Properties

Label 162.2.g.a.43.4
Level $162$
Weight $2$
Character 162.43
Analytic conductor $1.294$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(4\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 43.4
Character \(\chi\) \(=\) 162.43
Dual form 162.2.g.a.49.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.286803 + 0.957990i) q^{2} +(1.38972 + 1.03377i) q^{3} +(-0.835488 + 0.549509i) q^{4} +(0.266390 + 0.617563i) q^{5} +(-0.591767 + 1.62782i) q^{6} +(0.0791338 - 1.35867i) q^{7} +(-0.766044 - 0.642788i) q^{8} +(0.862631 + 2.87330i) q^{9} +O(q^{10})\) \(q+(0.286803 + 0.957990i) q^{2} +(1.38972 + 1.03377i) q^{3} +(-0.835488 + 0.549509i) q^{4} +(0.266390 + 0.617563i) q^{5} +(-0.591767 + 1.62782i) q^{6} +(0.0791338 - 1.35867i) q^{7} +(-0.766044 - 0.642788i) q^{8} +(0.862631 + 2.87330i) q^{9} +(-0.515217 + 0.432318i) q^{10} +(0.692281 + 0.929895i) q^{11} +(-1.72916 - 0.100042i) q^{12} +(-3.16403 - 3.35368i) q^{13} +(1.32429 - 0.313863i) q^{14} +(-0.268211 + 1.13362i) q^{15} +(0.396080 - 0.918216i) q^{16} +(-0.129844 - 0.736381i) q^{17} +(-2.50519 + 1.65046i) q^{18} +(0.362214 - 2.05422i) q^{19} +(-0.561922 - 0.369582i) q^{20} +(1.51453 - 1.80637i) q^{21} +(-0.692281 + 0.929895i) q^{22} +(0.116279 + 1.99643i) q^{23} +(-0.400090 - 1.68521i) q^{24} +(3.12079 - 3.30784i) q^{25} +(2.30533 - 3.99296i) q^{26} +(-1.77153 + 4.88484i) q^{27} +(0.680488 + 1.17864i) q^{28} +(6.48811 + 1.53771i) q^{29} +(-1.16292 + 0.0681835i) q^{30} +(-8.39222 - 4.21473i) q^{31} +(0.993238 + 0.116093i) q^{32} +(0.000775914 + 2.00795i) q^{33} +(0.668205 - 0.335585i) q^{34} +(0.860147 - 0.313068i) q^{35} +(-2.29962 - 1.92659i) q^{36} +(-1.25876 - 0.458152i) q^{37} +(2.07180 - 0.242159i) q^{38} +(-0.930173 - 7.93155i) q^{39} +(0.192895 - 0.644313i) q^{40} +(0.361029 - 1.20592i) q^{41} +(2.16485 + 0.932835i) q^{42} +(2.55885 - 0.299087i) q^{43} +(-1.08938 - 0.396501i) q^{44} +(-1.54465 + 1.29815i) q^{45} +(-1.87921 + 0.683975i) q^{46} +(2.53181 - 1.27152i) q^{47} +(1.49967 - 0.866605i) q^{48} +(5.11293 + 0.597616i) q^{49} +(4.06393 + 2.04098i) q^{50} +(0.580804 - 1.15759i) q^{51} +(4.48639 + 1.06329i) q^{52} +(-5.67138 - 9.82312i) q^{53} +(-5.18771 - 0.296116i) q^{54} +(-0.389851 + 0.675242i) q^{55} +(-0.933959 + 0.989939i) q^{56} +(2.62697 - 2.48034i) q^{57} +(0.387700 + 6.65656i) q^{58} +(-8.55645 + 11.4933i) q^{59} +(-0.398850 - 1.09451i) q^{60} +(-4.68953 - 3.08435i) q^{61} +(1.63075 - 9.24846i) q^{62} +(3.97215 - 0.944659i) q^{63} +(0.173648 + 0.984808i) q^{64} +(1.22824 - 2.84738i) q^{65} +(-1.92337 + 0.576630i) q^{66} +(-12.5297 + 2.96960i) q^{67} +(0.513131 + 0.543887i) q^{68} +(-1.90226 + 2.89468i) q^{69} +(0.546609 + 0.734223i) q^{70} +(-10.2441 + 8.59582i) q^{71} +(1.18611 - 2.75557i) q^{72} +(8.73007 + 7.32539i) q^{73} +(0.0778877 - 1.33728i) q^{74} +(7.75657 - 1.37078i) q^{75} +(0.826186 + 1.91532i) q^{76} +(1.31821 - 0.866998i) q^{77} +(7.33157 - 3.16589i) q^{78} +(3.95975 + 13.2265i) q^{79} +0.672568 q^{80} +(-7.51174 + 4.95720i) q^{81} +1.25880 q^{82} +(1.89914 + 6.34357i) q^{83} +(-0.272759 + 2.34145i) q^{84} +(0.420172 - 0.276351i) q^{85} +(1.02041 + 2.36558i) q^{86} +(7.42699 + 8.84420i) q^{87} +(0.0674068 - 1.15733i) q^{88} +(0.867446 + 0.727874i) q^{89} +(-1.68662 - 1.10744i) q^{90} +(-4.80694 + 4.03350i) q^{91} +(-1.19420 - 1.60409i) q^{92} +(-7.30574 - 14.5329i) q^{93} +(1.94424 + 2.06077i) q^{94} +(1.36510 - 0.323535i) q^{95} +(1.26031 + 1.18812i) q^{96} +(0.566782 - 1.31395i) q^{97} +(0.893896 + 5.06954i) q^{98} +(-2.07469 + 2.79129i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 9 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 9 q^{6} + 18 q^{13} - 9 q^{20} - 81 q^{23} + 18 q^{25} - 27 q^{26} - 27 q^{27} + 18 q^{28} - 27 q^{29} - 63 q^{30} - 54 q^{31} + 9 q^{33} - 27 q^{35} - 9 q^{36} + 9 q^{38} - 9 q^{41} + 9 q^{42} + 36 q^{43} - 117 q^{45} - 18 q^{46} - 27 q^{47} + 9 q^{48} - 27 q^{51} - 36 q^{52} - 27 q^{53} + 54 q^{55} + 27 q^{57} + 9 q^{58} - 18 q^{59} + 9 q^{63} + 9 q^{65} + 36 q^{66} - 135 q^{67} - 18 q^{68} + 108 q^{69} + 18 q^{70} + 72 q^{71} + 54 q^{72} + 36 q^{73} + 99 q^{74} - 36 q^{75} - 9 q^{76} + 144 q^{77} + 90 q^{78} - 9 q^{79} + 18 q^{80} - 72 q^{82} + 99 q^{83} + 18 q^{84} + 9 q^{85} + 72 q^{86} + 207 q^{87} - 9 q^{88} + 126 q^{89} - 18 q^{90} + 63 q^{91} + 36 q^{92} + 81 q^{93} + 18 q^{94} + 45 q^{95} - 171 q^{97} + 36 q^{98} + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{11}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.286803 + 0.957990i 0.202801 + 0.677401i
\(3\) 1.38972 + 1.03377i 0.802354 + 0.596849i
\(4\) −0.835488 + 0.549509i −0.417744 + 0.274754i
\(5\) 0.266390 + 0.617563i 0.119133 + 0.276182i 0.967340 0.253484i \(-0.0815765\pi\)
−0.848206 + 0.529666i \(0.822317\pi\)
\(6\) −0.591767 + 1.62782i −0.241588 + 0.664556i
\(7\) 0.0791338 1.35867i 0.0299098 0.513531i −0.949768 0.312954i \(-0.898681\pi\)
0.979678 0.200577i \(-0.0642816\pi\)
\(8\) −0.766044 0.642788i −0.270838 0.227260i
\(9\) 0.862631 + 2.87330i 0.287544 + 0.957768i
\(10\) −0.515217 + 0.432318i −0.162926 + 0.136711i
\(11\) 0.692281 + 0.929895i 0.208731 + 0.280374i 0.894143 0.447781i \(-0.147786\pi\)
−0.685413 + 0.728155i \(0.740378\pi\)
\(12\) −1.72916 0.100042i −0.499165 0.0288795i
\(13\) −3.16403 3.35368i −0.877545 0.930143i 0.120496 0.992714i \(-0.461552\pi\)
−0.998041 + 0.0625708i \(0.980070\pi\)
\(14\) 1.32429 0.313863i 0.353932 0.0838834i
\(15\) −0.268211 + 1.13362i −0.0692519 + 0.292701i
\(16\) 0.396080 0.918216i 0.0990199 0.229554i
\(17\) −0.129844 0.736381i −0.0314917 0.178599i 0.965005 0.262232i \(-0.0844586\pi\)
−0.996497 + 0.0836335i \(0.973347\pi\)
\(18\) −2.50519 + 1.65046i −0.590479 + 0.389018i
\(19\) 0.362214 2.05422i 0.0830977 0.471270i −0.914653 0.404239i \(-0.867536\pi\)
0.997751 0.0670309i \(-0.0213526\pi\)
\(20\) −0.561922 0.369582i −0.125650 0.0826411i
\(21\) 1.51453 1.80637i 0.330498 0.394182i
\(22\) −0.692281 + 0.929895i −0.147595 + 0.198254i
\(23\) 0.116279 + 1.99643i 0.0242458 + 0.416284i 0.988492 + 0.151275i \(0.0483379\pi\)
−0.964246 + 0.265009i \(0.914625\pi\)
\(24\) −0.400090 1.68521i −0.0816680 0.343992i
\(25\) 3.12079 3.30784i 0.624158 0.661569i
\(26\) 2.30533 3.99296i 0.452113 0.783083i
\(27\) −1.77153 + 4.88484i −0.340931 + 0.940088i
\(28\) 0.680488 + 1.17864i 0.128600 + 0.222742i
\(29\) 6.48811 + 1.53771i 1.20481 + 0.285545i 0.783512 0.621376i \(-0.213426\pi\)
