Properties

Label 392.2.m.e.227.4
Level $392$
Weight $2$
Character 392.227
Analytic conductor $3.130$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [392,2,Mod(19,392)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(392, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("392.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 392.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,16,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.13013575923\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.339738624.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 14x^{4} - 8x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 227.4
Root \(0.662827 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 392.227
Dual form 392.2.m.e.19.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421 q^{2} +(0.937379 + 0.541196i) q^{3} +2.00000 q^{4} +(0.662827 + 1.14805i) q^{5} +(1.32565 + 0.765367i) q^{6} +2.82843 q^{8} +(-0.914214 - 1.58346i) q^{9} +(0.937379 + 1.62359i) q^{10} +(1.00000 - 1.73205i) q^{11} +(1.87476 + 1.08239i) q^{12} -5.85172 q^{13} +1.43488i q^{15} +4.00000 q^{16} +(3.86324 + 2.23044i) q^{17} +(-1.29289 - 2.23936i) q^{18} +(-3.58869 + 2.07193i) q^{19} +(1.32565 + 2.29610i) q^{20} +(1.41421 - 2.44949i) q^{22} +(-7.24264 + 4.18154i) q^{23} +(2.65131 + 1.53073i) q^{24} +(1.62132 - 2.80821i) q^{25} -8.27558 q^{26} -5.22625i q^{27} +4.47871i q^{29} +2.02922i q^{30} +(3.20041 - 5.54328i) q^{31} +5.65685 q^{32} +(1.87476 - 1.08239i) q^{33} +(5.46345 + 3.15432i) q^{34} +(-1.82843 - 3.16693i) q^{36} +(2.12132 - 1.22474i) q^{37} +(-5.07517 + 2.93015i) q^{38} +(-5.48528 - 3.16693i) q^{39} +(1.87476 + 3.24718i) q^{40} -0.317025i q^{41} -3.17157 q^{43} +(2.00000 - 3.46410i) q^{44} +(1.21193 - 2.09913i) q^{45} +(-10.2426 + 5.91359i) q^{46} +(-6.40083 - 11.0866i) q^{47} +(3.74952 + 2.16478i) q^{48} +(2.29289 - 3.97141i) q^{50} +(2.41421 + 4.18154i) q^{51} -11.7034 q^{52} +(3.00000 + 1.73205i) q^{53} -7.39104i q^{54} +2.65131 q^{55} -4.48528 q^{57} +6.33386i q^{58} +(0.937379 + 0.541196i) q^{59} +2.86976i q^{60} +(4.80062 + 8.31492i) q^{61} +(4.52607 - 7.83938i) q^{62} +8.00000 q^{64} +(-3.87868 - 6.71807i) q^{65} +(2.65131 - 1.53073i) q^{66} +(-6.00000 + 10.3923i) q^{67} +(7.72648 + 4.46088i) q^{68} -9.05213 q^{69} +(-2.58579 - 4.47871i) q^{72} +(-6.12627 - 3.53701i) q^{73} +(3.00000 - 1.73205i) q^{74} +(3.03958 - 1.75490i) q^{75} +(-7.17738 + 4.14386i) q^{76} +(-7.75736 - 4.47871i) q^{78} +(-1.75736 + 1.01461i) q^{79} +(2.65131 + 4.59220i) q^{80} +(0.0857864 - 0.148586i) q^{81} -0.448342i q^{82} -5.67459i q^{83} +5.91359i q^{85} -4.48528 q^{86} +(-2.42386 + 4.19825i) q^{87} +(2.82843 - 4.89898i) q^{88} +(11.0406 - 6.37430i) q^{89} +(1.71393 - 2.96861i) q^{90} +(-14.4853 + 8.36308i) q^{92} +(6.00000 - 3.46410i) q^{93} +(-9.05213 - 15.6788i) q^{94} +(-4.75736 - 2.74666i) q^{95} +(5.30262 + 3.06147i) q^{96} +9.23880i q^{97} -3.65685 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{4} + 4 q^{9} + 8 q^{11} + 32 q^{16} - 16 q^{18} - 24 q^{23} - 4 q^{25} + 8 q^{36} + 24 q^{39} - 48 q^{43} + 16 q^{44} - 48 q^{46} + 24 q^{50} + 8 q^{51} + 24 q^{53} + 32 q^{57} + 64 q^{64} - 48 q^{65}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421 1.00000
\(3\) 0.937379 + 0.541196i 0.541196 + 0.312460i 0.745564 0.666435i \(-0.232180\pi\)
−0.204367 + 0.978894i \(0.565514\pi\)
\(4\) 2.00000 1.00000
\(5\) 0.662827 + 1.14805i 0.296425 + 0.513424i 0.975315 0.220816i \(-0.0708721\pi\)
−0.678890 + 0.734240i \(0.737539\pi\)
\(6\) 1.32565 + 0.765367i 0.541196 + 0.312460i
