Properties

Label 1568.2.q.c.1391.3
Level $1568$
Weight $2$
Character 1568.1391
Analytic conductor $12.521$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1568,2,Mod(815,1568)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1568, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1568.815"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1568.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,4,0,-8,0,0,0,0,0,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5205430369\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.339738624.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 14x^{4} - 8x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 392)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1391.3
Root \(1.60021 - 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 1568.1391
Dual form 1568.2.q.c.815.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.937379 - 0.541196i) q^{3} +(0.662827 - 1.14805i) q^{5} +(-0.914214 + 1.58346i) q^{9} +(-1.00000 - 1.73205i) q^{11} -5.85172 q^{13} -1.43488i q^{15} +(-3.86324 + 2.23044i) q^{17} +(-3.58869 - 2.07193i) q^{19} +(-7.24264 - 4.18154i) q^{23} +(1.62132 + 2.80821i) q^{25} +5.22625i q^{27} +4.47871i q^{29} +(-3.20041 - 5.54328i) q^{31} +(-1.87476 - 1.08239i) q^{33} +(-2.12132 - 1.22474i) q^{37} +(-5.48528 + 3.16693i) q^{39} -0.317025i q^{41} +3.17157 q^{43} +(1.21193 + 2.09913i) q^{45} +(6.40083 - 11.0866i) q^{47} +(-2.41421 + 4.18154i) q^{51} +(-3.00000 + 1.73205i) q^{53} -2.65131 q^{55} -4.48528 q^{57} +(0.937379 - 0.541196i) q^{59} +(4.80062 - 8.31492i) q^{61} +(-3.87868 + 6.71807i) q^{65} +(6.00000 + 10.3923i) q^{67} -9.05213 q^{69} +(6.12627 - 3.53701i) q^{73} +(3.03958 + 1.75490i) q^{75} +(-1.75736 - 1.01461i) q^{79} +(0.0857864 + 0.148586i) q^{81} +5.67459i q^{83} +5.91359i q^{85} +(2.42386 + 4.19825i) q^{87} +(-11.0406 - 6.37430i) q^{89} +(-6.00000 - 3.46410i) q^{93} +(-4.75736 + 2.74666i) q^{95} +9.23880i q^{97} +3.65685 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{9} - 8 q^{11} - 24 q^{23} - 4 q^{25} + 24 q^{39} + 48 q^{43} - 8 q^{51} - 24 q^{53} + 32 q^{57} - 48 q^{65} + 48 q^{67} - 48 q^{79} + 12 q^{81} - 48 q^{93} - 72 q^{95} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1568\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(1471\) \(1473\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.937379 0.541196i 0.541196 0.312460i −0.204367 0.978894i \(-0.565514\pi\)
0.745564 + 0.666435i \(0.232180\pi\)
\(4\) 0 0
\(5\) 0.662827 1.14805i 0.296425 0.513424i −0.678890 0.734240i \(-0.737539\pi\)
0.975315 + 0.220816i \(0.0708721\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.914214 + 1.58346i −0.304738 + 0.527821i
\(10\) 0 0
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) 0 0
\(13\) −5.85172 −1.62298 −0.811488 0.584369i \(-0.801342\pi\)
−0.811488 + 0.584369i \(0.801342\pi\)
\(14\) 0 0
\(15\) 1.43488i 0.370484i
\(16\) 0 0
\(17\) −3.86324 + 2.23044i −0.936973 + 0.540962i −0.889010 0.457887i \(-0.848606\pi\)
−0.0479630 + 0.998849i \(0.515273\pi\)
\(18\) 0 0
\(19\) −3.58869 2.07193i −0.823301 0.475333i 0.0282522 0.999601i \(-0.491006\pi\)
−0.851554 + 0.524268i \(0.824339\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.24264 4.18154i −1.51019 0.871911i −0.999929 0.0118947i \(-0.996214\pi\)
−0.510266 0.860017i \(-0.670453\pi\)
\(24\) 0 0
\(25\) 1.62132 + 2.80821i 0.324264 + 0.561642i
\(26\) 0 0
\(27\) 5.22625i 1.00579i
\(28\) 0 0
\(29\) 4.47871i 0.831676i 0.909439 + 0.415838i \(0.136512\pi\)
−0.909439 + 0.415838i \(0.863488\pi\)
\(30\) 0 0
\(31\) −3.20041 5.54328i −0.574811 0.995602i −0.996062 0.0886579i \(-0.971742\pi\)
0.421251 0.906944i \(-0.361591\pi\)
\(32\) 0 0
\(33\) −1.87476 1.08239i −0.326354 0.188420i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.12132 1.22474i −0.348743 0.201347i 0.315389 0.948963i \(-0.397865\pi\)
−0.664131 + 0.747616i \(0.731198\pi\)
\(38\) 0 0
\(39\) −5.48528 + 3.16693i −0.878348 + 0.507114i
\(40\) 0 0
\(41\) 0.317025i 0.0495110i −0.999694 0.0247555i \(-0.992119\pi\)
0.999694 0.0247555i \(-0.00788073\pi\)
\(42\) 0 0
\(43\) 3.17157 0.483660 0.241830 0.970319i \(-0.422252\pi\)
0.241830 + 0.970319i \(0.422252\pi\)
\(44\) 0 0
\(45\) 1.21193 + 2.09913i 0.180664 + 0.312919i
\(46\) 0 0
\(47\) 6.40083 11.0866i 0.933656 1.61714i 0.156644 0.987655i \(-0.449933\pi\)
0.777013 0.629485i \(-0.216734\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.41421 + 4.18154i −0.338058 + 0.585533i
\(52\) 0 0
\(53\) −3.00000 + 1.73205i −0.412082 + 0.237915i −0.691684 0.722200i \(-0.743131\pi\)
0.279602 + 0.960116i \(0.409797\pi\)
\(54\) 0 0
\(55\) −2.65131 −0.357502
\(56\) 0 0
\(57\) −4.48528 −0.594090
\(58\) 0 0
\(59\) 0.937379 0.541196i 0.122036 0.0704577i −0.437739 0.899102i \(-0.644221\pi\)
0.559776 + 0.828644i \(0.310887\pi\)
\(60\) 0 0
\(61\) 4.80062 8.31492i 0.614656 1.06462i −0.375788 0.926705i \(-0.622628\pi\)
0.990445 0.137910i \(-0.0440386\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.87868 + 6.71807i −0.481091 + 0.833274i
\(66\) 0 0
\(67\) 6.00000 + 10.3923i 0.733017 + 1.26962i 0.955588 + 0.294706i \(0.0952216\pi\)