0.421299 + 0.906922i \(0.361574\pi\)
\(30\) −1.16292 + 0.0681835i −0.212320 + 0.0124486i
\(31\) −8.39222 4.21473i −1.50729 0.756988i −0.512473 0.858703i \(-0.671271\pi\)
−0.994814 + 0.101715i \(0.967567\pi\)
\(32\) 0.993238 + 0.116093i 0.175581 + 0.0205225i
\(33\) 0.000775914 2.00795i 0.000135069 0.349539i
\(34\) 0.668205 0.335585i 0.114596 0.0575524i
\(35\) 0.860147 0.313068i 0.145391 0.0529181i
\(36\) −2.29962 1.92659i −0.383270 0.321098i
\(37\) −1.25876 0.458152i −0.206939 0.0753197i 0.236471 0.971639i \(-0.424009\pi\)
−0.443410 + 0.896319i \(0.646231\pi\)
\(38\) 2.07180 0.242159i 0.336091 0.0392834i
\(39\) −0.930173 7.93155i −0.148947 1.27007i
\(40\) 0.192895 0.644313i 0.0304993 0.101875i
\(41\) 0.361029 1.20592i 0.0563833 0.188333i −0.925159 0.379581i \(-0.876068\pi\)
0.981542 + 0.191248i \(0.0612534\pi\)
\(42\) 2.16485 + 0.932835i 0.334044 + 0.143940i
\(43\) 2.55885 0.299087i 0.390222 0.0456104i 0.0812798 0.996691i \(-0.474099\pi\)
0.308942 + 0.951081i \(0.400025\pi\)
\(44\) −1.08938 0.396501i −0.164230 0.0597748i
\(45\) −1.54465 + 1.29815i −0.230262 + 0.193517i
\(46\) −1.87921 + 0.683975i −0.277074 + 0.100847i
\(47\) 2.53181 1.27152i 0.369303 0.185471i −0.254462 0.967083i \(-0.581899\pi\)
0.623765 + 0.781612i \(0.285602\pi\)
\(48\) 1.49967 0.866605i 0.216458 0.125084i
\(49\) 5.11293 + 0.597616i 0.730419 + 0.0853738i
\(50\) 4.06393 + 2.04098i 0.574727 + 0.288639i
\(51\) 0.580804 1.15759i 0.0813288 0.162095i
\(52\) 4.48639 + 1.06329i 0.622150 + 0.147452i
\(53\) −5.67138 9.82312i −0.779024 1.34931i −0.932505 0.361158i \(-0.882381\pi\)
0.153480 0.988152i \(-0.450952\pi\)
\(54\) −5.18771 0.296116i −0.705958 0.0402962i
\(55\) −0.389851 + 0.675242i −0.0525675 + 0.0910496i
\(56\) −0.933959 + 0.989939i −0.124806 + 0.132286i
\(57\) 2.62697 2.48034i 0.347951 0.328529i
\(58\) 0.387700 + 6.65656i 0.0509075 + 0.874049i
\(59\) −8.55645 + 11.4933i −1.11395 + 1.49630i −0.267716 + 0.963498i \(0.586269\pi\)
−0.846239 + 0.532803i \(0.821139\pi\)
\(60\) −0.398850 1.09451i −0.0514913 0.141301i
\(61\) −4.68953 3.08435i −0.600432 0.394911i 0.212591 0.977141i \(-0.431810\pi\)
−0.813024 + 0.582231i \(0.802180\pi\)
\(62\) 1.63075 9.24846i 0.207106 1.17456i
\(63\) 3.97215 0.944659i 0.500443 0.119016i
\(64\) 0.173648 + 0.984808i 0.0217060 + 0.123101i
\(65\) 1.22824 2.84738i 0.152344 0.353173i
\(66\) −1.92337 + 0.576630i −0.236751 + 0.0709783i
\(67\) −12.5297 + 2.96960i −1.53075 + 0.362794i −0.907778 0.419451i \(-0.862223\pi\)
−0.622971 + 0.782245i \(0.714075\pi\)
\(68\) 0.513131 + 0.543887i 0.0622262 + 0.0659560i
\(69\) −1.90226 + 2.89468i −0.229005 + 0.348478i
\(70\) 0.546609 + 0.734223i 0.0653322 + 0.0877564i
\(71\) −10.2441 + 8.59582i −1.21575 + 1.02014i −0.216716 + 0.976235i \(0.569534\pi\)
−0.999036 + 0.0439019i \(0.986021\pi\)
\(72\) 1.18611 2.75557i 0.139784 0.324747i
\(73\) 8.73007 + 7.32539i 1.02178 + 0.857373i 0.989850 0.142118i \(-0.0453911\pi\)
0.0319271 + 0.999490i \(0.489836\pi\)
\(74\) 0.0778877 1.33728i 0.00905426 0.155456i
\(75\) 7.75657 1.37078i 0.895652 0.158284i
\(76\) 0.826186 + 1.91532i 0.0947701 + 0.219702i
\(77\) 1.31821 0.866998i 0.150224 0.0988036i
\(78\) 7.33157 3.16589i 0.830137 0.358467i
\(79\) 3.95975 + 13.2265i 0.445507 + 1.48810i 0.826191 + 0.563391i \(0.190503\pi\)
−0.380684 + 0.924705i \(0.624311\pi\)
\(80\) 0.672568 0.0751954
\(81\) −7.51174 + 4.95720i −0.834637 + 0.550800i
\(82\) 1.25880 0.139012
\(83\) 1.89914 + 6.34357i 0.208458 + 0.696297i 0.996718 + 0.0809549i \(0.0257970\pi\)
−0.788260 + 0.615342i \(0.789018\pi\)
\(84\) −0.272759 + 2.34145i −0.0297604 + 0.255473i
\(85\) 0.420172 0.276351i 0.0455741 0.0299745i
\(86\) 1.02041 + 2.36558i 0.110034 + 0.255087i
\(87\) 7.42699 + 8.84420i 0.796257 + 0.948198i
\(88\) 0.0674068 1.15733i 0.00718559 0.123372i
\(89\) 0.867446 + 0.727874i 0.0919491 + 0.0771545i 0.687603 0.726086i \(-0.258663\pi\)
−0.595654 + 0.803241i \(0.703107\pi\)
\(90\) −1.68662 1.10744i −0.177786 0.116735i
\(91\) −4.80694 + 4.03350i −0.503904 + 0.422826i
\(92\) −1.19420 1.60409i −0.124504 0.167238i
\(93\) −7.30574 14.5329i −0.757570 1.50699i
\(94\) 1.94424 + 2.06077i 0.200533 + 0.212552i
\(95\) 1.36510 0.323535i 0.140056 0.0331939i
\(96\) 1.26031 + 1.18812i 0.128630 + 0.121262i
\(97\) 0.566782 1.31395i 0.0575480 0.133411i −0.887016 0.461739i \(-0.847226\pi\)
0.944564 + 0.328328i \(0.106485\pi\)
\(98\) 0.893896 + 5.06954i 0.0902971 + 0.512100i
\(99\) −2.07469 + 2.79129i −0.208514 + 0.280535i
\(100\) −0.789692 + 4.47856i −0.0789692 + 0.447856i
\(101\) −6.18705 4.06928i −0.615634 0.404909i 0.203037 0.979171i \(-0.434919\pi\)
−0.818672 + 0.574262i \(0.805289\pi\)
\(102\) 1.27554 + 0.224403i 0.126297 + 0.0222192i
\(103\) 5.00209 6.71897i 0.492871 0.662040i −0.484200 0.874958i \(-0.660889\pi\)
0.977070 + 0.212918i \(0.0682966\pi\)
\(104\) 0.268086 + 4.60287i 0.0262880 + 0.451348i
\(105\) 1.51900 + 0.454120i 0.148239 + 0.0443176i
\(106\) 7.78388 8.25043i 0.756037 0.801353i
\(107\) −4.19144 + 7.25979i −0.405202 + 0.701831i −0.994345 0.106198i \(-0.966132\pi\)
0.589143 + 0.808029i \(0.299466\pi\)
\(108\) −1.20418 5.05470i −0.115872 0.486388i
\(109\) 7.46704 + 12.9333i 0.715212 + 1.23878i 0.962878 + 0.269938i \(0.0870033\pi\)
−0.247665 + 0.968846i \(0.579663\pi\)
\(110\) −0.758685 0.179812i −0.0723378 0.0171444i
\(111\) −1.27570 1.93797i −0.121084 0.183944i
\(112\) −1.21621 0.610805i −0.114921 0.0577157i
\(113\) −18.4465 2.15608i −1.73530 0.202827i −0.811144 0.584847i \(-0.801155\pi\)
−0.924154 + 0.382020i \(0.875229\pi\)
\(114\) 3.12956 + 1.80524i 0.293110 + 0.169076i
\(115\) −1.20194 + 0.603638i −0.112082 + 0.0562896i
\(116\) −6.26572 + 2.28054i −0.581757 + 0.211742i
\(117\) 6.90674 11.9842i 0.638529 1.10794i
\(118\) −13.4645 4.90067i −1.23951 0.451143i
\(119\) −1.01078 + 0.118143i −0.0926578 + 0.0108301i
\(120\) 0.934142 0.696004i 0.0852751 0.0635362i
\(121\) 2.76938 9.25039i 0.251762 0.840944i
\(122\) 1.60980 5.37712i 0.145745 0.486821i
\(123\) 1.74838 1.30267i 0.157646 0.117458i
\(124\) 9.32763 1.09024i 0.837646 0.0979068i
\(125\) 6.03418 + 2.19626i 0.539714 + 0.196440i
\(126\) 2.04420 + 3.53434i 0.182112 + 0.314864i
\(127\) 12.9867 4.72677i 1.15238 0.419433i 0.306012 0.952028i \(-0.401005\pi\)
0.846370 + 0.532595i \(0.178783\pi\)
\(128\) −0.893633 + 0.448799i −0.0789867 + 0.0396686i
\(129\) 3.86527 + 2.22963i 0.340318 + 0.196308i
\(130\) 3.08002 + 0.360003i 0.270136 + 0.0315743i