\(7\) 0 0
\(8\) 2.82843 1.00000
\(9\) −0.914214 1.58346i −0.304738 0.527821i
\(10\) 0.937379 + 1.62359i 0.296425 + 0.513424i
\(11\) 1.00000 1.73205i 0.301511 0.522233i −0.674967 0.737848i \(-0.735842\pi\)
0.976478 + 0.215615i \(0.0691756\pi\)
\(12\) 1.87476 + 1.08239i 0.541196 + 0.312460i
\(13\) −5.85172 −1.62298 −0.811488 0.584369i \(-0.801342\pi\)
−0.811488 + 0.584369i \(0.801342\pi\)
\(14\) 0 0
\(15\) 1.43488i 0.370484i
\(16\) 4.00000 1.00000
\(17\) 3.86324 + 2.23044i 0.936973 + 0.540962i 0.889010 0.457887i \(-0.151394\pi\)
0.0479630 + 0.998849i \(0.484727\pi\)
\(18\) −1.29289 2.23936i −0.304738 0.527821i
\(19\) −3.58869 + 2.07193i −0.823301 + 0.475333i −0.851554 0.524268i \(-0.824339\pi\)
0.0282522 + 0.999601i \(0.491006\pi\)
\(20\) 1.32565 + 2.29610i 0.296425 + 0.513424i
\(21\) 0 0
\(22\) 1.41421 2.44949i 0.301511 0.522233i
\(23\) −7.24264 + 4.18154i −1.51019 + 0.871911i −0.510266 + 0.860017i \(0.670453\pi\)
−0.999929 + 0.0118947i \(0.996214\pi\)
\(24\) 2.65131 + 1.53073i 0.541196 + 0.312460i
\(25\) 1.62132 2.80821i 0.324264 0.561642i
\(26\) −8.27558 −1.62298
\(27\) 5.22625i 1.00579i
\(28\) 0 0
\(29\) 4.47871i 0.831676i 0.909439 + 0.415838i \(0.136512\pi\)
−0.909439 + 0.415838i \(0.863488\pi\)
\(30\) 2.02922i 0.370484i
\(31\) 3.20041 5.54328i 0.574811 0.995602i −0.421251 0.906944i \(-0.638409\pi\)
0.996062 0.0886579i \(-0.0282578\pi\)
\(32\) 5.65685 1.00000
\(33\) 1.87476 1.08239i 0.326354 0.188420i
\(34\) 5.46345 + 3.15432i 0.936973 + 0.540962i
\(35\) 0 0
\(36\) −1.82843 3.16693i −0.304738 0.527821i
\(37\) 2.12132 1.22474i 0.348743 0.201347i −0.315389 0.948963i \(-0.602135\pi\)
0.664131 + 0.747616i \(0.268802\pi\)
\(38\) −5.07517 + 2.93015i −0.823301 + 0.475333i
\(39\) −5.48528 3.16693i −0.878348 0.507114i
\(40\) 1.87476 + 3.24718i 0.296425 + 0.513424i
\(41\) 0.317025i 0.0495110i −0.999694 0.0247555i \(-0.992119\pi\)
0.999694 0.0247555i \(-0.00788073\pi\)
\(42\) 0 0
\(43\) −3.17157 −0.483660 −0.241830 0.970319i \(-0.577748\pi\)
−0.241830 + 0.970319i \(0.577748\pi\)
\(44\) 2.00000 3.46410i 0.301511 0.522233i
\(45\) 1.21193 2.09913i 0.180664 0.312919i
\(46\) −10.2426 + 5.91359i −1.51019 + 0.871911i
\(47\) −6.40083 11.0866i −0.933656 1.61714i −0.777013 0.629485i \(-0.783266\pi\)
−0.156644 0.987655i \(-0.550067\pi\)
\(48\) 3.74952 + 2.16478i 0.541196 + 0.312460i
\(49\) 0 0
\(50\) 2.29289 3.97141i 0.324264 0.561642i
\(51\) 2.41421 + 4.18154i 0.338058 + 0.585533i
\(52\) −11.7034 −1.62298
\(53\) 3.00000 + 1.73205i 0.412082 + 0.237915i 0.691684 0.722200i \(-0.256869\pi\)
−0.279602 + 0.960116i \(0.590203\pi\)
\(54\) 7.39104i 1.00579i
\(55\) 2.65131 0.357502
\(56\) 0 0
\(57\) −4.48528 −0.594090
\(58\) 6.33386i 0.831676i
\(59\) 0.937379 + 0.541196i 0.122036 + 0.0704577i 0.559776 0.828644i \(-0.310887\pi\)
−0.437739 + 0.899102i \(0.644221\pi\)
\(60\) 2.86976i 0.370484i
\(61\) 4.80062 + 8.31492i 0.614656 + 1.06462i 0.990445 + 0.137910i \(0.0440386\pi\)
−0.375788 + 0.926705i \(0.622628\pi\)
\(62\) 4.52607 7.83938i 0.574811 0.995602i
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) −3.87868 6.71807i −0.481091 0.833274i
\(66\) 2.65131 1.53073i 0.326354 0.188420i
\(67\) −6.00000 + 10.3923i −0.733017 + 1.26962i 0.222571 + 0.974916i \(0.428555\pi\)
−0.955588 + 0.294706i \(0.904778\pi\)
\(68\) 7.72648 + 4.46088i 0.936973 + 0.540962i
\(69\) −9.05213 −1.08975
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −2.58579 4.47871i −0.304738 0.527821i
\(73\) −6.12627 3.53701i −0.717026 0.413975i 0.0966311 0.995320i \(-0.469193\pi\)
−0.813657 + 0.581345i \(0.802527\pi\)