−0.222571 + 0.974916i \(0.571445\pi\)
\(68\) 0 0
\(69\) −9.05213 −1.08975
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 6.12627 3.53701i 0.717026 0.413975i −0.0966311 0.995320i \(-0.530807\pi\)
0.813657 + 0.581345i \(0.197473\pi\)
\(74\) 0 0
\(75\) 3.03958 + 1.75490i 0.350981 + 0.202639i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.75736 1.01461i −0.197718 0.114153i 0.397872 0.917441i \(-0.369749\pi\)
−0.595591 + 0.803288i \(0.703082\pi\)
\(80\) 0 0
\(81\) 0.0857864 + 0.148586i 0.00953183 + 0.0165096i
\(82\) 0 0
\(83\) 5.67459i 0.622868i 0.950268 + 0.311434i \(0.100809\pi\)
−0.950268 + 0.311434i \(0.899191\pi\)
\(84\) 0 0
\(85\) 5.91359i 0.641419i
\(86\) 0 0
\(87\) 2.42386 + 4.19825i 0.259865 + 0.450100i
\(88\) 0 0
\(89\) −11.0406 6.37430i −1.17030 0.675675i −0.216551 0.976271i \(-0.569481\pi\)
−0.953751 + 0.300597i \(0.902814\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −6.00000 3.46410i −0.622171 0.359211i
\(94\) 0 0
\(95\) −4.75736 + 2.74666i −0.488095 + 0.281802i
\(96\) 0 0
\(97\) 9.23880i 0.938058i 0.883183 + 0.469029i \(0.155396\pi\)
−0.883183 + 0.469029i \(0.844604\pi\)
\(98\) 0 0
\(99\) 3.65685 0.367528
\(100\) 0 0
\(101\) 0.274552 + 0.475538i 0.0273189 + 0.0473178i 0.879362 0.476154i \(-0.157970\pi\)
−0.852043 + 0.523472i \(0.824636\pi\)
\(102\) 0 0
\(103\) 0.549104 0.951076i 0.0541048 0.0937123i −0.837704 0.546124i \(-0.816103\pi\)
0.891809 + 0.452411i \(0.149436\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.24264 7.34847i 0.410152 0.710403i −0.584754 0.811210i \(-0.698809\pi\)
0.994906 + 0.100807i \(0.0321425\pi\)
\(108\) 0 0
\(109\) −12.3640 + 7.13834i −1.18425 + 0.683729i −0.956995 0.290106i \(-0.906309\pi\)
−0.227258 + 0.973835i \(0.572976\pi\)
\(110\) 0 0
\(111\) −2.65131 −0.251651
\(112\) 0 0
\(113\) 0.485281 0.0456514 0.0228257 0.999739i \(-0.492734\pi\)
0.0228257 + 0.999739i \(0.492734\pi\)
\(114\) 0 0
\(115\) −9.60124 + 5.54328i −0.895320 + 0.516913i
\(116\) 0 0
\(117\) 5.34972 9.26599i 0.494582 0.856641i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 0 0
\(123\) −0.171573 0.297173i −0.0154702 0.0267952i
\(124\) 0 0
\(125\) 10.9269 0.977331
\(126\) 0 0
\(127\) 15.2913i 1.35688i 0.734655 + 0.678441i \(0.237344\pi\)
−0.734655 + 0.678441i \(0.762656\pi\)
\(128\) 0 0
\(129\) 2.97297 1.71644i 0.261755 0.151124i
\(130\) 0 0
\(131\) −11.8643 6.84984i −1.03659 0.598473i −0.117722 0.993047i \(-0.537559\pi\)
−0.918864 + 0.394573i \(0.870892\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 6.00000 + 3.46410i 0.516398 + 0.298142i
\(136\) 0 0
\(137\) 4.12132 + 7.13834i 0.352108 + 0.609869i 0.986619 0.163045i \(-0.0521316\pi\)
−0.634510 + 0.772914i \(0.718798\pi\)
\(138\) 0 0
\(139\) 17.3952i 1.47544i −0.675106 0.737721i \(-0.735902\pi\)
0.675106 0.737721i \(-0.264098\pi\)
\(140\) 0 0
\(141\) 13.8564i 1.16692i
\(142\) 0 0
\(143\) 5.85172 + 10.1355i 0.489346 + 0.847571i
\(144\) 0 0
\(145\) 5.14179 + 2.96861i 0.427002 + 0.246530i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.514719 0.297173i −0.0421674 0.0243454i 0.478768 0.877941i \(-0.341083\pi\)
−0.520936 + 0.853596i \(0.674417\pi\)
\(150\) 0 0
\(151\) −4.75736 + 2.74666i −0.387148 + 0.223520i −0.680924 0.732354i \(-0.738422\pi\)
0.293775 + 0.955874i \(0.405088\pi\)
\(152\) 0 0
\(153\) 8.15640i 0.659406i
\(154\) 0 0
\(155\) −8.48528 −0.681554
\(156\) 0 0
\(157\) −6.28710 10.8896i −0.501765 0.869083i −0.999998 0.00203967i \(-0.999351\pi\)
0.498233 0.867043i \(-0.333983\pi\)
\(158\) 0 0
\(159\) −1.87476 + 3.24718i −0.148678 + 0.257518i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −10.0711 + 17.4436i −0.788827 + 1.36629i 0.137859 + 0.990452i \(0.455978\pi\)
−0.926686 + 0.375836i \(0.877355\pi\)
\(164\) 0 0
\(165\) −2.48528 + 1.43488i −0.193479 + 0.111705i
\(166\) 0 0
\(167\) −16.5512 −1.28077 −0.640384 0.768055i \(-0.721225\pi\)
−0.640384 + 0.768055i \(0.721225\pi\)
\(168\) 0 0
\(169\) 21.2426 1.63405
\(170\) 0 0
\(171\) 6.56165 3.78837i 0.501782 0.289704i
\(172\) 0 0
\(173\) −5.18889 + 8.98743i −0.394504 + 0.683302i −0.993038 0.117796i \(-0.962417\pi\)
0.598533 + 0.801098i \(0.295750\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.585786 1.01461i 0.0440304 0.0762629i
\(178\) 0 0
\(179\) −1.75736 3.04384i −0.131351 0.227507i 0.792846 0.609421i \(-0.208598\pi\)
−0.924198 + 0.381914i \(0.875265\pi\)
\(180\) 0 0
\(181\) 14.1273 1.05007 0.525037 0.851079i \(-0.324051\pi\)
0.525037 + 0.851079i \(0.324051\pi\)
\(182\) 0 0
\(183\) 10.3923i 0.768221i
\(184\) 0 0
\(185\) −2.81214 + 1.62359i −0.206752 + 0.119369i
\(186\) 0 0
\(187\) 7.72648 + 4.46088i 0.565016 + 0.326212i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.75736 1.01461i −0.127158 0.0734147i 0.435072 0.900396i \(-0.356723\pi\)
−0.562230 + 0.826981i \(0.690056\pi\)
\(192\) 0 0
\(193\) −7.07107 12.2474i −0.508987 0.881591i −0.999946 0.0104081i \(-0.996687\pi\)
0.490959 0.871183i \(-0.336646\pi\)
\(194\) 0 0
\(195\) 8.39651i 0.601286i
\(196\) 0 0
\(197\) 12.6677i 0.902537i −0.892388 0.451269i \(-0.850972\pi\)
0.892388 0.451269i \(-0.149028\pi\)