\(131\) −4.25425 2.13657i −0.371696 0.186673i 0.253139 0.967430i \(-0.418537\pi\)
−0.624834 + 0.780757i \(0.714833\pi\)
\(132\) −1.10404 1.67719i −0.0960940 0.145981i
\(133\) −2.76235 0.654689i −0.239526 0.0567688i
\(134\) −6.43841 11.1517i −0.556194 0.963356i
\(135\) −3.48861 + 0.207247i −0.300252 + 0.0178370i
\(136\) −0.373870 + 0.647562i −0.0320591 + 0.0555280i
\(137\) 10.8940 11.5470i 0.930739 0.986526i −0.0691992 0.997603i \(-0.522044\pi\)
0.999939 + 0.0110766i \(0.00352588\pi\)
\(138\) −3.31864 0.992139i −0.282502 0.0844565i
\(139\) −0.121917 2.09324i −0.0103409 0.177546i −0.999524 0.0308585i \(-0.990176\pi\)
0.989183 0.146687i \(-0.0468612\pi\)
\(140\) −0.546609 + 0.734223i −0.0461969 + 0.0620532i
\(141\) 4.83297 + 0.850257i 0.407009 + 0.0716046i
\(142\) −11.1728 7.34843i −0.937596 0.616667i
\(143\) 0.928168 5.26390i 0.0776173 0.440190i
\(144\) 2.97998 + 0.345976i 0.248332 + 0.0288313i
\(145\) 0.778738 + 4.41644i 0.0646707 + 0.366766i
\(146\) −4.51384 + 10.4643i −0.373568 + 0.866028i
\(147\) 6.48774 + 6.11613i 0.535099 + 0.504450i
\(148\) 1.30344 0.308921i 0.107142 0.0253931i
\(149\) 4.21893 + 4.47180i 0.345628 + 0.366344i 0.876746 0.480954i \(-0.159709\pi\)
−0.531118 + 0.847298i \(0.678228\pi\)
\(150\) 3.53781 + 7.03757i 0.288861 + 0.574615i
\(151\) −9.00011 12.0892i −0.732419 0.983809i −0.999796 0.0202171i \(-0.993564\pi\)
0.267377 0.963592i \(-0.413843\pi\)
\(152\) −1.59790 + 1.34080i −0.129607 + 0.108753i
\(153\) 2.00384 1.00831i 0.162001 0.0815166i
\(154\) 1.20864 + 1.01417i 0.0973951 + 0.0817242i
\(155\) 0.367253 6.30548i 0.0294984 0.506469i
\(156\) 5.13561 + 6.11558i 0.411178 + 0.489638i
\(157\) 4.80942 + 11.1495i 0.383834 + 0.889827i 0.995143 + 0.0984354i \(0.0313838\pi\)
−0.611310 + 0.791392i \(0.709357\pi\)
\(158\) −11.5352 + 7.58680i −0.917689 + 0.603573i
\(159\) 2.27325 19.5143i 0.180280 1.54758i
\(160\) 0.192895 + 0.644313i 0.0152497 + 0.0509374i
\(161\) 2.72170 0.214500
\(162\) −6.90333 5.77443i −0.542377 0.453682i
\(163\) 0.799475 0.0626197 0.0313099 0.999510i \(-0.490032\pi\)
0.0313099 + 0.999510i \(0.490032\pi\)
\(164\) 0.361029 + 1.20592i 0.0281917 + 0.0941667i
\(165\) −1.23983 + 0.535378i −0.0965205 + 0.0416791i
\(166\) −5.53239 + 3.63871i −0.429397 + 0.282419i
\(167\) −7.38724 17.1255i −0.571641 1.32521i −0.921488 0.388407i \(-0.873026\pi\)
0.349847 0.936807i \(-0.386234\pi\)
\(168\) −2.32131 + 0.410235i −0.179093 + 0.0316503i
\(169\) −0.480175 + 8.24429i −0.0369365 + 0.634176i
\(170\) 0.385249 + 0.323262i 0.0295472 + 0.0247931i
\(171\) 6.21485 0.731281i 0.475262 0.0559225i
\(172\) −1.97354 + 1.65600i −0.150481 + 0.126269i
\(173\) −3.93940 5.29153i −0.299507 0.402308i 0.626738 0.779230i \(-0.284390\pi\)
−0.926245 + 0.376922i \(0.876982\pi\)
\(174\) −6.34257 + 9.65153i −0.480829 + 0.731681i
\(175\) −4.24732 4.50190i −0.321067 0.340311i
\(176\) 1.12804 0.267351i 0.0850294 0.0201523i
\(177\) −23.7725 + 7.12703i −1.78685 + 0.535701i
\(178\) −0.448509 + 1.03976i −0.0336172 + 0.0779334i
\(179\) 2.13435 + 12.1045i 0.159529 + 0.904732i 0.954528 + 0.298122i \(0.0963601\pi\)
−0.794999 + 0.606610i \(0.792529\pi\)
\(180\) 0.577190 1.93339i 0.0430212 0.144106i
\(181\) 1.56131 8.85465i 0.116052 0.658161i −0.870173 0.492747i \(-0.835993\pi\)
0.986224 0.165414i \(-0.0528961\pi\)
\(182\) −5.24270 3.44818i −0.388615 0.255596i
\(183\) −3.32860 9.13428i −0.246057 0.675225i
\(184\) 1.19420 1.60409i 0.0880379 0.118255i
\(185\) −0.0523847 0.899411i −0.00385140 0.0661260i
\(186\) 11.8271 11.1669i 0.867204 0.818798i
\(187\) 0.594868 0.630523i 0.0435011 0.0461084i
\(188\) −1.41658 + 2.45360i −0.103315 + 0.178947i
\(189\) 6.49672 + 2.79348i 0.472567 + 0.203196i
\(190\) 0.701458 + 1.21496i 0.0508891 + 0.0881425i
\(191\) 24.3252 + 5.76517i 1.76011 + 0.417153i 0.978438 0.206540i \(-0.0662204\pi\)
0.781669 + 0.623693i \(0.214369\pi\)
\(192\) −0.776745 + 1.54812i −0.0560567 + 0.111726i
\(193\) 7.77770 + 3.90611i 0.559851 + 0.281168i 0.706138 0.708074i \(-0.250436\pi\)
−0.146287 + 0.989242i \(0.546732\pi\)
\(194\) 1.42130 + 0.166127i 0.102044 + 0.0119272i
\(195\) 4.65044 2.68733i 0.333025 0.192444i
\(196\) −4.60019 + 2.31030i −0.328585 + 0.165022i
\(197\) 15.0611 5.48178i 1.07306 0.390561i 0.255738 0.966746i \(-0.417681\pi\)
0.817319 + 0.576185i \(0.195459\pi\)
\(198\) −3.26905 1.18698i −0.232321 0.0843548i
\(199\) −9.35208 3.40388i −0.662952 0.241295i −0.0114415 0.999935i \(-0.503642\pi\)
−0.651510 + 0.758640i \(0.725864\pi\)
\(200\) −4.51690 + 0.527950i −0.319393 + 0.0373317i
\(201\) −20.4827 8.82597i −1.44474 0.622536i
\(202\) 2.12387 7.09421i 0.149435 0.499147i
\(203\) 2.60267 8.69354i 0.182672 0.610167i
\(204\) 0.150852 + 1.28631i 0.0105617 + 0.0900597i
\(205\) 0.840907 0.0982879i 0.0587315 0.00686473i
\(206\) 7.87132 + 2.86493i 0.548421 + 0.199609i
\(207\) −5.63603 + 2.05628i −0.391731 + 0.142922i
\(208\) −4.33261 + 1.57694i −0.300412 + 0.109341i
\(209\) 2.16096 1.08528i 0.149477 0.0750701i
\(210\) 0.000612643 1.58543i 4.22764e−5 0.109405i
\(211\) 10.6229 + 1.24164i 0.731311 + 0.0854780i 0.473595 0.880743i \(-0.342956\pi\)
0.257716 + 0.966221i \(0.417030\pi\)
\(212\) 10.1363 + 5.09062i 0.696162 + 0.349626i
\(213\) −23.1225 + 1.35570i −1.58433 + 0.0928910i
\(214\) −8.15693 1.93323i −0.557596 0.132153i
\(215\) 0.866359 + 1.50058i 0.0590852 + 0.102339i
\(216\) 4.49699 2.60329i 0.305981 0.177132i
\(217\) −6.39056 + 11.0688i −0.433819 + 0.751397i
\(218\) −10.2484 + 10.8627i −0.694108 + 0.735711i
\(219\) 4.55954 + 19.2051i 0.308105 + 1.29776i
\(220\) −0.0453356 0.778383i −0.00305653 0.0524786i
\(221\) −2.05875 + 2.76539i −0.138487 + 0.186020i
\(222\) 1.49068 1.77792i 0.100048 0.119326i
\(223\) −5.33090 3.50619i −0.356983 0.234792i 0.358331 0.933595i \(-0.383346\pi\)
−0.715314 + 0.698803i \(0.753716\pi\)
\(224\) 0.236331 1.34030i 0.0157905 0.0895526i
\(225\) 12.1965 + 6.11352i 0.813101 + 0.407568i
\(226\) −3.22500 18.2899i −0.214524 1.21663i
\(227\) −0.740715 + 1.71717i −0.0491630 + 0.113973i −0.941028 0.338330i \(-0.890138\pi\)
0.891865 + 0.452303i \(0.149397\pi\)
\(228\) −0.831834 + 3.51584i −0.0550895 + 0.232842i
\(229\) −3.86075 + 0.915014i −0.255125 + 0.0604658i −0.356188 0.934414i \(-0.615924\pi\)
0.101063 + 0.994880i \(0.467776\pi\)
\(230\) −0.923000 0.978323i −0.0608608 0.0645087i
\(231\) 2.72821 + 0.157843i 0.179503 + 0.0103853i
\(232\) −3.98176 5.34843i −0.261415 0.351141i
\(233\) 5.34607 4.48589i 0.350233 0.293880i −0.450651 0.892700i \(-0.648808\pi\)