\(74\) 3.00000 1.73205i 0.348743 0.201347i
\(75\) 3.03958 1.75490i 0.350981 0.202639i
\(76\) −7.17738 + 4.14386i −0.823301 + 0.475333i
\(77\) 0 0
\(78\) −7.75736 4.47871i −0.878348 0.507114i
\(79\) −1.75736 + 1.01461i −0.197718 + 0.114153i −0.595591 0.803288i \(-0.703082\pi\)
0.397872 + 0.917441i \(0.369749\pi\)
\(80\) 2.65131 + 4.59220i 0.296425 + 0.513424i
\(81\) 0.0857864 0.148586i 0.00953183 0.0165096i
\(82\) 0.448342i 0.0495110i
\(83\) 5.67459i 0.622868i −0.950268 0.311434i \(-0.899191\pi\)
0.950268 0.311434i \(-0.100809\pi\)
\(84\) 0 0
\(85\) 5.91359i 0.641419i
\(86\) −4.48528 −0.483660
\(87\) −2.42386 + 4.19825i −0.259865 + 0.450100i
\(88\) 2.82843 4.89898i 0.301511 0.522233i
\(89\) 11.0406 6.37430i 1.17030 0.675675i 0.216551 0.976271i \(-0.430519\pi\)
0.953751 + 0.300597i \(0.0971858\pi\)
\(90\) 1.71393 2.96861i 0.180664 0.312919i
\(91\) 0 0
\(92\) −14.4853 + 8.36308i −1.51019 + 0.871911i
\(93\) 6.00000 3.46410i 0.622171 0.359211i
\(94\) −9.05213 15.6788i −0.933656 1.61714i
\(95\) −4.75736 2.74666i −0.488095 0.281802i
\(96\) 5.30262 + 3.06147i 0.541196 + 0.312460i
\(97\) 9.23880i 0.938058i 0.883183 + 0.469029i \(0.155396\pi\)
−0.883183 + 0.469029i \(0.844604\pi\)
\(98\) 0 0
\(99\) −3.65685 −0.367528
\(100\) 3.24264 5.61642i 0.324264 0.561642i
\(101\) 0.274552 0.475538i 0.0273189 0.0473178i −0.852043 0.523472i \(-0.824636\pi\)
0.879362 + 0.476154i \(0.157970\pi\)
\(102\) 3.41421 + 5.91359i 0.338058 + 0.585533i
\(103\) −0.549104 0.951076i −0.0541048 0.0937123i 0.837704 0.546124i \(-0.183897\pi\)
−0.891809 + 0.452411i \(0.850564\pi\)
\(104\) −16.5512 −1.62298
\(105\) 0 0
\(106\) 4.24264 + 2.44949i 0.412082 + 0.237915i
\(107\) −4.24264 7.34847i −0.410152 0.710403i 0.584754 0.811210i \(-0.301191\pi\)
−0.994906 + 0.100807i \(0.967858\pi\)
\(108\) 10.4525i 1.00579i
\(109\) 12.3640 + 7.13834i 1.18425 + 0.683729i 0.956995 0.290106i \(-0.0936905\pi\)
0.227258 + 0.973835i \(0.427024\pi\)
\(110\) 3.74952 0.357502
\(111\) 2.65131 0.251651
\(112\) 0 0
\(113\) 0.485281 0.0456514 0.0228257 0.999739i \(-0.492734\pi\)
0.0228257 + 0.999739i \(0.492734\pi\)
\(114\) −6.34315 −0.594090
\(115\) −9.60124 5.54328i −0.895320 0.516913i
\(116\) 8.95743i 0.831676i
\(117\) 5.34972 + 9.26599i 0.494582 + 0.856641i
\(118\) 1.32565 + 0.765367i 0.122036 + 0.0704577i
\(119\) 0 0
\(120\) 4.05845i 0.370484i
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 6.78910 + 11.7591i 0.614656 + 1.06462i
\(123\) 0.171573 0.297173i 0.0154702 0.0267952i
\(124\) 6.40083 11.0866i 0.574811 0.995602i
\(125\) 10.9269 0.977331
\(126\) 0 0
\(127\) 15.2913i 1.35688i −0.734655 0.678441i \(-0.762656\pi\)
0.734655 0.678441i \(-0.237344\pi\)
\(128\) 11.3137 1.00000
\(129\) −2.97297 1.71644i −0.261755 0.151124i
\(130\) −5.48528 9.50079i −0.481091 0.833274i
\(131\) −11.8643 + 6.84984i −1.03659 + 0.598473i −0.918864 0.394573i \(-0.870892\pi\)
−0.117722 + 0.993047i \(0.537559\pi\)
\(132\) 3.74952 2.16478i 0.326354 0.188420i
\(133\) 0 0
\(134\) −8.48528 + 14.6969i −0.733017 + 1.26962i
\(135\) 6.00000 3.46410i 0.516398 0.298142i
\(136\) 10.9269 + 6.30864i 0.936973 + 0.540962i
\(137\) 4.12132 7.13834i 0.352108 0.609869i −0.634510 0.772914i \(-0.718798\pi\)
0.986619 + 0.163045i \(0.0521316\pi\)
\(138\) −12.8017 −1.08975
\(139\) 17.3952i 1.47544i 0.675106 + 0.737721i \(0.264098\pi\)
−0.675106 + 0.737721i \(0.735902\pi\)
\(140\) 0 0
\(141\) 13.8564i 1.16692i
\(142\) 0 0
\(143\) −5.85172 + 10.1355i −0.489346 + 0.847571i
\(144\) −3.65685 6.33386i −0.304738 0.527821i
\(145\) −5.14179 + 2.96861i −0.427002 + 0.246530i