\(198\) 0 0
\(199\) −3.20041 5.54328i −0.226871 0.392953i 0.730008 0.683439i \(-0.239516\pi\)
−0.956879 + 0.290486i \(0.906183\pi\)
\(200\) 0 0
\(201\) 11.2485 + 6.49435i 0.793412 + 0.458076i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −0.363961 0.210133i −0.0254201 0.0146763i
\(206\) 0 0
\(207\) 13.2426 7.64564i 0.920427 0.531409i
\(208\) 0 0
\(209\) 8.28772i 0.573274i
\(210\) 0 0
\(211\) −3.51472 −0.241963 −0.120982 0.992655i \(-0.538604\pi\)
−0.120982 + 0.992655i \(0.538604\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.10220 3.64113i 0.143369 0.248323i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 3.82843 6.63103i 0.258701 0.448084i
\(220\) 0 0
\(221\) 22.6066 13.0519i 1.52068 0.877968i
\(222\) 0 0
\(223\) 4.84772 0.324628 0.162314 0.986739i \(-0.448104\pi\)
0.162314 + 0.986739i \(0.448104\pi\)
\(224\) 0 0
\(225\) −5.92893 −0.395262
\(226\) 0 0
\(227\) 10.2170 5.89876i 0.678123 0.391515i −0.121024 0.992650i \(-0.538618\pi\)
0.799148 + 0.601135i \(0.205285\pi\)
\(228\) 0 0
\(229\) −7.61276 + 13.1857i −0.503065 + 0.871334i 0.496929 + 0.867791i \(0.334461\pi\)
−0.999994 + 0.00354289i \(0.998872\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.87868 10.1822i 0.385125 0.667056i −0.606661 0.794960i \(-0.707492\pi\)
0.991787 + 0.127904i \(0.0408250\pi\)
\(234\) 0 0
\(235\) −8.48528 14.6969i −0.553519 0.958723i
\(236\) 0 0
\(237\) −2.19642 −0.142673
\(238\) 0 0
\(239\) 6.33386i 0.409703i 0.978793 + 0.204852i \(0.0656712\pi\)
−0.978793 + 0.204852i \(0.934329\pi\)
\(240\) 0 0
\(241\) −14.5627 + 8.40777i −0.938065 + 0.541592i −0.889353 0.457221i \(-0.848845\pi\)
−0.0487118 + 0.998813i \(0.515512\pi\)
\(242\) 0 0
\(243\) −13.4174 7.74652i −0.860725 0.496940i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 21.0000 + 12.1244i 1.33620 + 0.771454i
\(248\) 0 0
\(249\) 3.07107 + 5.31925i 0.194621 + 0.337093i
\(250\) 0 0
\(251\) 20.1940i 1.27464i −0.770601 0.637318i \(-0.780044\pi\)
0.770601 0.637318i \(-0.219956\pi\)
\(252\) 0 0
\(253\) 16.7262i 1.05156i
\(254\) 0 0
\(255\) 3.20041 + 5.54328i 0.200418 + 0.347133i
\(256\) 0 0
\(257\) −1.05110 0.606854i −0.0655660 0.0378545i 0.466859 0.884332i \(-0.345386\pi\)
−0.532425 + 0.846477i \(0.678719\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −7.09188 4.09450i −0.438977 0.253443i
\(262\) 0 0
\(263\) 16.2426 9.37769i 1.00156 0.578253i 0.0928534 0.995680i \(-0.470401\pi\)
0.908711 + 0.417426i \(0.137068\pi\)
\(264\) 0 0
\(265\) 4.59220i 0.282097i
\(266\) 0 0
\(267\) −13.7990 −0.844484
\(268\) 0 0
\(269\) 6.12627 + 10.6110i 0.373525 + 0.646965i 0.990105 0.140327i \(-0.0448155\pi\)
−0.616580 + 0.787293i \(0.711482\pi\)
\(270\) 0 0
\(271\) −16.0021 + 27.7164i −0.972056 + 1.68365i −0.282730 + 0.959200i \(0.591240\pi\)
−0.689326 + 0.724451i \(0.742093\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.24264 5.61642i 0.195539 0.338683i
\(276\) 0 0
\(277\) 2.48528 1.43488i 0.149326 0.0862135i −0.423475 0.905908i \(-0.639190\pi\)
0.572801 + 0.819694i \(0.305857\pi\)
\(278\) 0 0
\(279\) 11.7034 0.700667
\(280\) 0 0
\(281\) −16.7279 −0.997904 −0.498952 0.866630i \(-0.666282\pi\)
−0.498952 + 0.866630i \(0.666282\pi\)
\(282\) 0 0
\(283\) −13.1899 + 7.61521i −0.784060 + 0.452677i −0.837867 0.545874i \(-0.816198\pi\)
0.0538074 + 0.998551i \(0.482864\pi\)
\(284\) 0 0
\(285\) −2.97297 + 5.14933i −0.176103 + 0.305020i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.44975 2.51104i 0.0852793 0.147708i
\(290\) 0 0
\(291\) 5.00000 + 8.66025i 0.293105 + 0.507673i
\(292\) 0 0
\(293\) 5.85172 0.341861 0.170931 0.985283i \(-0.445323\pi\)
0.170931 + 0.985283i \(0.445323\pi\)
\(294\) 0 0
\(295\) 1.43488i 0.0835418i
\(296\) 0 0
\(297\) 9.05213 5.22625i 0.525258 0.303258i
\(298\) 0 0
\(299\) 42.3819 + 24.4692i 2.45101 + 1.41509i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0.514719 + 0.297173i 0.0295698 + 0.0170721i
\(304\) 0 0
\(305\) −6.36396 11.0227i −0.364399 0.631158i
\(306\) 0 0
\(307\) 21.9874i 1.25489i 0.778662 + 0.627444i \(0.215899\pi\)
−0.778662 + 0.627444i \(0.784101\pi\)
\(308\) 0 0
\(309\) 1.18869i 0.0676223i
\(310\) 0 0
\(311\) −5.62427 9.74153i −0.318923 0.552391i 0.661340 0.750086i \(-0.269988\pi\)
−0.980264 + 0.197695i \(0.936655\pi\)
\(312\) 0 0
\(313\) 13.0762 + 7.54955i 0.739111 + 0.426726i 0.821746 0.569854i \(-0.193000\pi\)
−0.0826352 + 0.996580i \(0.526334\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.4853 + 11.8272i 1.15057 + 0.664281i 0.949026 0.315199i \(-0.102071\pi\)
0.201542 + 0.979480i \(0.435405\pi\)
\(318\) 0 0
\(319\) 7.75736 4.47871i 0.434329 0.250760i
\(320\) 0 0
\(321\) 9.18440i 0.512623i
\(322\) 0 0
\(323\) 18.4853 1.02855
\(324\) 0 0
\(325\) −9.48751 16.4329i −0.526273 0.911531i
\(326\) 0 0
\(327\) −7.72648 + 13.3827i −0.427275 + 0.740063i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 7.58579 13.1390i 0.416953 0.722183i −0.578679 0.815556i \(-0.696431\pi\)
0.995631 + 0.0933726i \(0.0297648\pi\)
\(332\) 0 0
\(333\) 3.87868 2.23936i 0.212550 0.122716i
\(334\) 0 0
\(335\) 15.9079 0.869139
\(336\) 0 0
\(337\) −4.24264 −0.231111 −0.115556 0.993301i \(-0.536865\pi\)