0.800884 + 0.598820i \(0.204364\pi\)
\(234\) 13.4616 + 3.17948i 0.880014 + 0.207849i
\(235\) 1.45970 + 1.22483i 0.0952200 + 0.0798991i
\(236\) 0.833134 14.3044i 0.0542324 0.931135i
\(237\) −8.17024 + 22.4746i −0.530714 + 1.45988i
\(238\) −0.403074 0.934430i −0.0261274 0.0605701i
\(239\) 10.0388 6.60259i 0.649353 0.427086i −0.181643 0.983365i \(-0.558142\pi\)
0.830996 + 0.556278i \(0.187771\pi\)
\(240\) 0.934679 + 0.695282i 0.0603333 + 0.0448802i
\(241\) 8.68494 + 29.0097i 0.559446 + 1.86868i 0.491272 + 0.871006i \(0.336532\pi\)
0.0681739 + 0.997673i \(0.478283\pi\)
\(242\) 9.65604 0.620714
\(243\) −15.5638 0.876319i −0.998419 0.0562159i
\(244\) 5.61292 0.359330
\(245\) 0.992972 + 3.31676i 0.0634386 + 0.211900i
\(246\) 1.74938 + 1.30132i 0.111537 + 0.0829690i
\(247\) −8.03525 + 5.28487i −0.511271 + 0.336268i
\(248\) 3.71964 + 8.62309i 0.236197 + 0.547566i
\(249\) −3.91854 + 10.7790i −0.248327 + 0.683094i
\(250\) −0.373374 + 6.41058i −0.0236142 + 0.405441i
\(251\) 20.7795 + 17.4360i 1.31159 + 1.10055i 0.988016 + 0.154349i \(0.0493279\pi\)
0.323571 + 0.946204i \(0.395117\pi\)
\(252\) −2.79958 + 2.97198i −0.176357 + 0.187217i
\(253\) −1.77597 + 1.49021i −0.111654 + 0.0936890i
\(254\) 8.25281 + 11.0855i 0.517828 + 0.695563i
\(255\) 0.869605 + 0.0503116i 0.0544568 + 0.00315063i
\(256\) −0.686242 0.727374i −0.0428901 0.0454609i
\(257\) 24.4246 5.78873i 1.52356 0.361091i 0.618300 0.785942i \(-0.287822\pi\)
0.905263 + 0.424851i \(0.139674\pi\)
\(258\) −1.02738 + 4.34235i −0.0639622 + 0.270343i
\(259\) −0.722090 + 1.67399i −0.0448685 + 0.104017i
\(260\) 0.538481 + 3.05388i 0.0333952 + 0.189393i
\(261\) 1.17853 + 19.9688i 0.0729494 + 1.23604i
\(262\) 0.826674 4.68830i 0.0510721 0.289644i
\(263\) 0.243478 + 0.160138i 0.0150135 + 0.00987455i 0.556994 0.830517i \(-0.311955\pi\)
−0.541980 + 0.840391i \(0.682325\pi\)
\(264\) 1.29009 1.53868i 0.0793997 0.0946991i
\(265\) 4.55559 6.11922i 0.279848 0.375901i
\(266\) −0.165066 2.83407i −0.0101208 0.173768i
\(267\) 0.453050 + 1.90828i 0.0277262 + 0.116785i
\(268\) 8.83661 9.36626i 0.539782 0.572135i
\(269\) −8.14941 + 14.1152i −0.496878 + 0.860618i −0.999994 0.00360104i \(-0.998854\pi\)
0.503115 + 0.864219i \(0.332187\pi\)
\(270\) −1.19909 3.28262i −0.0729741 0.199774i
\(271\) −8.96220 15.5230i −0.544415 0.942954i −0.998643 0.0520688i \(-0.983418\pi\)
0.454229 0.890885i \(-0.349915\pi\)
\(272\) −0.727585 0.172441i −0.0441163 0.0104558i
\(273\) −10.8500 + 0.636148i −0.656672 + 0.0385014i
\(274\) 14.1863 + 7.12465i 0.857028 + 0.430416i
\(275\) 5.23641 + 0.612048i 0.315767 + 0.0369079i
\(276\) −0.00133847 3.46377i −8.05666e−5 0.208495i
\(277\) −13.3252 + 6.69215i −0.800632 + 0.402093i −0.801566 0.597907i \(-0.795999\pi\)
0.000933299 1.00000i \(0.499703\pi\)
\(278\) 1.97033 0.717142i 0.118173 0.0430113i
\(279\) 4.87081 27.7491i 0.291608 1.66130i
\(280\) −0.860147 0.313068i −0.0514036 0.0187094i
\(281\) −31.4683 + 3.67812i −1.87724 + 0.219418i −0.976588 0.215119i \(-0.930986\pi\)
−0.900654 + 0.434537i \(0.856912\pi\)
\(282\) 0.571573 + 4.87379i 0.0340367 + 0.290230i
\(283\) 0.463887 1.54949i 0.0275752 0.0921077i −0.943094 0.332525i \(-0.892099\pi\)
0.970670 + 0.240418i \(0.0772844\pi\)
\(284\) 3.83534 12.8109i 0.227586 0.760189i
\(285\) 2.23156 + 0.961580i 0.132186 + 0.0569591i
\(286\) 5.30897 0.620529i 0.313926 0.0366927i
\(287\) −1.60989 0.585950i −0.0950285 0.0345876i
\(288\) 0.523228 + 2.95402i 0.0308315 + 0.174067i
\(289\) 15.4494 5.62311i 0.908787 0.330771i
\(290\) −4.00756 + 2.01267i −0.235332 + 0.118188i
\(291\) 2.14599 1.24009i 0.125800 0.0726956i
\(292\) −11.3192 1.32303i −0.662408 0.0774244i
\(293\) 8.65650 + 4.34746i 0.505718 + 0.253981i 0.683317 0.730122i \(-0.260537\pi\)
−0.177599 + 0.984103i \(0.556833\pi\)
\(294\) −3.99848 + 7.96931i −0.233196 + 0.464780i
\(295\) −9.37719 2.22244i −0.545961 0.129395i
\(296\) 0.669773 + 1.16008i 0.0389298 + 0.0674283i
\(297\) −5.76878 + 1.73435i −0.334739 + 0.100637i
\(298\) −3.07394 + 5.32421i −0.178068 + 0.308423i
\(299\) 6.32746 6.70672i 0.365927 0.387860i
\(300\) −5.72726 + 5.40758i −0.330664 + 0.312207i
\(301\) −0.203870 3.50032i −0.0117509 0.201755i
\(302\) 9.00011 12.0892i 0.517898 0.695658i
\(303\) −4.39154 12.0512i −0.252287 0.692321i
\(304\) −1.74275 1.14623i −0.0999537 0.0657406i
\(305\) 0.655534 3.71772i 0.0375358 0.212876i
\(306\) 1.54065 + 1.63047i 0.0880733 + 0.0932078i
\(307\) −3.39044 19.2282i −0.193503 1.09741i −0.914535 0.404507i \(-0.867443\pi\)
0.721032 0.692902i \(-0.243668\pi\)
\(308\) −0.624922 + 1.44873i −0.0356083 + 0.0825492i
\(309\) 13.8974 4.16645i 0.790594 0.237021i
\(310\) 6.14592 1.45661i 0.349065 0.0827298i
\(311\) −10.0107 10.6108i −0.567657 0.601681i 0.378416 0.925636i \(-0.376469\pi\)
−0.946073 + 0.323955i \(0.894987\pi\)
\(312\) −4.38575 + 6.67383i −0.248294 + 0.377831i
\(313\) −16.8161 22.5880i −0.950504 1.27675i −0.960927 0.276802i \(-0.910725\pi\)
0.0104234 0.999946i \(-0.496682\pi\)
\(314\) −9.30175 + 7.80509i −0.524928 + 0.440467i
\(315\) 1.64153 + 2.20140i 0.0924896 + 0.124035i
\(316\) −10.5764 8.87465i −0.594969 0.499238i
\(317\) −0.0397431 + 0.682363i −0.00223220 + 0.0383253i −0.999240 0.0389715i \(-0.987592\pi\)
0.997008 + 0.0772968i \(0.0246289\pi\)
\(318\) 19.3465 3.41901i 1.08490 0.191729i
\(319\) 3.06168 + 7.09778i 0.171421 + 0.397399i
\(320\) −0.561922 + 0.369582i −0.0314124 + 0.0206603i
\(321\) −13.3299 + 5.75607i −0.744002 + 0.321272i
\(322\) 0.780591 + 2.60736i 0.0435006 + 0.145302i
\(323\) −1.55972 −0.0867851
\(324\) 3.55194 8.26945i 0.197330 0.459414i
\(325\) −20.9677 −1.16308
\(326\) 0.229292 + 0.765889i 0.0126993 + 0.0424187i
\(327\) −2.99300 + 25.6928i −0.165513 + 1.42082i
\(328\) −1.05172 + 0.691725i −0.0580713 + 0.0381941i
\(329\) −1.52723 3.54053i −0.0841992 0.195196i
\(330\) −0.868474 1.03419i −0.0478079 0.0569306i
\(331\) −1.19226 + 20.4704i −0.0655327 + 1.12515i 0.791932 + 0.610609i \(0.209075\pi\)
−0.857465 + 0.514543i \(0.827962\pi\)
\(332\) −5.07256 4.25638i −0.278393 0.233599i
\(333\) 0.230562 4.01202i 0.0126347 0.219857i
\(334\) 14.2874 11.9886i 0.781772 0.655984i
\(335\) −5.17171 6.94681i −0.282561 0.379545i
\(336\) −1.05876 2.10613i −0.0577601 0.114899i
\(337\) 4.24993 + 4.50466i 0.231508 + 0.245384i 0.832705 0.553716i \(-0.186791\pi\)
−0.601197 + 0.799101i \(0.705309\pi\)
\(338\) −8.03566 + 1.90449i −0.437082 + 0.103590i