\(146\) −8.66386 5.00208i −0.717026 0.413975i
\(147\) 0 0
\(148\) 4.24264 2.44949i 0.348743 0.201347i
\(149\) 0.514719 0.297173i 0.0421674 0.0243454i −0.478768 0.877941i \(-0.658917\pi\)
0.520936 + 0.853596i \(0.325583\pi\)
\(150\) 4.29862 2.48181i 0.350981 0.202639i
\(151\) −4.75736 2.74666i −0.387148 0.223520i 0.293775 0.955874i \(-0.405088\pi\)
−0.680924 + 0.732354i \(0.738422\pi\)
\(152\) −10.1503 + 5.86030i −0.823301 + 0.475333i
\(153\) 8.15640i 0.659406i
\(154\) 0 0
\(155\) 8.48528 0.681554
\(156\) −10.9706 6.33386i −0.878348 0.507114i
\(157\) −6.28710 + 10.8896i −0.501765 + 0.869083i 0.498233 + 0.867043i \(0.333983\pi\)
−0.999998 + 0.00203967i \(0.999351\pi\)
\(158\) −2.48528 + 1.43488i −0.197718 + 0.114153i
\(159\) 1.87476 + 3.24718i 0.148678 + 0.257518i
\(160\) 3.74952 + 6.49435i 0.296425 + 0.513424i
\(161\) 0 0
\(162\) 0.121320 0.210133i 0.00953183 0.0165096i
\(163\) 10.0711 + 17.4436i 0.788827 + 1.36629i 0.926686 + 0.375836i \(0.122645\pi\)
−0.137859 + 0.990452i \(0.544022\pi\)
\(164\) 0.634051i 0.0495110i
\(165\) 2.48528 + 1.43488i 0.193479 + 0.111705i
\(166\) 8.02509i 0.622868i
\(167\) 16.5512 1.28077 0.640384 0.768055i \(-0.278775\pi\)
0.640384 + 0.768055i \(0.278775\pi\)
\(168\) 0 0
\(169\) 21.2426 1.63405
\(170\) 8.36308i 0.641419i
\(171\) 6.56165 + 3.78837i 0.501782 + 0.289704i
\(172\) −6.34315 −0.483660
\(173\) −5.18889 8.98743i −0.394504 0.683302i 0.598533 0.801098i \(-0.295750\pi\)
−0.993038 + 0.117796i \(0.962417\pi\)
\(174\) −3.42786 + 5.93723i −0.259865 + 0.450100i
\(175\) 0 0
\(176\) 4.00000 6.92820i 0.301511 0.522233i
\(177\) 0.585786 + 1.01461i 0.0440304 + 0.0762629i
\(178\) 15.6138 9.01462i 1.17030 0.675675i
\(179\) 1.75736 3.04384i 0.131351 0.227507i −0.792846 0.609421i \(-0.791402\pi\)
0.924198 + 0.381914i \(0.124735\pi\)
\(180\) 2.42386 4.19825i 0.180664 0.312919i
\(181\) 14.1273 1.05007 0.525037 0.851079i \(-0.324051\pi\)
0.525037 + 0.851079i \(0.324051\pi\)
\(182\) 0 0
\(183\) 10.3923i 0.768221i
\(184\) −20.4853 + 11.8272i −1.51019 + 0.871911i
\(185\) 2.81214 + 1.62359i 0.206752 + 0.119369i
\(186\) 8.48528 4.89898i 0.622171 0.359211i
\(187\) 7.72648 4.46088i 0.565016 0.326212i
\(188\) −12.8017 22.1731i −0.933656 1.61714i
\(189\) 0 0
\(190\) −6.72792 3.88437i −0.488095 0.281802i
\(191\) −1.75736 + 1.01461i −0.127158 + 0.0734147i −0.562230 0.826981i \(-0.690056\pi\)
0.435072 + 0.900396i \(0.356723\pi\)
\(192\) 7.49903 + 4.32957i 0.541196 + 0.312460i
\(193\) −7.07107 + 12.2474i −0.508987 + 0.881591i 0.490959 + 0.871183i \(0.336646\pi\)
−0.999946 + 0.0104081i \(0.996687\pi\)
\(194\) 13.0656i 0.938058i
\(195\) 8.39651i 0.601286i
\(196\) 0 0
\(197\) 12.6677i 0.902537i −0.892388 0.451269i \(-0.850972\pi\)
0.892388 0.451269i \(-0.149028\pi\)
\(198\) −5.17157 −0.367528
\(199\) 3.20041 5.54328i 0.226871 0.392953i −0.730008 0.683439i \(-0.760484\pi\)
0.956879 + 0.290486i \(0.0938170\pi\)
\(200\) 4.58579 7.94282i 0.324264 0.561642i
\(201\) −11.2485 + 6.49435i −0.793412 + 0.458076i
\(202\) 0.388275 0.672512i 0.0273189 0.0473178i
\(203\) 0 0
\(204\) 4.82843 + 8.36308i 0.338058 + 0.585533i
\(205\) 0.363961 0.210133i 0.0254201 0.0146763i
\(206\) −0.776550 1.34502i −0.0541048 0.0937123i
\(207\) 13.2426 + 7.64564i 0.920427 + 0.531409i
\(208\) −23.4069 −1.62298
\(209\) 8.28772i 0.573274i
\(210\) 0 0
\(211\) 3.51472 0.241963 0.120982 0.992655i \(-0.461396\pi\)
0.120982 + 0.992655i \(0.461396\pi\)
\(212\) 6.00000 + 3.46410i 0.412082 + 0.237915i
\(213\) 0 0
\(214\) −6.00000 10.3923i −0.410152 0.710403i
\(215\) −2.10220 3.64113i −0.143369 0.248323i