−0.115556 + 0.993301i \(0.536865\pi\)
\(338\) 0 0
\(339\) 0.454893 0.262632i 0.0247064 0.0142642i
\(340\) 0 0
\(341\) −6.40083 + 11.0866i −0.346624 + 0.600371i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −6.00000 + 10.3923i −0.323029 + 0.559503i
\(346\) 0 0
\(347\) −13.4853 23.3572i −0.723928 1.25388i −0.959414 0.282002i \(-0.909002\pi\)
0.235486 0.971878i \(-0.424332\pi\)
\(348\) 0 0
\(349\) −9.27958 −0.496725 −0.248362 0.968667i \(-0.579892\pi\)
−0.248362 + 0.968667i \(0.579892\pi\)
\(350\) 0 0
\(351\) 30.5826i 1.63238i
\(352\) 0 0
\(353\) 17.8297 10.2940i 0.948980 0.547894i 0.0562161 0.998419i \(-0.482096\pi\)
0.892764 + 0.450525i \(0.148763\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.0000 8.66025i −0.791670 0.457071i 0.0488803 0.998805i \(-0.484435\pi\)
−0.840550 + 0.541734i \(0.817768\pi\)
\(360\) 0 0
\(361\) −0.914214 1.58346i −0.0481165 0.0833402i
\(362\) 0 0
\(363\) 7.57675i 0.397676i
\(364\) 0 0
\(365\) 9.37769i 0.490851i
\(366\) 0 0
\(367\) −11.4760 19.8770i −0.599042 1.03757i −0.992963 0.118427i \(-0.962215\pi\)
0.393921 0.919144i \(-0.371118\pi\)
\(368\) 0 0
\(369\) 0.501998 + 0.289829i 0.0261330 + 0.0150879i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 25.9706 + 14.9941i 1.34470 + 0.776366i 0.987494 0.157658i \(-0.0503944\pi\)
0.357211 + 0.934024i \(0.383728\pi\)
\(374\) 0 0
\(375\) 10.2426 5.91359i 0.528928 0.305377i
\(376\) 0 0
\(377\) 26.2082i 1.34979i
\(378\) 0 0
\(379\) 5.31371 0.272947 0.136473 0.990644i \(-0.456423\pi\)
0.136473 + 0.990644i \(0.456423\pi\)
\(380\) 0 0
\(381\) 8.27558 + 14.3337i 0.423971 + 0.734339i
\(382\) 0 0
\(383\) 6.40083 11.0866i 0.327067 0.566496i −0.654862 0.755749i \(-0.727273\pi\)
0.981928 + 0.189252i \(0.0606064\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.89949 + 5.02207i −0.147390 + 0.255286i
\(388\) 0 0
\(389\) 32.8492 18.9655i 1.66552 0.961590i 0.695516 0.718510i \(-0.255176\pi\)
0.970006 0.243080i \(-0.0781577\pi\)
\(390\) 0 0
\(391\) 37.3067 1.88668
\(392\) 0 0
\(393\) −14.8284 −0.747995
\(394\) 0 0
\(395\) −2.32965 + 1.34502i −0.117217 + 0.0676755i
\(396\) 0 0
\(397\) −6.90282 + 11.9560i −0.346443 + 0.600056i −0.985615 0.169007i \(-0.945944\pi\)
0.639172 + 0.769064i \(0.279277\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8.12132 + 14.0665i −0.405559 + 0.702449i −0.994386 0.105810i \(-0.966257\pi\)
0.588827 + 0.808259i \(0.299590\pi\)
\(402\) 0 0
\(403\) 18.7279 + 32.4377i 0.932904 + 1.61584i
\(404\) 0 0
\(405\) 0.227446 0.0113019
\(406\) 0 0
\(407\) 4.89898i 0.242833i
\(408\) 0 0
\(409\) −8.00103 + 4.61940i −0.395626 + 0.228415i −0.684595 0.728924i \(-0.740021\pi\)
0.288969 + 0.957338i \(0.406687\pi\)
\(410\) 0 0
\(411\) 7.72648 + 4.46088i 0.381119 + 0.220039i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 6.51472 + 3.76127i 0.319795 + 0.184634i
\(416\) 0 0
\(417\) −9.41421 16.3059i −0.461016 0.798503i
\(418\) 0 0
\(419\) 7.31411i 0.357318i 0.983911 + 0.178659i \(0.0571759\pi\)
−0.983911 + 0.178659i \(0.942824\pi\)
\(420\) 0 0
\(421\) 12.6677i 0.617387i 0.951162 + 0.308693i \(0.0998917\pi\)
−0.951162 + 0.308693i \(0.900108\pi\)
\(422\) 0 0
\(423\) 11.7034 + 20.2710i 0.569041 + 0.985608i
\(424\) 0 0
\(425\) −12.5271 7.23252i −0.607654 0.350829i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 10.9706 + 6.33386i 0.529664 + 0.305802i
\(430\) 0 0
\(431\) −23.4853 + 13.5592i −1.13125 + 0.653125i −0.944248 0.329235i \(-0.893209\pi\)
−0.186998 + 0.982360i \(0.559876\pi\)
\(432\) 0 0
\(433\) 28.1647i 1.35351i −0.736208 0.676755i \(-0.763386\pi\)
0.736208 0.676755i \(-0.236614\pi\)
\(434\) 0 0
\(435\) 6.42641 0.308123
\(436\) 0 0
\(437\) 17.3277 + 30.0125i 0.828897 + 1.43569i
\(438\) 0 0
\(439\) −11.1543 + 19.3199i −0.532368 + 0.922088i 0.466918 + 0.884300i \(0.345364\pi\)
−0.999286 + 0.0377871i \(0.987969\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 14.1421 24.4949i 0.671913 1.16379i −0.305448 0.952209i \(-0.598806\pi\)
0.977361 0.211579i \(-0.0678605\pi\)
\(444\) 0 0
\(445\) −14.6360 + 8.45012i −0.693815 + 0.400574i
\(446\) 0 0
\(447\) −0.643315 −0.0304278
\(448\) 0 0
\(449\) 5.65685 0.266963 0.133482 0.991051i \(-0.457384\pi\)
0.133482 + 0.991051i \(0.457384\pi\)
\(450\) 0 0
\(451\) −0.549104 + 0.317025i −0.0258563 + 0.0149281i
\(452\) 0 0
\(453\) −2.97297 + 5.14933i −0.139682 + 0.241937i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 13.4142 23.2341i 0.627490 1.08685i −0.360563 0.932735i \(-0.617415\pi\)
0.988054 0.154111i \(-0.0492512\pi\)
\(458\) 0 0
\(459\) −11.6569 20.1903i −0.544095 0.942401i
\(460\) 0 0
\(461\) 18.9750 0.883755 0.441878 0.897075i \(-0.354313\pi\)
0.441878 + 0.897075i \(0.354313\pi\)
\(462\) 0 0
\(463\) 8.95743i 0.416287i −0.978098 0.208143i \(-0.933258\pi\)
0.978098 0.208143i \(-0.0667421\pi\)
\(464\) 0 0
\(465\) −7.95393 + 4.59220i −0.368854 + 0.212958i
\(466\) 0 0
\(467\) −31.8433 18.3847i −1.47353 0.850744i −0.473976 0.880538i \(-0.657182\pi\)
−0.999556 + 0.0297936i \(0.990515\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −11.7868 6.80511i −0.543107 0.313563i