\(339\) −23.4065 22.0658i −1.27127 1.19845i
\(340\) −0.199191 + 0.461777i −0.0108026 + 0.0250434i
\(341\) −1.89052 10.7217i −0.102377 0.580610i
\(342\) 2.48300 + 5.74403i 0.134265 + 0.310602i
\(343\) 2.87089 16.2816i 0.155013 0.879125i
\(344\) −2.15245 1.41569i −0.116052 0.0763287i
\(345\) −2.29439 0.403648i −0.123526 0.0217317i
\(346\) 3.93940 5.29153i 0.211784 0.284475i
\(347\) 0.619334 + 10.6335i 0.0332476 + 0.570839i 0.973261 + 0.229702i \(0.0737750\pi\)
−0.940014 + 0.341137i \(0.889188\pi\)
\(348\) −11.0651 3.30802i −0.593153 0.177329i
\(349\) 8.52175 9.03253i 0.456159 0.483500i −0.457945 0.888981i \(-0.651414\pi\)
0.914104 + 0.405480i \(0.132896\pi\)
\(350\) 3.09463 5.36005i 0.165415 0.286507i
\(351\) 21.9874 9.51467i 1.17360 0.507855i
\(352\) 0.579646 + 1.00398i 0.0308952 + 0.0535121i
\(353\) −24.4271 5.78933i −1.30012 0.308135i −0.478461 0.878109i \(-0.658805\pi\)
−0.821663 + 0.569974i \(0.806953\pi\)
\(354\) −13.6457 20.7298i −0.725258 1.10177i
\(355\) −8.03739 4.03653i −0.426580 0.214237i
\(356\) −1.12471 0.131460i −0.0596097 0.00696738i
\(357\) −1.52683 0.880728i −0.0808083 0.0466130i
\(358\) −10.9838 + 5.51629i −0.580514 + 0.291545i
\(359\) −3.21545 + 1.17033i −0.169705 + 0.0617675i −0.425475 0.904970i \(-0.639893\pi\)
0.255771 + 0.966738i \(0.417671\pi\)
\(360\) 2.01770 0.00155936i 0.106342 8.21857e-5i
\(361\) 13.7655 + 5.01025i 0.724502 + 0.263697i
\(362\) 8.93045 1.04382i 0.469374 0.0548620i
\(363\) 13.4115 9.99252i 0.703919 0.524471i
\(364\) 1.79969 6.01140i 0.0943296 0.315083i
\(365\) −2.19828 + 7.34278i −0.115063 + 0.384338i
\(366\) 7.79589 5.80851i 0.407498 0.303616i
\(367\) 11.4369 1.33678i 0.596999 0.0697792i 0.187774 0.982212i \(-0.439873\pi\)
0.409226 + 0.912433i \(0.365799\pi\)
\(368\) 1.87921 + 0.683975i 0.0979604 + 0.0356547i
\(369\) 3.77641 0.00291857i 0.196592 0.000151935i
\(370\) 0.846602 0.308138i 0.0440128 0.0160193i
\(371\) −13.7952 + 6.92822i −0.716212 + 0.359695i
\(372\) 14.0898 + 8.12751i 0.730524 + 0.421392i
\(373\) 15.6136 + 1.82497i 0.808443 + 0.0944935i 0.510265 0.860017i \(-0.329547\pi\)
0.298178 + 0.954510i \(0.403621\pi\)
\(374\) 0.774645 + 0.389041i 0.0400559 + 0.0201168i
\(375\) 6.11538 + 9.29016i 0.315797 + 0.479742i
\(376\) −2.75680 0.653373i −0.142171 0.0336952i
\(377\) −15.3716 26.6244i −0.791677 1.37123i
\(378\) −0.812848 + 7.02497i −0.0418084 + 0.361326i
\(379\) 6.79731 11.7733i 0.349154 0.604753i −0.636945 0.770909i \(-0.719802\pi\)
0.986099 + 0.166156i \(0.0531356\pi\)
\(380\) −0.962739 + 1.02044i −0.0493875 + 0.0523476i
\(381\) 22.9342 + 6.85640i 1.17496 + 0.351264i
\(382\) 1.45356 + 24.9567i 0.0743708 + 1.27690i
\(383\) 3.35185 4.50231i 0.171271 0.230057i −0.708197 0.706015i \(-0.750491\pi\)
0.879468 + 0.475958i \(0.157898\pi\)
\(384\) −1.70585 0.300108i −0.0870515 0.0153148i
\(385\) 0.886583 + 0.583115i 0.0451845 + 0.0297183i
\(386\) −1.51134 + 8.57124i −0.0769253 + 0.436265i
\(387\) 3.06671 + 7.09436i 0.155890 + 0.360627i
\(388\) 0.248487 + 1.40924i 0.0126150 + 0.0715433i
\(389\) −10.0594 + 23.3204i −0.510034 + 1.18239i 0.447555 + 0.894256i \(0.352295\pi\)
−0.957589 + 0.288136i \(0.906964\pi\)
\(390\) 3.90820 + 3.68434i 0.197899 + 0.186564i
\(391\) 1.45503 0.344849i 0.0735841 0.0174398i
\(392\) −3.53259 3.74433i −0.178423 0.189117i
\(393\) −3.70349 7.36715i −0.186816 0.371624i
\(394\) 9.57106 + 12.8562i 0.482183 + 0.647684i
\(395\) −7.11334 + 5.96880i −0.357911 + 0.300323i
\(396\) 0.199537 3.47215i 0.0100271 0.174482i
\(397\) −17.9656 15.0749i −0.901665 0.756587i 0.0688500 0.997627i \(-0.478067\pi\)
−0.970515 + 0.241040i \(0.922511\pi\)
\(398\) 0.578674 9.93544i 0.0290063 0.498019i
\(399\) −3.16209 3.76548i −0.158302 0.188510i
\(400\) −1.80123 4.17573i −0.0900617 0.208786i
\(401\) 23.2450 15.2885i 1.16080 0.763471i 0.185131 0.982714i \(-0.440729\pi\)
0.975670 + 0.219242i \(0.0703585\pi\)
\(402\) 2.58070 22.1535i 0.128713 1.10492i
\(403\) 12.4184 + 41.4803i 0.618605 + 2.06628i
\(404\) 7.40531 0.368428
\(405\) −5.06243 3.31842i −0.251554 0.164893i
\(406\) 9.07477 0.450373
\(407\) −0.445384 1.48768i −0.0220768 0.0737418i
\(408\) −1.18901 + 0.513432i −0.0588646 + 0.0254187i
\(409\) 12.5606 8.26123i 0.621081 0.408492i −0.199600 0.979877i \(-0.563964\pi\)
0.820682 + 0.571386i \(0.193594\pi\)
\(410\) 0.335334 + 0.777391i 0.0165609 + 0.0383926i
\(411\) 27.0766 4.78512i 1.33559 0.236033i
\(412\) −0.487049 + 8.36231i −0.0239952 + 0.411982i
\(413\) 14.9386 + 12.5349i 0.735078 + 0.616804i
\(414\) −3.58633 4.80951i −0.176258 0.236375i
\(415\) −3.41164 + 2.86270i −0.167471 + 0.140525i
\(416\) −2.75330 3.69832i −0.134992 0.181325i
\(417\) 1.99450 3.03504i 0.0976710 0.148627i
\(418\) 1.65945 + 1.75892i 0.0811665 + 0.0860315i
\(419\) −11.9398 + 2.82978i −0.583297 + 0.138244i −0.511662 0.859187i \(-0.670970\pi\)
−0.0716351 + 0.997431i \(0.522822\pi\)
\(420\) −1.51865 + 0.455294i −0.0741026 + 0.0222161i
\(421\) −5.36254 + 12.4318i −0.261354 + 0.605887i −0.997479 0.0709583i \(-0.977394\pi\)
0.736125 + 0.676846i \(0.236654\pi\)
\(422\) 1.85721 + 10.5327i 0.0904074 + 0.512726i
\(423\) 5.83749 + 6.17780i 0.283828 + 0.300375i
\(424\) −1.96965 + 11.1704i −0.0956547 + 0.542485i
\(425\) −2.84105 1.86859i −0.137811 0.0906397i
\(426\) −7.93036 21.7623i −0.384227 1.05439i
\(427\) −4.56173 + 6.12746i −0.220757 + 0.296529i
\(428\) −0.487422 8.36871i −0.0235604 0.404517i
\(429\) 6.73157 6.35583i 0.325003 0.306862i
\(430\) −1.18906 + 1.26033i −0.0573418 + 0.0607787i
\(431\) −19.1715 + 33.2060i −0.923457 + 1.59948i −0.129434 + 0.991588i \(0.541316\pi\)
−0.794023 + 0.607887i \(0.792017\pi\)
\(432\) 3.78368 + 3.56143i 0.182042 + 0.171349i
\(433\) 0.766207 + 1.32711i 0.0368215 + 0.0637768i 0.883849 0.467773i \(-0.154943\pi\)
−0.847027 + 0.531549i \(0.821610\pi\)
\(434\) −12.4366 2.94753i −0.596976 0.141486i
\(435\) −3.48337 + 6.94265i −0.167015 + 0.332874i
\(436\) −13.3456 6.70240i −0.639137 0.320987i
\(437\) 4.14322 + 0.484273i 0.198197 + 0.0231659i
\(438\) −17.0906 + 9.87608i −0.816621 + 0.471897i
\(439\) 33.6767 16.9131i 1.60730 0.807217i 0.607383 0.794409i \(-0.292219\pi\)
0.999918 0.0128075i \(-0.00407685\pi\)
\(440\) 0.732680 0.266674i 0.0349292 0.0127132i
\(441\) 2.69344 + 15.2065i 0.128259 + 0.724121i
\(442\) −3.23967 1.17914i −0.154095 0.0560861i
\(443\) −5.84898 + 0.683648i −0.277893 + 0.0324811i −0.253898 0.967231i \(-0.581713\pi\)
−0.0239954 + 0.999712i \(0.507639\pi\)
\(444\) 2.13076 + 0.918146i 0.101122 + 0.0435733i
