Properties

Label 162.2.g
Level $162$
Weight $2$
Character orbit 162.g
Rep. character $\chi_{162}(7,\cdot)$
Character field $\Q(\zeta_{27})$
Dimension $162$
Newform subspaces $2$
Sturm bound $54$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\) and degree \(18\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 81 \)
Character field: \(\Q(\zeta_{27})\)
Newform subspaces: \( 2 \)
Sturm bound: \(54\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(162, [\chi])\).

Total New Old
Modular forms 522 162 360
Cusp forms 450 162 288
Eisenstein series 72 0 72

Trace form

\( 162 q - 9 q^{18} - 18 q^{20} - 54 q^{21} - 54 q^{23} - 54 q^{26} - 54 q^{27} - 54 q^{29} - 54 q^{30} - 54 q^{33} - 54 q^{35} - 18 q^{36} - 9 q^{38} - 18 q^{41} - 54 q^{45} - 54 q^{47} - 63 q^{51} - 54 q^{53}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(162, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
162.2.g.a 162.g 81.g $72$ $1.294$ None 162.2.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{27}]$
162.2.g.b 162.g 81.g $90$ $1.294$ None 162.2.g.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{27}]$

Decomposition of \(S_{2}^{\mathrm{old}}(162, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(162, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)