\(472\) 0 0
\(473\) −3.17157 5.49333i −0.145829 0.252583i
\(474\) 0 0
\(475\) 13.4370i 0.616534i
\(476\) 0 0
\(477\) 6.33386i 0.290007i
\(478\) 0 0
\(479\) 5.07517 + 8.79045i 0.231890 + 0.401646i 0.958364 0.285548i \(-0.0921756\pi\)
−0.726474 + 0.687194i \(0.758842\pi\)
\(480\) 0 0
\(481\) 12.4134 + 7.16687i 0.566001 + 0.326781i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.6066 + 6.12372i 0.481621 + 0.278064i
\(486\) 0 0
\(487\) −12.5147 + 7.22538i −0.567096 + 0.327413i −0.755989 0.654585i \(-0.772844\pi\)
0.188893 + 0.981998i \(0.439510\pi\)
\(488\) 0 0
\(489\) 21.8017i 0.985907i
\(490\) 0 0
\(491\) −7.79899 −0.351963 −0.175982 0.984393i \(-0.556310\pi\)
−0.175982 + 0.984393i \(0.556310\pi\)
\(492\) 0 0
\(493\) −9.98951 17.3023i −0.449905 0.779258i
\(494\) 0 0
\(495\) 2.42386 4.19825i 0.108945 0.188697i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.24264 7.34847i 0.189927 0.328963i −0.755299 0.655380i \(-0.772508\pi\)
0.945226 + 0.326418i \(0.105842\pi\)
\(500\) 0 0
\(501\) −15.5147 + 8.95743i −0.693147 + 0.400188i
\(502\) 0 0
\(503\) 4.84772 0.216149 0.108075 0.994143i \(-0.465531\pi\)
0.108075 + 0.994143i \(0.465531\pi\)
\(504\) 0 0
\(505\) 0.727922 0.0323921
\(506\) 0 0
\(507\) 19.9124 11.4964i 0.884341 0.510575i
\(508\) 0 0
\(509\) −1.05110 + 1.82056i −0.0465893 + 0.0806950i −0.888380 0.459110i \(-0.848169\pi\)
0.841790 + 0.539805i \(0.181502\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 10.8284 18.7554i 0.478087 0.828071i
\(514\) 0 0
\(515\) −0.727922 1.26080i −0.0320761 0.0555574i
\(516\) 0 0
\(517\) −25.6033 −1.12603
\(518\) 0 0
\(519\) 11.2328i 0.493067i
\(520\) 0 0
\(521\) 2.69841 1.55793i 0.118220 0.0682542i −0.439724 0.898133i \(-0.644924\pi\)
0.557944 + 0.829879i \(0.311590\pi\)
\(522\) 0 0
\(523\) 17.3943 + 10.0426i 0.760601 + 0.439133i 0.829512 0.558490i \(-0.188619\pi\)
−0.0689104 + 0.997623i \(0.521952\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 24.7279 + 14.2767i 1.07717 + 0.621902i
\(528\) 0 0
\(529\) 23.4706 + 40.6522i 1.02046 + 1.76749i
\(530\) 0 0
\(531\) 1.97908i 0.0858846i
\(532\) 0 0
\(533\) 1.85514i 0.0803552i
\(534\) 0 0
\(535\) −5.62427 9.74153i −0.243159 0.421163i
\(536\) 0 0
\(537\) −3.29462 1.90215i −0.142174 0.0820839i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −22.4558 12.9649i −0.965452 0.557404i −0.0676054 0.997712i \(-0.521536\pi\)
−0.897847 + 0.440308i \(0.854869\pi\)
\(542\) 0 0
\(543\) 13.2426 7.64564i 0.568296 0.328106i
\(544\) 0 0
\(545\) 18.9259i 0.810698i
\(546\) 0 0
\(547\) 20.8284 0.890559 0.445280 0.895392i \(-0.353104\pi\)
0.445280 + 0.895392i \(0.353104\pi\)
\(548\) 0 0
\(549\) 8.77758 + 15.2032i 0.374618 + 0.648858i
\(550\) 0 0
\(551\) 9.27958 16.0727i 0.395323 0.684720i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −1.75736 + 3.04384i −0.0745957 + 0.129204i
\(556\) 0 0
\(557\) 2.48528 1.43488i 0.105305 0.0607977i −0.446423 0.894822i \(-0.647302\pi\)
0.551727 + 0.834024i \(0.313969\pi\)
\(558\) 0 0
\(559\) −18.5592 −0.784969
\(560\) 0 0
\(561\) 9.65685 0.407713
\(562\) 0 0
\(563\) 3.36124 1.94061i 0.141659 0.0817871i −0.427495 0.904018i \(-0.640604\pi\)
0.569155 + 0.822231i \(0.307271\pi\)
\(564\) 0 0
\(565\) 0.321658 0.557127i 0.0135322 0.0234385i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −16.9497 + 29.3578i −0.710570 + 1.23074i 0.254073 + 0.967185i \(0.418230\pi\)
−0.964643 + 0.263559i \(0.915104\pi\)
\(570\) 0 0
\(571\) −6.17157 10.6895i −0.258272 0.447341i 0.707507 0.706706i \(-0.249820\pi\)
−0.965779 + 0.259366i \(0.916487\pi\)
\(572\) 0 0
\(573\) −2.19642 −0.0917566
\(574\) 0 0
\(575\) 27.1185i 1.13092i
\(576\) 0 0
\(577\) −17.9905 + 10.3868i −0.748956 + 0.432410i −0.825317 0.564670i \(-0.809003\pi\)
0.0763605 + 0.997080i \(0.475670\pi\)
\(578\) 0 0
\(579\) −13.2565 7.65367i −0.550923 0.318076i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 6.00000 + 3.46410i 0.248495 + 0.143468i
\(584\) 0 0
\(585\) −7.09188 12.2835i −0.293213 0.507860i
\(586\) 0 0
\(587\) 15.7557i 0.650306i −0.945661 0.325153i \(-0.894584\pi\)
0.945661 0.325153i \(-0.105416\pi\)
\(588\) 0 0
\(589\) 26.5241i 1.09291i
\(590\) 0 0
\(591\) −6.85572 11.8745i −0.282007 0.488450i
\(592\) 0 0
\(593\) 3.08669 + 1.78210i 0.126755 + 0.0731821i 0.562037 0.827112i \(-0.310018\pi\)
−0.435282 + 0.900294i \(0.643351\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −6.00000 3.46410i −0.245564 0.141776i
\(598\) 0 0
\(599\) 5.27208 3.04384i 0.215411 0.124368i −0.388412 0.921486i \(-0.626976\pi\)
0.603824 + 0.797118i \(0.293643\pi\)
\(600\) 0 0
\(601\) 22.2275i 0.906679i −0.891338 0.453339i \(-0.850233\pi\)
0.891338 0.453339i \(-0.149767\pi\)
\(602\) 0 0
\(603\) −21.9411 −0.893512
\(604\) 0 0
\(605\) −4.63979 8.03635i −0.188634 0.326724i
\(606\) 0 0
\(607\) −5.30262 + 9.18440i −0.215227 + 0.372783i −0.953343 0.301890i \(-0.902382\pi\)
0.738116 + 0.674674i \(0.235716\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −37.4558 + 64.8754i −1.51530 + 2.62458i
\(612\) 0 0
\(613\) −23.3345 + 13.4722i −0.942473 + 0.544137i −0.890735 0.454524i \(-0.849809\pi\)
