457064i
\(764\) 1.59602 9.05147i 0.0577419 0.327471i
\(765\) −11.0038 30.4778i −0.397845 1.10193i
\(766\) −2.87248 16.2906i −0.103787 0.588604i
\(767\) 0.603659 10.3644i 0.0217969 0.374238i