\(445\) −0.218428 + 0.729601i −0.0103545 + 0.0345864i
\(446\) 1.82997 6.11253i 0.0866516 0.289437i
\(447\) 1.24029 + 10.5759i 0.0586639 + 0.500225i
\(448\) 1.35177 0.158000i 0.0638653 0.00746479i
\(449\) 1.43327 + 0.521667i 0.0676401 + 0.0246190i 0.375619 0.926774i \(-0.377430\pi\)
−0.307978 + 0.951393i \(0.599652\pi\)
\(450\) −2.35869 + 13.4375i −0.111190 + 0.633451i
\(451\) 1.37131 0.499117i 0.0645726 0.0235025i
\(452\) 16.5966 8.33512i 0.780638 0.392051i
\(453\) −0.0100874 26.1047i −0.000473947 1.22651i
\(454\) −1.85747 0.217107i −0.0871754 0.0101893i
\(455\) −3.77146 1.89410i −0.176809 0.0887967i
\(456\) −3.60671 + 0.211465i −0.168900 + 0.00990277i
\(457\) −40.7731 9.66341i −1.90729 0.452035i −0.999466 0.0326743i \(-0.989598\pi\)
−0.907820 0.419361i \(-0.862254\pi\)
\(458\) −1.98385 3.43613i −0.0926991 0.160560i
\(459\) 3.82713 + 0.670252i 0.178635 + 0.0312847i
\(460\) 0.672504 1.16481i 0.0313557 0.0543096i
\(461\) −11.8787 + 12.5907i −0.553247 + 0.586407i −0.942284 0.334815i \(-0.891326\pi\)
0.389037 + 0.921222i \(0.372808\pi\)
\(462\) 0.631249 + 2.65887i 0.0293684 + 0.123702i
\(463\) 1.19557 + 20.5272i 0.0555631 + 0.953981i 0.904765 + 0.425912i \(0.140047\pi\)
−0.849202 + 0.528069i \(0.822916\pi\)
\(464\) 3.98176 5.34843i 0.184848 0.248295i
\(465\) 7.02881 8.38319i 0.325953 0.388761i
\(466\) 5.83070 + 3.83491i 0.270102 + 0.177649i
\(467\) 3.39754 19.2684i 0.157219 0.891635i −0.799509 0.600654i \(-0.794907\pi\)
0.956729 0.290981i \(-0.0939818\pi\)
\(468\) 0.814931 + 13.8080i 0.0376702 + 0.638274i
\(469\) 3.04319 + 17.2588i 0.140522 + 0.796938i
\(470\) −0.754729 + 1.74966i −0.0348130 + 0.0807057i
\(471\) −4.84230 + 20.4665i −0.223121 + 0.943047i
\(472\) 13.9424 3.30440i 0.641750 0.152098i
\(473\) 2.04957 + 2.17241i 0.0942391 + 0.0998876i
\(474\) −23.8736 1.38123i −1.09655 0.0634418i
\(475\) −5.66464 7.60893i −0.259912 0.349122i
\(476\) 0.779571 0.654138i 0.0357316 0.0299824i
\(477\) 23.3325 24.7693i 1.06832 1.13411i
\(478\) 9.20436 + 7.72338i 0.420998 + 0.353259i
\(479\) −0.971295 + 16.6765i −0.0443796 + 0.761968i 0.900562 + 0.434728i \(0.143156\pi\)
−0.944941 + 0.327240i \(0.893881\pi\)
\(480\) −0.398004 + 1.09482i −0.0181663 + 0.0499716i
\(481\) 2.44627 + 5.67109i 0.111540 + 0.258579i
\(482\) −25.3001 + 16.6402i −1.15239 + 0.757938i
\(483\) 3.78239 + 2.81361i 0.172105 + 0.128024i
\(484\) 2.76938 + 9.25039i 0.125881 + 0.420472i
\(485\) 0.962431 0.0437017
\(486\) −3.62425 15.1613i −0.164399 0.687730i
\(487\) 1.00343 0.0454698 0.0227349 0.999742i \(-0.492763\pi\)
0.0227349 + 0.999742i \(0.492763\pi\)
\(488\) 1.60980 + 5.37712i 0.0728724 + 0.243411i
\(489\) 1.11105 + 0.826475i 0.0502432 + 0.0373745i
\(490\) −2.89263 + 1.90251i −0.130676 + 0.0859468i
\(491\) −6.77775 15.7126i −0.305876 0.709100i 0.694066 0.719912i \(-0.255818\pi\)
−0.999942 + 0.0108119i \(0.996558\pi\)
\(492\) −0.744920 + 2.04911i −0.0335836 + 0.0923811i
\(493\) 0.289899 4.97738i 0.0130564 0.224170i
\(494\) −7.36738 6.18197i −0.331474 0.278140i
\(495\) −2.27647 0.537676i −0.102320 0.0241667i
\(496\) −7.19402 + 6.03650i −0.323021 + 0.271047i
\(497\) 10.8683 + 14.5986i 0.487509 + 0.654838i
\(498\) −11.4501 0.662451i −0.513090 0.0296851i
\(499\) 2.40498 + 2.54913i 0.107662 + 0.114115i 0.778963 0.627070i \(-0.215746\pi\)
−0.671302 + 0.741184i \(0.734264\pi\)
\(500\) −6.24835 + 1.48089i −0.279435 + 0.0662273i
\(501\) 7.43773 31.4364i 0.332293 1.40447i
\(502\) −10.7439 + 24.9072i −0.479525 + 1.11166i
\(503\) −4.44463 25.2068i −0.198176 1.12391i −0.907822 0.419356i \(-0.862256\pi\)
0.709646 0.704559i \(-0.248855\pi\)
\(504\) −3.65006 1.82960i −0.162586 0.0814967i
\(505\) 0.864867 4.90491i 0.0384861 0.218265i
\(506\) −1.93696 1.27396i −0.0861085 0.0566345i
\(507\) −9.19002 + 10.9608i −0.408143 + 0.486788i
\(508\) −8.25281 + 11.0855i −0.366159 + 0.491837i
\(509\) 1.92841 + 33.1095i 0.0854752 + 1.46755i 0.719636 + 0.694351i \(0.244308\pi\)
−0.634161 + 0.773201i \(0.718654\pi\)
\(510\) 0.201208 + 0.847502i 0.00890962 + 0.0375280i
\(511\) 10.6437 11.2816i 0.470848 0.499070i
\(512\) 0.500000 0.866025i 0.0220971 0.0382733i
\(513\) 9.39287 + 5.40847i 0.414705 + 0.238790i
\(514\) 12.5506 + 21.7383i 0.553583 + 0.958833i
\(515\) 5.48189 + 1.29923i 0.241561 + 0.0572510i
\(516\) −4.45459 + 0.261177i −0.196102 + 0.0114977i
\(517\) 2.93511 + 1.47407i 0.129086 + 0.0648293i
\(518\) −1.81076 0.211648i −0.0795604 0.00929928i
\(519\) −0.00441531 11.4262i −0.000193811 0.501554i
\(520\) −2.77114 + 1.39172i −0.121523 + 0.0610310i
\(521\) −22.7781 + 8.29056i −0.997928 + 0.363216i −0.788785 0.614669i \(-0.789290\pi\)
−0.209143 + 0.977885i \(0.567067\pi\)
\(522\) −18.7919 + 6.85613i −0.822497 + 0.300085i
\(523\) 10.4821 + 3.81517i 0.458350 + 0.166826i 0.560868 0.827905i \(-0.310468\pi\)
−0.102518 + 0.994731i \(0.532690\pi\)
\(524\) 4.72844 0.552675i 0.206563 0.0241437i
\(525\) −1.24864 10.6471i −0.0544952 0.464679i
\(526\) −0.0835804 + 0.279178i −0.00364428 + 0.0121727i
\(527\) −2.01397 + 6.72713i −0.0877299 + 0.293038i
\(528\) 1.84404 + 0.794596i 0.0802516 + 0.0345804i
\(529\) 18.8723 2.20585i 0.820534 0.0959067i
\(530\) 7.16871 + 2.60920i 0.311389 + 0.113336i
\(531\) −40.4048 14.6708i −1.75342 0.636658i
\(532\) 2.66767 0.970952i 0.115658 0.0420961i
\(533\) −5.18658 + 2.60480i −0.224656 + 0.112826i
\(534\) −1.69818 + 0.981318i −0.0734873 + 0.0424658i
\(535\) −5.59994 0.654539i −0.242106 0.0282982i
\(536\) 11.5071 + 5.77911i 0.497033 + 0.249619i
\(537\) −9.54714 + 19.0283i −0.411990 + 0.821130i
\(538\) −15.8595 3.75877i −0.683751 0.162052i
\(539\) 2.98387 + 5.16821i 0.128524 + 0.222610i
\(540\) 2.80081 2.09018i 0.120528 0.0899469i
\(541\) −12.5010 + 21.6524i −0.537461 + 0.930909i 0.461579 + 0.887099i \(0.347283\pi\)
−0.999040 + 0.0438103i \(0.986050\pi\)
\(542\) 12.3005 13.0377i 0.528350 0.560019i
\(543\) 11.3235 10.6914i 0.485937 0.458813i
\(544\) −0.0434773 0.746476i −0.00186407 0.0320049i
\(545\) −5.99797 + 8.05667i −0.256925 + 0.345110i
\(546\) −3.72124 10.2117i −0.159254 0.437022i
\(547\) 8.96262 + 5.89481i 0.383214 + 0.252044i 0.726470 0.687198i \(-0.241159\pi\)
−0.343256 + 0.939242i \(0.611530\pi\)
\(548\) −2.75665 + 15.6337i −0.117758 + 0.667840i
\(549\) 4.81694 16.1351i 0.205582 0.688629i
\(550\) 0.915483 + 5.19196i 0.0390363 + 0.221386i
\(551\) 5.50888 12.7710i 0.234686 0.544063i
\(552\) 3.31787 0.994703i 0.141218 0.0423374i
\(553\) 18.2838 4.33335i 0.777508 0.184273i