−0.0517380 + 0.998661i \(0.516476\pi\)
\(614\) 0 0
\(615\) −0.454893 −0.0183430
\(616\) 0 0
\(617\) 33.2132 1.33711 0.668557 0.743661i \(-0.266912\pi\)
0.668557 + 0.743661i \(0.266912\pi\)
\(618\) 0 0
\(619\) 16.0687 9.27726i 0.645855 0.372884i −0.141011 0.990008i \(-0.545035\pi\)
0.786866 + 0.617124i \(0.211702\pi\)
\(620\) 0 0
\(621\) 21.8538 37.8519i 0.876962 1.51894i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.863961 + 1.49642i −0.0345584 + 0.0598570i
\(626\) 0 0
\(627\) 4.48528 + 7.76874i 0.179125 + 0.310253i
\(628\) 0 0
\(629\) 10.9269 0.435684
\(630\) 0 0
\(631\) 39.5400i 1.57406i 0.616913 + 0.787031i \(0.288383\pi\)
−0.616913 + 0.787031i \(0.711617\pi\)
\(632\) 0 0
\(633\) −3.29462 + 1.90215i −0.130950 + 0.0756038i
\(634\) 0 0
\(635\) 17.5552 + 10.1355i 0.696655 + 0.402214i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.5355 + 26.9083i 0.613617 + 1.06282i 0.990626 + 0.136606i \(0.0436193\pi\)
−0.377009 + 0.926210i \(0.623047\pi\)
\(642\) 0 0
\(643\) 30.3839i 1.19822i 0.800665 + 0.599112i \(0.204480\pi\)
−0.800665 + 0.599112i \(0.795520\pi\)
\(644\) 0 0
\(645\) 4.55082i 0.179188i
\(646\) 0 0
\(647\) 5.07517 + 8.79045i 0.199526 + 0.345588i 0.948375 0.317152i \(-0.102727\pi\)
−0.748849 + 0.662741i \(0.769393\pi\)
\(648\) 0 0
\(649\) −1.87476 1.08239i −0.0735907 0.0424876i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.6360 10.1822i −0.690152 0.398459i 0.113517 0.993536i \(-0.463788\pi\)
−0.803669 + 0.595077i \(0.797122\pi\)
\(654\) 0 0
\(655\) −15.7279 + 9.08052i −0.614541 + 0.354805i
\(656\) 0 0
\(657\) 12.9343i 0.504616i
\(658\) 0 0
\(659\) −42.4853 −1.65499 −0.827496 0.561472i \(-0.810235\pi\)
−0.827496 + 0.561472i \(0.810235\pi\)
\(660\) 0 0
\(661\) −15.5667 26.9623i −0.605474 1.04871i −0.991976 0.126423i \(-0.959650\pi\)
0.386503 0.922288i \(-0.373683\pi\)
\(662\) 0 0
\(663\) 14.1273 24.4692i 0.548659 0.950305i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 18.7279 32.4377i 0.725148 1.25599i
\(668\) 0 0
\(669\) 4.54416 2.62357i 0.175687 0.101433i
\(670\) 0 0
\(671\) −19.2025 −0.741303
\(672\) 0 0
\(673\) −6.38478 −0.246115 −0.123058 0.992400i \(-0.539270\pi\)
−0.123058 + 0.992400i \(0.539270\pi\)
\(674\) 0 0
\(675\) −14.6764 + 8.47343i −0.564895 + 0.326142i
\(676\) 0 0
\(677\) 14.7901 25.6173i 0.568431 0.984551i −0.428290 0.903641i \(-0.640884\pi\)
0.996721 0.0809101i \(-0.0257827\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 6.38478 11.0588i 0.244665 0.423772i
\(682\) 0 0
\(683\) 7.07107 + 12.2474i 0.270567 + 0.468636i 0.969007 0.247033i \(-0.0794555\pi\)
−0.698440 + 0.715668i \(0.746122\pi\)
\(684\) 0 0
\(685\) 10.9269 0.417495
\(686\) 0 0
\(687\) 16.4800i 0.628750i
\(688\) 0 0
\(689\) 17.5552 10.1355i 0.668798 0.386131i
\(690\) 0 0
\(691\) −35.2712 20.3638i −1.34178 0.774676i −0.354710 0.934976i \(-0.615420\pi\)
−0.987068 + 0.160301i \(0.948754\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −19.9706 11.5300i −0.757527 0.437358i
\(696\) 0 0
\(697\) 0.707107 + 1.22474i 0.0267836 + 0.0463905i
\(698\) 0 0
\(699\) 12.7261i 0.481344i
\(700\) 0 0
\(701\) 47.7290i 1.80270i −0.433092 0.901350i \(-0.642578\pi\)
0.433092 0.901350i \(-0.357422\pi\)
\(702\) 0 0
\(703\) 5.07517 + 8.79045i 0.191414 + 0.331538i
\(704\) 0 0
\(705\) −15.9079 9.18440i −0.599124 0.345905i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −31.8198 18.3712i −1.19502 0.689944i −0.235578 0.971856i \(-0.575698\pi\)
−0.959440 + 0.281912i \(0.909031\pi\)
\(710\) 0 0
\(711\) 3.21320 1.85514i 0.120505 0.0695733i
\(712\) 0 0
\(713\) 53.5306i 2.00474i
\(714\) 0 0
\(715\) 15.5147 0.580218
\(716\) 0 0
\(717\) 3.42786 + 5.93723i 0.128016 + 0.221730i
\(718\) 0 0
\(719\) 9.82868 17.0238i 0.366548 0.634880i −0.622475 0.782639i \(-0.713873\pi\)
0.989023 + 0.147760i \(0.0472062\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −9.10051 + 15.7625i −0.338451 + 0.586215i
\(724\) 0 0
\(725\) −12.5772 + 7.26143i −0.467104 + 0.269683i
\(726\) 0 0
\(727\) −49.6535 −1.84155 −0.920773 0.390098i \(-0.872441\pi\)
−0.920773 + 0.390098i \(0.872441\pi\)
\(728\) 0 0
\(729\) −17.2843 −0.640158
\(730\) 0 0
\(731\) −12.2525 + 7.07401i −0.453177 + 0.261642i
\(732\) 0 0
\(733\) −13.4645 + 23.3212i −0.497322 + 0.861387i −0.999995 0.00308974i \(-0.999017\pi\)
0.502673 + 0.864476i \(0.332350\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.0000 20.7846i 0.442026 0.765611i
\(738\) 0 0
\(739\) 10.4142 + 18.0379i 0.383093 + 0.663537i 0.991503 0.130087i \(-0.0415255\pi\)
−0.608410 + 0.793623i \(0.708192\pi\)
\(740\) 0 0
\(741\) 26.2466 0.964194
\(742\) 0 0
\(743\) 6.33386i 0.232367i −0.993228 0.116183i \(-0.962934\pi\)
0.993228 0.116183i \(-0.0370660\pi\)
\(744\) 0 0
\(745\) −0.682339 + 0.393949i −0.0249990 + 0.0144332i
\(746\) 0 0
\(747\) −8.98552 5.18779i −0.328763 0.189811i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −36.9411 21.3280i −1.34800 0.778269i −0.360035 0.932939i \(-0.617235\pi\)
−0.987966 + 0.154670i \(0.950568\pi\)
\(752\) 0 0
\(753\) −10.9289 18.9295i −0.398272 0.689828i
\(754\) 0 0
\(755\) 7.28225i 0.265028i
\(756\) 0 0