\(216\) 14.7821i 1.00579i
\(217\) 0 0
\(218\) 17.4853 + 10.0951i 1.18425 + 0.683729i
\(219\) −3.82843 6.63103i −0.258701 0.448084i
\(220\) 5.30262 0.357502
\(221\) −22.6066 13.0519i −1.52068 0.877968i
\(222\) 3.74952 0.251651
\(223\) −4.84772 −0.324628 −0.162314 0.986739i \(-0.551896\pi\)
−0.162314 + 0.986739i \(0.551896\pi\)
\(224\) 0 0
\(225\) −5.92893 −0.395262
\(226\) 0.686292 0.0456514
\(227\) 10.2170 + 5.89876i 0.678123 + 0.391515i 0.799148 0.601135i \(-0.205285\pi\)
−0.121024 + 0.992650i \(0.538618\pi\)
\(228\) −8.97056 −0.594090
\(229\) −7.61276 13.1857i −0.503065 0.871334i −0.999994 0.00354289i \(-0.998872\pi\)
0.496929 0.867791i \(-0.334461\pi\)
\(230\) −13.5782 7.83938i −0.895320 0.516913i
\(231\) 0 0
\(232\) 12.6677i 0.831676i
\(233\) 5.87868 + 10.1822i 0.385125 + 0.667056i 0.991787 0.127904i \(-0.0408250\pi\)
−0.606661 + 0.794960i \(0.707492\pi\)
\(234\) 7.56565 + 13.1041i 0.494582 + 0.856641i
\(235\) 8.48528 14.6969i 0.553519 0.958723i
\(236\) 1.87476 + 1.08239i 0.122036 + 0.0704577i
\(237\) −2.19642 −0.142673
\(238\) 0 0
\(239\) 6.33386i 0.409703i −0.978793 0.204852i \(-0.934329\pi\)
0.978793 0.204852i \(-0.0656712\pi\)
\(240\) 5.73951i 0.370484i
\(241\) 14.5627 + 8.40777i 0.938065 + 0.541592i 0.889353 0.457221i \(-0.151155\pi\)
0.0487118 + 0.998813i \(0.484488\pi\)
\(242\) 4.94975 + 8.57321i 0.318182 + 0.551107i
\(243\) −13.4174 + 7.74652i −0.860725 + 0.496940i
\(244\) 9.60124 + 16.6298i 0.614656 + 1.06462i
\(245\) 0 0
\(246\) 0.242641 0.420266i 0.0154702 0.0267952i
\(247\) 21.0000 12.1244i 1.33620 0.771454i
\(248\) 9.05213 15.6788i 0.574811 0.995602i
\(249\) 3.07107 5.31925i 0.194621 0.337093i
\(250\) 15.4530 0.977331
\(251\) 20.1940i 1.27464i 0.770601 + 0.637318i \(0.219956\pi\)
−0.770601 + 0.637318i \(0.780044\pi\)
\(252\) 0 0
\(253\) 16.7262i 1.05156i
\(254\) 21.6251i 1.35688i
\(255\) −3.20041 + 5.54328i −0.200418 + 0.347133i
\(256\) 16.0000 1.00000
\(257\) 1.05110 0.606854i 0.0655660 0.0378545i −0.466859 0.884332i \(-0.654614\pi\)
0.532425 + 0.846477i \(0.321281\pi\)
\(258\) −4.20441 2.42742i −0.261755 0.151124i
\(259\) 0 0
\(260\) −7.75736 13.4361i −0.481091 0.833274i
\(261\) 7.09188 4.09450i 0.438977 0.253443i
\(262\) −16.7786 + 9.68714i −1.03659 + 0.598473i
\(263\) 16.2426 + 9.37769i 1.00156 + 0.578253i 0.908711 0.417426i \(-0.137068\pi\)
0.0928534 + 0.995680i \(0.470401\pi\)
\(264\) 5.30262 3.06147i 0.326354 0.188420i
\(265\) 4.59220i 0.282097i
\(266\) 0 0
\(267\) 13.7990 0.844484
\(268\) −12.0000 + 20.7846i −0.733017 + 1.26962i
\(269\) 6.12627 10.6110i 0.373525 0.646965i −0.616580 0.787293i \(-0.711482\pi\)
0.990105 + 0.140327i \(0.0448155\pi\)
\(270\) 8.48528 4.89898i 0.516398 0.298142i
\(271\) 16.0021 + 27.7164i 0.972056 + 1.68365i 0.689326 + 0.724451i \(0.257907\pi\)
0.282730 + 0.959200i \(0.408760\pi\)
\(272\) 15.4530 + 8.92177i 0.936973 + 0.540962i
\(273\) 0 0
\(274\) 5.82843 10.0951i 0.352108 0.609869i
\(275\) −3.24264 5.61642i −0.195539 0.338683i
\(276\) −18.1043 −1.08975
\(277\) −2.48528 1.43488i −0.149326 0.0862135i 0.423475 0.905908i \(-0.360810\pi\)
−0.572801 + 0.819694i \(0.694143\pi\)
\(278\) 24.6005i 1.47544i
\(279\) −11.7034 −0.700667
\(280\) 0 0
\(281\) −16.7279 −0.997904 −0.498952 0.866630i \(-0.666282\pi\)
−0.498952 + 0.866630i \(0.666282\pi\)
\(282\) 19.5959i 1.16692i
\(283\) −13.1899 7.61521i −0.784060 0.452677i 0.0538074 0.998551i \(-0.482864\pi\)
−0.837867 + 0.545874i \(0.816198\pi\)
\(284\) 0 0
\(285\) −2.97297 5.14933i −0.176103 0.305020i
\(286\) −8.27558 + 14.3337i −0.489346 + 0.847571i
\(287\) 0 0