\(554\) −10.2327 10.8460i −0.434747 0.460804i
\(555\) 0.856986 1.30408i 0.0363770 0.0553552i
\(556\) 1.25211 + 1.68188i 0.0531014 + 0.0713275i
\(557\) 20.8076 17.4597i 0.881646 0.739789i −0.0848705 0.996392i \(-0.527048\pi\)
0.966517 + 0.256603i \(0.0826032\pi\)
\(558\) 27.9804 3.29236i 1.18450 0.139377i
\(559\) −9.09934 7.63525i −0.384861 0.322937i
\(560\) 0.0532228 0.913801i 0.00224907 0.0386151i
\(561\) 1.47852 0.261291i 0.0624230 0.0110317i
\(562\) −12.5488 29.0914i −0.529340 1.22715i
\(563\) 0.606344 0.398798i 0.0255543 0.0168074i −0.536668 0.843794i \(-0.680317\pi\)
0.562222 + 0.826986i \(0.309947\pi\)
\(564\) −4.50511 + 1.94538i −0.189699 + 0.0819153i
\(565\) −3.58245 11.9662i −0.150715 0.503422i
\(566\) 1.61744 0.0679861
\(567\) 6.14079 + 10.5983i 0.257889 + 0.445086i
\(568\) 13.3727 0.561107
\(569\) −5.81528 19.4244i −0.243789 0.814313i −0.989055 0.147546i \(-0.952863\pi\)
0.745266 0.666767i \(-0.232323\pi\)
\(570\) −0.281164 + 2.41360i −0.0117767 + 0.101095i
\(571\) −15.9488 + 10.4897i −0.667436 + 0.438980i −0.837488 0.546455i \(-0.815977\pi\)
0.170052 + 0.985435i \(0.445606\pi\)
\(572\) 2.11709 + 4.90796i 0.0885199 + 0.205212i
\(573\) 27.8452 + 33.1586i 1.16325 + 1.38522i
\(574\) 0.0996140 1.71031i 0.00415781 0.0713868i
\(575\) 6.96675 + 5.84579i 0.290533 + 0.243786i
\(576\) −2.67986 + 1.34847i −0.111661 + 0.0561862i
\(577\) −1.73198 + 1.45330i −0.0721031 + 0.0605017i −0.678127 0.734945i \(-0.737208\pi\)
0.606024 + 0.795446i \(0.292764\pi\)
\(578\) 9.81782 + 13.1876i 0.408367 + 0.548532i
\(579\) 6.77079 + 13.4688i 0.281384 + 0.559743i
\(580\) −3.07750 3.26196i −0.127786 0.135446i
\(581\) 8.76913 2.07832i 0.363805 0.0862233i
\(582\) 1.80347 + 1.70017i 0.0747564 + 0.0704745i
\(583\) 5.20828 12.0741i 0.215705 0.500060i
\(584\) −1.97895 11.2232i −0.0818893 0.464417i
\(585\) 9.24089 + 1.07287i 0.382064 + 0.0443576i
\(586\) −1.68211 + 9.53970i −0.0694872 + 0.394081i
\(587\) 26.9439 + 17.7213i 1.11209 + 0.731436i 0.966182 0.257862i \(-0.0830178\pi\)
0.145912 + 0.989298i \(0.453388\pi\)
\(588\) −8.78129 1.54488i −0.362134 0.0637098i
\(589\) −11.6978 + 15.7128i −0.481998 + 0.647436i
\(590\) −0.560339 9.62065i −0.0230688 0.396076i
\(591\) 26.5976 + 7.95159i 1.09408 + 0.327085i
\(592\) −0.919252 + 0.974350i −0.0377810 + 0.0400456i
\(593\) 16.1452 27.9644i 0.663005 1.14836i −0.316817 0.948487i \(-0.602614\pi\)
0.979822 0.199872i \(-0.0640527\pi\)
\(594\) −3.31599 5.02902i −0.136057 0.206343i
\(595\) −0.342222 0.592746i −0.0140297 0.0243002i
\(596\) −5.98216 1.41780i −0.245039 0.0580752i
\(597\) −9.47792 14.3984i −0.387905 0.589285i
\(598\) 8.23970 + 4.13814i 0.336947 + 0.169221i
\(599\) −3.62024 0.423145i −0.147919 0.0172892i 0.0418112 0.999126i \(-0.486687\pi\)
−0.189730 + 0.981836i \(0.560761\pi\)
\(600\) −6.82300 3.93575i −0.278548 0.160676i
\(601\) 38.1217 19.1455i 1.55502 0.780959i 0.556271 0.831001i \(-0.312232\pi\)
0.998747 + 0.0500418i \(0.0159355\pi\)
\(602\) 3.29480 1.19921i 0.134286 0.0488761i
\(603\) −19.3411 33.4400i −0.787630 1.36178i
\(604\) 14.1626 + 5.15478i 0.576269 + 0.209745i
\(605\) 6.45043 0.753947i 0.262247 0.0306523i
\(606\) 10.2854 7.66335i 0.417815 0.311302i
\(607\) −9.28108 + 31.0010i −0.376708 + 1.25829i 0.534086 + 0.845430i \(0.320656\pi\)
−0.910794 + 0.412861i \(0.864530\pi\)
\(608\) 0.598245 1.99828i 0.0242621 0.0810409i
\(609\) 12.6041 9.39099i 0.510745 0.380542i
\(610\) 3.74954 0.438259i 0.151815 0.0177446i
\(611\) −12.2750 4.46774i −0.496594 0.180745i
\(612\) −1.12011 + 1.94355i −0.0452777 + 0.0785635i
\(613\) −9.02920 + 3.28636i −0.364686 + 0.132735i −0.517862 0.855464i \(-0.673272\pi\)
0.153176 + 0.988199i \(0.451050\pi\)
\(614\) 17.4480 8.76270i 0.704143 0.353634i
\(615\) 1.27023 + 0.732714i 0.0512206 + 0.0295459i
\(616\) −1.56710 0.183168i −0.0631403 0.00738004i
\(617\) −35.1371 17.6465i −1.41456 0.710421i −0.432972 0.901407i \(-0.642535\pi\)
−0.981593 + 0.190986i \(0.938831\pi\)
\(618\) 7.97723 + 12.1186i 0.320891 + 0.487481i
\(619\) −32.2832 7.65125i −1.29757 0.307530i −0.476913 0.878951i \(-0.658244\pi\)
−0.820657 + 0.571421i \(0.806392\pi\)
\(620\) 3.15809 + 5.46996i 0.126832 + 0.219679i
\(621\) −9.95822 2.96872i −0.399610 0.119131i
\(622\) 7.29388 12.6334i 0.292458 0.506552i
\(623\) 1.05759 1.12098i 0.0423714 0.0449110i
\(624\) −7.65130 2.28743i −0.306297 0.0915704i
\(625\) −1.07099 18.3882i −0.0428397 0.735530i
\(626\) 16.8161 22.5880i 0.672107 0.902797i
\(627\) 4.12505 + 0.725715i 0.164739 + 0.0289823i
\(628\) −10.1450 6.67245i −0.404828 0.266260i
\(629\) −0.173932 + 0.986416i −0.00693511 + 0.0393310i
\(630\) −1.63812 + 2.20394i −0.0652644 + 0.0878069i
\(631\) 2.18374 + 12.3846i 0.0869334 + 0.493024i 0.996923 + 0.0783919i \(0.0249785\pi\)
−0.909989 + 0.414632i \(0.863910\pi\)
\(632\) 5.46848 12.6774i 0.217524 0.504278i
\(633\) 13.4793 + 12.7072i 0.535753 + 0.505066i
\(634\) −0.665095 + 0.157630i −0.0264143 + 0.00626030i
\(635\) 6.37860 + 6.76092i 0.253127 + 0.268299i
\(636\) 8.82400 + 17.5531i 0.349895 + 0.696027i
\(637\) −14.1733 19.0380i −0.561566 0.754314i
\(638\) −5.92150 + 4.96873i −0.234434 + 0.196714i
\(639\) −33.5353 22.0194i −1.32664 0.871074i
\(640\) −0.515217 0.432318i −0.0203657 0.0170889i
\(641\) −0.483188 + 8.29601i −0.0190848 + 0.327673i 0.975230 + 0.221193i \(0.0709950\pi\)
−0.994315 + 0.106480i \(0.966042\pi\)
\(642\) −9.33731 11.1190i −0.368514 0.438834i
\(643\) −12.7309 29.5134i −0.502056 1.16390i −0.961279 0.275576i \(-0.911131\pi\)
0.459223 0.888321i \(-0.348128\pi\)
\(644\) −2.27394 + 1.49560i −0.0896059 + 0.0589347i
\(645\) −0.347261 + 2.98100i −0.0136734 + 0.117377i
\(646\) −0.447332 1.49419i −0.0176001 0.0587883i
\(647\) −18.4363 −0.724807 −0.362403 0.932021i \(-0.618044\pi\)
−0.362403 + 0.932021i \(0.618044\pi\)
\(648\) 8.94075 + 1.03102i 0.351226 + 0.0405022i
\(649\) −16.6110 −0.652040
\(650\) −6.01361 20.0869i −0.235873 0.787871i
\(651\) −20.3236 + 8.77608i −0.796547 + 0.343962i
\(652\) −0.667952 + 0.439319i −0.0261590 + 0.0172051i
\(653\) 14.0671 + 32.6113i 0.550490 + 1.27618i 0.935520 + 0.353274i \(0.114932\pi\)
−0.385030 + 0.922904i \(0.625809\pi\)
\(654\) −25.4719 + 4.50153i −0.996029 + 0.176024i
\(655\) 0.186171 3.19643i 0.00727429 0.124895i
\(656\) −0.964300 0.809144i −0.0376496 0.0315918i
\(657\) −13.5173 + 31.4032i −0.527358 + 1.22516i
\(658\) 2.95377 2.47851i 0.115150 0.0966224i