\(757\) 8.18900i 0.297634i −0.988865 0.148817i \(-0.952453\pi\)
0.988865 0.148817i \(-0.0475466\pi\)
\(758\) 0 0
\(759\) 9.05213 + 15.6788i 0.328572 + 0.569103i
\(760\) 0 0
\(761\) 4.09069 + 2.36176i 0.148287 + 0.0856137i 0.572308 0.820039i \(-0.306048\pi\)
−0.424021 + 0.905653i \(0.639382\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −9.36396 5.40629i −0.338555 0.195465i
\(766\) 0 0
\(767\) −5.48528 + 3.16693i −0.198062 + 0.114351i
\(768\) 0 0
\(769\) 19.1342i 0.689996i 0.938603 + 0.344998i \(0.112120\pi\)
−0.938603 + 0.344998i \(0.887880\pi\)
\(770\) 0 0
\(771\) −1.31371 −0.0473121
\(772\) 0 0
\(773\) −21.4184 37.0978i −0.770366 1.33431i −0.937362 0.348356i \(-0.886740\pi\)
0.166996 0.985958i \(-0.446593\pi\)
\(774\) 0 0
\(775\) 10.3778 17.9749i 0.372781 0.645676i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.656854 + 1.13770i −0.0235342 + 0.0407625i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −23.4069 −0.836494
\(784\) 0 0
\(785\) −16.6690 −0.594944
\(786\) 0 0
\(787\) −40.4405 + 23.3484i −1.44155 + 0.832279i −0.997953 0.0639477i \(-0.979631\pi\)
−0.443596 + 0.896227i \(0.646298\pi\)
\(788\) 0 0
\(789\) 10.1503 17.5809i 0.361362 0.625897i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −28.0919 + 48.6566i −0.997572 + 1.72785i
\(794\) 0 0
\(795\) 2.48528 + 4.30463i 0.0881438 + 0.152670i
\(796\) 0 0
\(797\) −50.6575 −1.79438 −0.897190 0.441644i \(-0.854395\pi\)
−0.897190 + 0.441644i \(0.854395\pi\)
\(798\) 0 0
\(799\) 57.1067i 2.02029i
\(800\) 0 0
\(801\) 20.1870 11.6549i 0.713271 0.411807i
\(802\) 0 0
\(803\) −12.2525 7.07401i −0.432383 0.249636i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 11.4853 + 6.63103i 0.404301 + 0.233423i
\(808\) 0 0
\(809\) −17.7279 30.7057i −0.623281 1.07955i −0.988871 0.148778i \(-0.952466\pi\)
0.365590 0.930776i \(-0.380867\pi\)
\(810\) 0 0
\(811\) 9.63274i 0.338251i 0.985594 + 0.169126i \(0.0540944\pi\)
−0.985594 + 0.169126i \(0.945906\pi\)
\(812\) 0 0
\(813\) 34.6410i 1.21491i
\(814\) 0 0
\(815\) 13.3508 + 23.1242i 0.467657 + 0.810005i
\(816\) 0 0
\(817\) −11.3818 6.57128i −0.398198 0.229900i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −32.4853 18.7554i −1.13374 0.654567i −0.188870 0.982002i \(-0.560483\pi\)
−0.944874 + 0.327435i \(0.893816\pi\)
\(822\) 0 0
\(823\) −18.0000 + 10.3923i −0.627441 + 0.362253i −0.779760 0.626078i \(-0.784659\pi\)
0.152320 + 0.988331i \(0.451326\pi\)
\(824\) 0 0
\(825\) 7.01962i 0.244392i
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) −2.14931 3.72271i −0.0746486 0.129295i 0.826285 0.563253i \(-0.190450\pi\)
−0.900933 + 0.433957i \(0.857117\pi\)
\(830\) 0 0
\(831\) 1.55310 2.69005i 0.0538765 0.0933168i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −10.9706 + 19.0016i −0.379652 + 0.657577i
\(836\) 0 0
\(837\) 28.9706 16.7262i 1.00137 0.578141i
\(838\) 0 0
\(839\) −35.1103 −1.21214 −0.606072 0.795410i \(-0.707255\pi\)
−0.606072 + 0.795410i \(0.707255\pi\)
\(840\) 0 0
\(841\) 8.94113 0.308315
\(842\) 0 0
\(843\) −15.6804 + 9.05309i −0.540062 + 0.311805i
\(844\) 0 0
\(845\) 14.0802 24.3876i 0.484374 0.838960i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −8.24264 + 14.2767i −0.282887 + 0.489974i
\(850\) 0 0
\(851\) 10.2426 + 17.7408i 0.351113 + 0.608146i
\(852\) 0 0
\(853\) −20.9830 −0.718445 −0.359223 0.933252i \(-0.616958\pi\)
−0.359223 + 0.933252i \(0.616958\pi\)
\(854\) 0 0
\(855\) 10.0441i 0.343503i
\(856\) 0 0
\(857\) −4.86724 + 2.81010i −0.166262 + 0.0959912i −0.580822 0.814031i \(-0.697269\pi\)
0.414560 + 0.910022i \(0.363935\pi\)
\(858\) 0 0
\(859\) 29.0978 + 16.7996i 0.992803 + 0.573195i 0.906111 0.423040i \(-0.139037\pi\)
0.0866923 + 0.996235i \(0.472370\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −20.4853 11.8272i −0.697327 0.402602i 0.109024 0.994039i \(-0.465227\pi\)
−0.806351 + 0.591437i \(0.798561\pi\)
\(864\) 0 0
\(865\) 6.87868 + 11.9142i 0.233882 + 0.405096i
\(866\) 0 0
\(867\) 3.13839i 0.106585i
\(868\) 0 0
\(869\) 4.05845i 0.137673i
\(870\) 0 0
\(871\) −35.1103 60.8129i −1.18967 2.06057i
\(872\) 0 0
\(873\) −14.6293 8.44623i −0.495127 0.285862i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 32.1213 + 18.5453i 1.08466 + 0.626229i 0.932150 0.362073i \(-0.117931\pi\)
0.152510 + 0.988302i \(0.451264\pi\)
\(878\) 0 0
\(879\) 5.48528 3.16693i 0.185014 0.106818i
\(880\) 0 0
\(881\) 36.0810i 1.21560i −0.794090 0.607800i \(-0.792052\pi\)
0.794090 0.607800i \(-0.207948\pi\)
\(882\) 0 0
\(883\) 46.4264 1.56237 0.781186 0.624298i \(-0.214615\pi\)
0.781186 + 0.624298i \(0.214615\pi\)
\(884\) 0 0
\(885\) −0.776550 1.34502i −0.0261035 0.0452125i
\(886\) 0 0
\(887\) 2.97297 5.14933i 0.0998224 0.172898i −0.811789 0.583951i \(-0.801506\pi\)
0.911611 + 0.411054i \(0.134839\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0.171573 0.297173i 0.00574791 0.00995567i
\(892\) 0 0
\(893\) −45.9411 + 26.5241i −1.53736 + 0.887596i
\(894\) 0 0
\(895\) −4.65930 −0.155743
\(896\) 0 0
\(897\) 52.9706 1.76864
\(898\) 0 0
\(899\) 24.8268 14.3337i 0.828018 0.478057i
\(900\) 0 0
\(901\) 7.72648 13.3827i 0.257406 0.445841i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 9.36396 16.2189i 0.311269 0.539133i