\(288\) −5.17157 8.95743i −0.304738 0.527821i
\(289\) 1.44975 + 2.51104i 0.0852793 + 0.147708i
\(290\) −7.27159 + 4.19825i −0.427002 + 0.246530i
\(291\) −5.00000 + 8.66025i −0.293105 + 0.507673i
\(292\) −12.2525 7.07401i −0.717026 0.413975i
\(293\) 5.85172 0.341861 0.170931 0.985283i \(-0.445323\pi\)
0.170931 + 0.985283i \(0.445323\pi\)
\(294\) 0 0
\(295\) 1.43488i 0.0835418i
\(296\) 6.00000 3.46410i 0.348743 0.201347i
\(297\) −9.05213 5.22625i −0.525258 0.303258i
\(298\) 0.727922 0.420266i 0.0421674 0.0243454i
\(299\) 42.3819 24.4692i 2.45101 1.41509i
\(300\) 6.07917 3.50981i 0.350981 0.202639i
\(301\) 0 0
\(302\) −6.72792 3.88437i −0.387148 0.223520i
\(303\) 0.514719 0.297173i 0.0295698 0.0170721i
\(304\) −14.3548 + 8.28772i −0.823301 + 0.475333i
\(305\) −6.36396 + 11.0227i −0.364399 + 0.631158i
\(306\) 11.5349i 0.659406i
\(307\) 21.9874i 1.25489i −0.778662 0.627444i \(-0.784101\pi\)
0.778662 0.627444i \(-0.215899\pi\)
\(308\) 0 0
\(309\) 1.18869i 0.0676223i
\(310\) 12.0000 0.681554
\(311\) 5.62427 9.74153i 0.318923 0.552391i −0.661340 0.750086i \(-0.730012\pi\)
0.980264 + 0.197695i \(0.0633454\pi\)
\(312\) −15.5147 8.95743i −0.878348 0.507114i
\(313\) −13.0762 + 7.54955i −0.739111 + 0.426726i −0.821746 0.569854i \(-0.807000\pi\)
0.0826352 + 0.996580i \(0.473666\pi\)
\(314\) −8.89130 + 15.4002i −0.501765 + 0.869083i
\(315\) 0 0
\(316\) −3.51472 + 2.02922i −0.197718 + 0.114153i
\(317\) −20.4853 + 11.8272i −1.15057 + 0.664281i −0.949026 0.315199i \(-0.897929\pi\)
−0.201542 + 0.979480i \(0.564595\pi\)
\(318\) 2.65131 + 4.59220i 0.148678 + 0.257518i
\(319\) 7.75736 + 4.47871i 0.434329 + 0.250760i
\(320\) 5.30262 + 9.18440i 0.296425 + 0.513424i
\(321\) 9.18440i 0.512623i
\(322\) 0 0
\(323\) −18.4853 −1.02855
\(324\) 0.171573 0.297173i 0.00953183 0.0165096i
\(325\) −9.48751 + 16.4329i −0.526273 + 0.911531i
\(326\) 14.2426 + 24.6690i 0.788827 + 1.36629i
\(327\) 7.72648 + 13.3827i 0.427275 + 0.740063i
\(328\) 0.896683i 0.0495110i
\(329\) 0 0
\(330\) 3.51472 + 2.02922i 0.193479 + 0.111705i
\(331\) −7.58579 13.1390i −0.416953 0.722183i 0.578679 0.815556i \(-0.303569\pi\)
−0.995631 + 0.0933726i \(0.970235\pi\)
\(332\) 11.3492i 0.622868i
\(333\) −3.87868 2.23936i −0.212550 0.122716i
\(334\) 23.4069 1.28077
\(335\) −15.9079 −0.869139
\(336\) 0 0
\(337\) −4.24264 −0.231111 −0.115556 0.993301i \(-0.536865\pi\)
−0.115556 + 0.993301i \(0.536865\pi\)
\(338\) 30.0416 1.63405
\(339\) 0.454893 + 0.262632i 0.0247064 + 0.0142642i
\(340\) 11.8272i 0.641419i
\(341\) −6.40083 11.0866i −0.346624 0.600371i
\(342\) 9.27958 + 5.35757i 0.501782 + 0.289704i
\(343\) 0 0
\(344\) −8.97056 −0.483660
\(345\) −6.00000 10.3923i −0.323029 0.559503i
\(346\) −7.33820 12.7101i −0.394504 0.683302i
\(347\) 13.4853 23.3572i 0.723928 1.25388i −0.235486 0.971878i \(-0.575668\pi\)
0.959414 0.282002i \(-0.0909985\pi\)
\(348\) −4.84772 + 8.39651i −0.259865 + 0.450100i
\(349\) −9.27958 −0.496725 −0.248362 0.968667i \(-0.579892\pi\)
−0.248362 + 0.968667i \(0.579892\pi\)
\(350\) 0 0
\(351\) 30.5826i 1.63238i
\(352\) 5.65685 9.79796i 0.301511 0.522233i
\(353\) −17.8297 10.2940i −0.948980 0.547894i −0.0562161 0.998419i \(-0.517904\pi\)
−0.892764 + 0.450525i \(0.851237\pi\)
\(354\) 0.828427 + 1.43488i 0.0440304 + 0.0762629i
\(355\) 0 0
\(356\) 22.0812 12.7486i 1.17030 0.675675i
\(357\) 0 0
\(358\) 2.48528 4.30463i 0.131351 0.227507i
\(359\) −15.0000 + 8.66025i −0.791670 + 0.457071i −0.840550 0.541734i \(-0.817768\pi\)
0.0488803 + 0.998805i \(0.484435\pi\)
\(360\) 3.42786 5.93723i 0.180664 0.312919i