\(659\) −22.4233 30.1198i −0.873489 1.17330i −0.983776 0.179399i \(-0.942585\pi\)
0.110288 0.993900i \(-0.464823\pi\)
\(660\) 0.741667 1.12860i 0.0288693 0.0439307i
\(661\) −29.5165 31.2857i −1.14806 1.21687i −0.972625 0.232380i \(-0.925349\pi\)
−0.175434 0.984491i \(-0.556133\pi\)
\(662\) −19.9523 + 4.72879i −0.775469 + 0.183790i
\(663\) −5.71987 + 1.71482i −0.222141 + 0.0665983i
\(664\) 2.62274 6.08020i 0.101782 0.235957i
\(665\) −0.331553 1.88033i −0.0128571 0.0729160i
\(666\) 3.90960 0.929783i 0.151494 0.0360284i
\(667\) −2.31550 + 13.1318i −0.0896564 + 0.508467i
\(668\) 15.5826 + 10.2488i 0.602908 + 0.396539i
\(669\) −3.78384 10.3835i −0.146292 0.401451i
\(670\) 5.17171 6.94681i 0.199801 0.268379i
\(671\) −0.378349 6.49600i −0.0146060 0.250775i
\(672\) 1.71400 1.61833i 0.0661189 0.0624283i
\(673\) 20.0834 21.2872i 0.774160 0.820562i −0.213538 0.976935i \(-0.568499\pi\)
0.987698 + 0.156373i \(0.0499802\pi\)
\(674\) −3.09652 + 5.36334i −0.119274 + 0.206588i
\(675\) 10.6297 + 21.1045i 0.409139 + 0.812312i
\(676\) −4.12913 7.15186i −0.158813 0.275072i
\(677\) −16.5462 3.92152i −0.635923 0.150716i −0.100005 0.994987i \(-0.531886\pi\)
−0.535917 + 0.844270i \(0.680034\pi\)
\(678\) 14.4257 28.7517i 0.554017 1.10420i
\(679\) −1.74038 0.874050i −0.0667895 0.0335430i
\(680\) −0.499506 0.0583839i −0.0191552 0.00223892i
\(681\) −2.80455 + 1.62065i −0.107471 + 0.0621035i
\(682\) 9.72903 4.88610i 0.372544 0.187098i
\(683\) 24.5064 8.91960i 0.937711 0.341299i 0.172450 0.985018i \(-0.444832\pi\)
0.765262 + 0.643719i \(0.222610\pi\)
\(684\) −4.79059 + 4.02609i −0.183173 + 0.153942i
\(685\) 10.0331 + 3.65173i 0.383343 + 0.139526i
\(686\) 16.4210 1.91934i 0.626957 0.0732808i
\(687\) −6.31126 2.71952i −0.240790 0.103756i
\(688\) 0.738884 2.46804i 0.0281697 0.0940933i
\(689\) −14.9992 + 50.1007i −0.571422 + 1.90868i
\(690\) −0.271347 2.31377i −0.0103300 0.0880835i
\(691\) 16.1021 1.88207i 0.612553 0.0715972i 0.195841 0.980636i \(-0.437256\pi\)
0.416712 + 0.909038i \(0.363182\pi\)
\(692\) 6.19907 + 2.25628i 0.235653 + 0.0857707i
\(693\) 3.62827 + 3.03971i 0.137827 + 0.115469i
\(694\) −10.0092 + 3.64305i −0.379944 + 0.138288i
\(695\) 1.26023 0.632910i 0.0478031 0.0240076i
\(696\) −0.00446278 11.5490i −0.000169161 0.437765i
\(697\) −0.934895 0.109274i −0.0354117 0.00413903i
\(698\) 11.0971 + 5.57319i 0.420033 + 0.210948i
\(699\) 12.0669 0.707497i 0.456413 0.0267600i
\(700\) 6.02242 + 1.42734i 0.227626 + 0.0539484i
\(701\) 9.94638 + 17.2276i 0.375670 + 0.650679i 0.990427 0.138037i \(-0.0440794\pi\)
−0.614757 + 0.788716i \(0.710746\pi\)
\(702\) 15.4210 + 18.3348i 0.582028 + 0.692003i
\(703\) −1.39709 + 2.41982i −0.0526921 + 0.0912654i
\(704\) −0.795554 + 0.843238i −0.0299836 + 0.0317807i
\(705\) 0.762370 + 3.21116i 0.0287125 + 0.120939i
\(706\) −1.45966 25.0613i −0.0549349 0.943195i
\(707\) −6.01844 + 8.08416i −0.226347 + 0.304036i
\(708\) 15.9453 19.0178i 0.599260 0.714731i
\(709\) −28.5421 18.7724i −1.07192 0.705013i −0.114416 0.993433i \(-0.536500\pi\)
−0.957504 + 0.288420i \(0.906870\pi\)
\(710\) 1.56180 8.85743i 0.0586134 0.332413i
\(711\) −34.5879 + 22.7871i −1.29715 + 0.854584i
\(712\) −0.196634 1.11517i −0.00736917 0.0417927i
\(713\) 7.43857 17.2445i 0.278576 0.645813i
\(714\) 0.405829 1.71528i 0.0151878 0.0641927i
\(715\) 3.49804 0.829052i 0.130819 0.0310048i
\(716\) −8.43475 8.94031i −0.315221 0.334115i
\(717\) 20.7766 + 1.20204i 0.775917 + 0.0448912i
\(718\) −2.04336 2.74471i −0.0762575 0.102432i
\(719\) −6.77495 + 5.68486i −0.252663 + 0.212009i −0.760318 0.649551i \(-0.774957\pi\)
0.507655 + 0.861560i \(0.330512\pi\)
\(720\) 0.580177 + 1.93249i 0.0216219 + 0.0720197i
\(721\) −8.73306 7.32791i −0.325236 0.272906i
\(722\) −0.851763 + 14.6242i −0.0316993 + 0.544256i
\(723\) −17.9198 + 49.2936i −0.666445 + 1.83325i
\(724\) 3.56125 + 8.25591i 0.132353 + 0.306828i
\(725\) 25.3345 16.6628i 0.940900 0.618840i
\(726\) 13.4192 + 9.98215i 0.498032 + 0.370472i
\(727\) 1.01611 + 3.39405i 0.0376855 + 0.125878i 0.974763 0.223244i \(-0.0716648\pi\)
−0.937077 + 0.349123i \(0.886480\pi\)
\(728\) 6.27501 0.232567
\(729\) −20.7234 17.3073i −0.767533 0.641010i
\(730\) −7.66478 −0.283686
\(731\) −0.552493 1.84546i −0.0204347 0.0682567i
\(732\) 7.80037 + 5.80248i 0.288310 + 0.214466i
\(733\) 32.5520 21.4098i 1.20233 0.790787i 0.219560 0.975599i \(-0.429538\pi\)
0.982774 + 0.184812i \(0.0591675\pi\)
\(734\) 4.56075 + 10.5730i 0.168340 + 0.390257i
\(735\) −2.04882 + 5.63586i −0.0755719 + 0.207882i
\(736\) −0.116279 + 1.99643i −0.00428609 + 0.0735893i
\(737\) −11.4355 9.59552i −0.421232 0.353456i
\(738\) 1.08588 + 3.61693i 0.0399719 + 0.133141i
\(739\) 8.45465 7.09429i 0.311009 0.260968i −0.473900 0.880579i \(-0.657154\pi\)
0.784909 + 0.619611i \(0.212710\pi\)
\(740\) 0.538001 + 0.722661i 0.0197773 + 0.0265656i
\(741\) −16.6301 0.962144i −0.610921 0.0353452i
\(742\) −10.5937 11.2286i −0.388906 0.412217i
\(743\) −12.5454 + 2.97332i −0.460246 + 0.109080i −0.454197 0.890901i \(-0.650074\pi\)
−0.00604946 + 0.999982i \(0.501926\pi\)
\(744\) −3.74506 + 15.8289i −0.137301 + 0.580316i
\(745\) −1.63773 + 3.79670i −0.0600020 + 0.139100i
\(746\) 2.72974 + 15.4811i 0.0999427 + 0.566803i
\(747\) −16.5887 + 10.9290i −0.606950 + 0.399870i
\(748\) −0.150527 + 0.853680i −0.00550381 + 0.0312136i
\(749\) 9.53201 + 6.26930i 0.348292 + 0.229075i
\(750\) −7.14596 + 8.52291i −0.260934 + 0.311213i
\(751\) −1.35670 + 1.82236i −0.0495065 + 0.0664988i −0.826187 0.563396i \(-0.809495\pi\)
0.776681 + 0.629895i \(0.216902\pi\)
\(752\) −0.164734 2.82837i −0.00600723 0.103140i
\(753\) 10.8527 + 45.7124i 0.395494 + 1.66585i
\(754\) 21.0973 22.3618i 0.768317 0.814368i
\(755\) 5.06832 8.77859i 0.184455 0.319486i
\(756\) −6.96298 + 1.23609i −0.253241 + 0.0449560i
\(757\) −10.1664 17.6088i −0.369505 0.640001i 0.619983 0.784615i \(-0.287139\pi\)
−0.989488 + 0.144614i \(0.953806\pi\)
\(758\) 13.2282 + 3.13513i 0.480469 + 0.113873i
\(759\) −4.00864 + 0.235031i −0.145504 + 0.00853108i
\(760\) −1.25369 0.629627i −0.0454761 0.0228390i
\(761\) 14.9605 + 1.74863i 0.542317 + 0.0633877i 0.382841 0.923814i \(-0.374946\pi\)
0.159475 + 0.987202i \(0.449020\pi\)
\(762\) 0.00924982 + 23.9372i 0.000335086 + 0.867153i
\(763\) 18.1630 9.12181i 0.657545 0.330232i
\(764\) −23.4914 + 8.55017i −0.849889 + 0.309334i
\(765\) 1.15649 + 0.968892i 0.0418132 + 0.0350304i
\(766\) 5.27449 + 1.91976i 0.190575 + 0.0693637i
\(767\) 65.6177 7.66961i