\(906\) 0 0
\(907\) −8.00000 13.8564i −0.265636 0.460094i 0.702094 0.712084i \(-0.252248\pi\)
−0.967730 + 0.251990i \(0.918915\pi\)
\(908\) 0 0
\(909\) −1.00400 −0.0333005
\(910\) 0 0
\(911\) 15.2913i 0.506623i −0.967385 0.253311i \(-0.918480\pi\)
0.967385 0.253311i \(-0.0815197\pi\)
\(912\) 0 0
\(913\) 9.82868 5.67459i 0.325282 0.187802i
\(914\) 0 0
\(915\) −11.9309 6.88830i −0.394423 0.227720i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 32.4853 + 18.7554i 1.07159 + 0.618683i 0.928616 0.371043i \(-0.121000\pi\)
0.142975 + 0.989726i \(0.454333\pi\)
\(920\) 0 0
\(921\) 11.8995 + 20.6105i 0.392102 + 0.679140i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 7.94282i 0.261158i
\(926\) 0 0
\(927\) 1.00400 + 1.73897i 0.0329756 + 0.0571154i
\(928\) 0 0
\(929\) −19.3162 11.1522i −0.633744 0.365892i 0.148457 0.988919i \(-0.452569\pi\)
−0.782201 + 0.623027i \(0.785903\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −10.5442 6.08767i −0.345200 0.199301i
\(934\) 0 0
\(935\) 10.2426 5.91359i 0.334970 0.193395i
\(936\) 0 0
\(937\) 51.4202i 1.67983i 0.542721 + 0.839913i \(0.317394\pi\)
−0.542721 + 0.839913i \(0.682606\pi\)
\(938\) 0 0
\(939\) 16.3431 0.533338
\(940\) 0 0
\(941\) 6.12627 + 10.6110i 0.199711 + 0.345909i 0.948435 0.316973i \(-0.102666\pi\)
−0.748724 + 0.662882i \(0.769333\pi\)
\(942\) 0 0
\(943\) −1.32565 + 2.29610i −0.0431692 + 0.0747713i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.272078 0.471253i 0.00884135 0.0153137i −0.861571 0.507637i \(-0.830519\pi\)
0.870412 + 0.492324i \(0.163852\pi\)
\(948\) 0 0
\(949\) −35.8492 + 20.6976i −1.16372 + 0.671872i
\(950\) 0 0
\(951\) 25.6033 0.830244
\(952\) 0 0
\(953\) −18.6863 −0.605308 −0.302654 0.953100i \(-0.597873\pi\)
−0.302654 + 0.953100i \(0.597873\pi\)
\(954\) 0 0
\(955\) −2.32965 + 1.34502i −0.0753857 + 0.0435240i
\(956\) 0 0
\(957\) 4.84772 8.39651i 0.156705 0.271420i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −4.98528 + 8.63476i −0.160816 + 0.278541i
\(962\) 0 0
\(963\) 7.75736 + 13.4361i 0.249977 + 0.432974i
\(964\) 0 0
\(965\) −18.7476 −0.603506
\(966\) 0 0
\(967\) 27.9590i 0.899101i −0.893255 0.449550i \(-0.851584\pi\)
0.893255 0.449550i \(-0.148416\pi\)
\(968\) 0 0
\(969\) 17.3277 10.0042i 0.556646 0.321380i
\(970\) 0 0
\(971\) −7.01655 4.05101i −0.225172 0.130003i 0.383171 0.923677i \(-0.374832\pi\)
−0.608343 + 0.793675i \(0.708165\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −17.7868 10.2692i −0.569633 0.328878i
\(976\) 0 0
\(977\) 2.60660 + 4.51477i 0.0833926 + 0.144440i 0.904705 0.426038i \(-0.140091\pi\)
−0.821313 + 0.570478i \(0.806758\pi\)
\(978\) 0 0
\(979\) 25.4972i 0.814894i
\(980\) 0 0
\(981\) 26.1039i 0.833432i
\(982\) 0 0
\(983\) 13.3508 + 23.1242i 0.425823 + 0.737547i 0.996497 0.0836298i \(-0.0266513\pi\)
−0.570674 + 0.821177i \(0.693318\pi\)
\(984\) 0 0
\(985\) −14.5432 8.39651i −0.463384 0.267535i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −22.9706 13.2621i −0.730421 0.421709i
\(990\) 0 0
\(991\) −39.9411 + 23.0600i −1.26877 + 0.732526i −0.974756 0.223275i \(-0.928325\pi\)
−0.294016 + 0.955800i \(0.594992\pi\)
\(992\) 0 0
\(993\) 16.4216i 0.521123i
\(994\) 0 0
\(995\) −8.48528 −0.269002
\(996\) 0 0
\(997\) 16.1158 + 27.9134i 0.510392 + 0.884025i 0.999927 + 0.0120416i \(0.00383305\pi\)
−0.489535 + 0.871983i \(0.662834\pi\)
\(998\) 0 0
\(999\) 6.40083 11.0866i 0.202513 0.350763i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1568.2.q.c.1391.3 8
4.3 odd 2 392.2.m.c.19.1 8
7.2 even 3 1568.2.e.c.783.5 8
7.3 odd 6 1568.2.q.d.815.3 8
7.4 even 3 1568.2.q.d.815.2 8
7.5 odd 6 1568.2.e.c.783.4 8
7.6 odd 2 inner 1568.2.q.c.1391.2 8
8.3 odd 2 1568.2.q.d.1391.3 8
8.5 even 2 392.2.m.e.19.3 8
28.3 even 6 392.2.m.e.227.3 8
28.11 odd 6 392.2.m.e.227.4 8
28.19 even 6 392.2.e.c.195.4 yes 8
28.23 odd 6 392.2.e.c.195.3 yes 8
28.27 even 2 392.2.m.c.19.2 8
56.3 even 6 inner 1568.2.q.c.815.3 8
56.5 odd 6 392.2.e.c.195.2 yes 8
56.11 odd 6 inner 1568.2.q.c.815.2 8
56.13 odd 2 392.2.m.e.19.4 8
56.19 even 6 1568.2.e.c.783.3 8
56.27 even 2 1568.2.q.d.1391.2 8
56.37 even 6 392.2.e.c.195.1 8
56.45 odd 6 392.2.m.c.227.1 8
56.51 odd 6 1568.2.e.c.783.6 8
56.53 even 6 392.2.m.c.227.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
392.2.e.c.195.1 8 56.37 even 6
392.2.e.c.195.2 yes 8 56.5 odd 6
392.2.e.c.195.3 yes 8 28.23 odd 6
392.2.e.c.195.4 yes 8 28.19 even 6
392.2.m.c.19.1 8 4.3 odd 2
392.2.m.c.19.2 8 28.27 even 2
392.2.m.c.227.1 8 56.45 odd 6
392.2.m.c.227.2 8 56.53 even 6
392.2.m.e.19.3 8 8.5 even 2
392.2.m.e.19.4 8 56.13 odd 2
392.2.m.e.227.3 8 28.3 even 6
392.2.m.e.227.4 8 28.11 odd 6
1568.2.e.c.783.3 8 56.19 even 6
1568.2.e.c.783.4 8 7.5 odd 6
1568.2.e.c.783.5 8 7.2 even 3
1568.2.e.c.783.6 8 56.51 odd 6
1568.2.q.c.815.2 8 56.11 odd 6 inner
1568.2.q.c.815.3 8 56.3 even 6 inner
1568.2.q.c.1391.2 8 7.6 odd 2 inner
1568.2.q.c.1391.3 8 1.1 even 1 trivial
1568.2.q.d.815.2 8 7.4 even 3
1568.2.q.d.815.3 8 7.3 odd 6
1568.2.q.d.1391.2 8 56.27 even 2
1568.2.q.d.1391.3 8 8.3 odd 2