\(361\) −0.914214 + 1.58346i −0.0481165 + 0.0833402i
\(362\) 19.9790 1.05007
\(363\) 7.57675i 0.397676i
\(364\) 0 0
\(365\) 9.37769i 0.490851i
\(366\) 14.6969i 0.768221i
\(367\) 11.4760 19.8770i 0.599042 1.03757i −0.393921 0.919144i \(-0.628882\pi\)
0.992963 0.118427i \(-0.0377851\pi\)
\(368\) −28.9706 + 16.7262i −1.51019 + 0.871911i
\(369\) −0.501998 + 0.289829i −0.0261330 + 0.0150879i
\(370\) 3.97696 + 2.29610i 0.206752 + 0.119369i
\(371\) 0 0
\(372\) 12.0000 6.92820i 0.622171 0.359211i
\(373\) −25.9706 + 14.9941i −1.34470 + 0.776366i −0.987494 0.157658i \(-0.949606\pi\)
−0.357211 + 0.934024i \(0.616272\pi\)
\(374\) 10.9269 6.30864i 0.565016 0.326212i
\(375\) 10.2426 + 5.91359i 0.528928 + 0.305377i
\(376\) −18.1043 31.3575i −0.933656 1.61714i
\(377\) 26.2082i 1.34979i
\(378\) 0 0
\(379\) −5.31371 −0.272947 −0.136473 0.990644i \(-0.543577\pi\)
−0.136473 + 0.990644i \(0.543577\pi\)
\(380\) −9.51472 5.49333i −0.488095 0.281802i
\(381\) 8.27558 14.3337i 0.423971 0.734339i
\(382\) −2.48528 + 1.43488i −0.127158 + 0.0734147i
\(383\) −6.40083 11.0866i −0.327067 0.566496i 0.654862 0.755749i \(-0.272727\pi\)
−0.981928 + 0.189252i \(0.939394\pi\)
\(384\) 10.6052 + 6.12293i 0.541196 + 0.312460i
\(385\) 0 0
\(386\) −10.0000 + 17.3205i −0.508987 + 0.881591i
\(387\) 2.89949 + 5.02207i 0.147390 + 0.255286i
\(388\) 18.4776i 0.938058i
\(389\) −32.8492 18.9655i −1.66552 0.961590i −0.970006 0.243080i \(-0.921842\pi\)
−0.695516 0.718510i \(-0.744824\pi\)
\(390\) 11.8745i 0.601286i
\(391\) −37.3067 −1.88668
\(392\) 0 0
\(393\) −14.8284 −0.747995
\(394\) 17.9149i 0.902537i
\(395\) −2.32965 1.34502i −0.117217 0.0676755i
\(396\) −7.31371 −0.367528
\(397\) −6.90282 11.9560i −0.346443 0.600056i 0.639172 0.769064i \(-0.279277\pi\)
−0.985615 + 0.169007i \(0.945944\pi\)
\(398\) 4.52607 7.83938i 0.226871 0.392953i
\(399\) 0 0
\(400\) 6.48528 11.2328i 0.324264 0.561642i
\(401\) −8.12132 14.0665i −0.405559 0.702449i 0.588827 0.808259i \(-0.299590\pi\)
−0.994386 + 0.105810i \(0.966257\pi\)
\(402\) −15.9079 + 9.18440i −0.793412 + 0.458076i
\(403\) −18.7279 + 32.4377i −0.932904 + 1.61584i
\(404\) 0.549104 0.951076i 0.0273189 0.0473178i
\(405\) 0.227446 0.0113019
\(406\) 0 0
\(407\) 4.89898i 0.242833i
\(408\) 6.82843 + 11.8272i 0.338058 + 0.585533i
\(409\) 8.00103 + 4.61940i 0.395626 + 0.228415i 0.684595 0.728924i \(-0.259979\pi\)
−0.288969 + 0.957338i \(0.593313\pi\)
\(410\) 0.514719 0.297173i 0.0254201 0.0146763i
\(411\) 7.72648 4.46088i 0.381119 0.220039i
\(412\) −1.09821 1.90215i −0.0541048 0.0937123i
\(413\) 0 0
\(414\) 18.7279 + 10.8126i 0.920427 + 0.531409i
\(415\) 6.51472 3.76127i 0.319795 0.184634i
\(416\) −33.1023 −1.62298
\(417\) −9.41421 + 16.3059i −0.461016 + 0.798503i
\(418\) 11.7206i 0.573274i
\(419\) 7.31411i 0.357318i −0.983911 0.178659i \(-0.942824\pi\)
0.983911 0.178659i \(-0.0571759\pi\)
\(420\) 0 0
\(421\) 12.6677i 0.617387i 0.951162 + 0.308693i \(0.0998917\pi\)
−0.951162 + 0.308693i \(0.900108\pi\)
\(422\) 4.97056 0.241963
\(423\) −11.7034 + 20.2710i −0.569041 + 0.985608i
\(424\) 8.48528 + 4.89898i 0.412082 + 0.237915i
\(425\) 12.5271 7.23252i 0.607654 0.350829i
\(426\) 0 0
\(427\) 0 0
\(428\) −8.48528 14.6969i −0.410152 0.710403i
\(429\) −10.9706 + 6.33386i −0.529664 + 0.305802i
\(430\) −2.97297 5.14933i −0.143369 0.248323i
\(431\) −23.4853 13.5592i −1.13125 0.653125i −0.186998 0.982360i \(-0.559876\pi\)
−0.944248 + 0.329235i \(0.893209\pi\)
\(432\) 20.9050i 1.00579i
\(433\) 28.1647i 1.35351i −0.736208 0.676755i \(-0.763386\pi\)
0.736208 0.676755i \(-0.236614\pi\)
\(434\) 0 0
\(435\) −6.42641 −0.308123
\(436\) 24.7279 + 14.2767i 1.18425 + 0.683729i
\(437\) 17.3277 30.0125i 0.828897 1.43569i
\(438\) −5.41421 9.37769i −0.258701 0.448084i
\(439\) 11.1543 + 19.3199i 0.532368 + 0.922088i 0.999286 + 0.0377871i \(0.0120309\pi\)
−0.466918 + 0.884300i \(0.654636\pi\)
\(440\) 7.49903 0.357502
\(441\) 0 0
\(442\) −31.9706 18.4582i −1.52068 0.877968i
\(443\) −14.1421 24.4949i −0.671913 1.16379i −0.977361 0.211579i \(-0.932139\pi\)
0.305448 0.952209i \(-0.401194\pi\)
\(444\) 5.30262 0.251651
\(445\) 14.6360 + 8.45012i 0.693815 + 0.400574i
\(446\) −6.85572 −0.324628
\(447\) 0.643315 0.0304278
\(448\) 0 0
\(449\) 5.65685 0.266963 0.133482 0.991051i \(-0.457384\pi\)
0.133482 + 0.991051i \(0.457384\pi\)
\(450\) −8.38478 −0.395262
\(451\) −0.549104 0.317025i −0.0258563 0.0149281i
\(452\) 0.970563 0.0456514
\(453\) −2.97297 5.14933i −0.139682 0.241937i
\(454\) 14.4490 + 8.34211i 0.678123 + 0.391515i
\(455\) 0 0
\(456\) −12.6863 −0.594090
\(457\) 13.4142 + 23.2341i 0.627490 + 1.08685i 0.988054 + 0.154111i \(0.0492512\pi\)
−0.360563 + 0.932735i \(0.617415\pi\)
\(458\) −10.7661 18.6474i −0.503065 0.871334i
\(459\) 11.6569 20.1903i 0.544095 0.942401i
\(460\) −19.2025 11.0866i −0.895320 0.516913i
\(461\) 18.9750 0.883755 0.441878 0.897075i \(-0.354313\pi\)
0.441878 + 0.897075i \(0.354313\pi\)
\(462\) 0 0
\(463\) 8.95743i 0.416287i 0.978098 + 0.208143i \(0.0667421\pi\)
−0.978098 + 0.208143i \(0.933258\pi\)
\(464\) 17.9149i 0.831676i
\(465\) 7.95393 + 4.59220i 0.368854 + 0.212958i
\(466\) 8.31371 + 14.3998i 0.385125 + 0.667056i
\(467\) −31.8433 + 18.3847i −1.47353 + 0.850744i −0.999556 0.0297936i \(-0.990515\pi\)
−0.473976 + 0.880538i \(0.657182\pi\)
\(468\) 10.6994 + 18.5320i 0.494582 + 0.856641i
\(469\) 0 0
\(470\) 12.0000 20.7846i 0.553519 0.958723i
\(471\) −11.7868 + 6.80511i −0.543107 + 0.313563i
\(472\) 2.65131 + 1.53073i 0.122036 + 0.0704577i
\(473\) −3.17157 + 5.49333i −0.145829 + 0.252583i
\(474\) −3.10620 −0.142673
\(475\) 13.4370i 0.616534i
\(476\) 0 0
\(477\) 6.33386i 0.290007i
\(478\) 8.95743i 0.409703i
\(479\) −5.07517 + 8.79045i −0.231890 + 0.401646i −0.958364 0.285548i \(-0.907824\pi\)
0.726474 + 0.687194i \(0.241158\pi\)
\(480\) 8.11689i 0.370484i
\(481\) −12.4134 + 7.16687i −0.566001 + 0.326781i
\(482\) 20.5947 + 11.8904i 0.938065 + 0.541592i
\(483\) 0 0
\(484\) 7.00000 + 12.1244i 0.318182 + 0.551107i
\(485\) −10.6066 + 6.12372i −0.481621 + 0.278064i
\(486\) −18.9750 + 10.9552i −0.860725 + 0.496940i
\(487\) −12.5147 7.22538i −0.567096 0.327413i 0.188893 0.981998i \(-0.439510\pi\)
−0.755989 + 0.654585i \(0.772844\pi\)
\(488\) 13.5782 + 23.5181i 0.614656 + 1.06462i
\(489\) 21.8017i 0.985907i
\(490\) 0 0
\(491\) 7.79899 0.351963 0.175982 0.984393i \(-0.443690\pi\)
0.175982 + 0.984393i \(0.443690\pi\)
\(492\) 0.343146 0.594346i 0.0154702 0.0267952i
\(493\) −9.98951 + 17.3023i −0.449905 + 0.779258i
\(494\) 29.6985 17.1464i 1.33620 0.771454i
\(495\) −2.42386 4.19825i −0.108945 0.188697i
\(496\) 12.8017 22.1731i 0.574811 0.995602i
\(497\) 0 0
\(498\) 4.34315 7.52255i 0.194621 0.337093i
\(499\) −4.24264 7.34847i −0.189927 0.328963i 0.755299 0.655380i \(-0.227492\pi\)
−0.945226 + 0.326418i \(0.894158\pi\)
\(500\) 21.8538 0.977331
\(501\) 15.5147 + 8.95743i 0.693147 + 0.400188i
\(502\) 28.5587i 1.27464i
\(503\) −4.84772 −0.216149 −0.108075 0.994143i \(-0.534469\pi\)
−0.108075 + 0.994143i \(0.534469\pi\)
\(504\) 0 0
\(505\) 0.727922 0.0323921
\(506\) 23.6544i 1.05156i
\(507\) 19.9124 + 11.4964i 0.884341 + 0.510575i
\(508\) 30.5826i 1.35688i
\(509\) −1.05110 1.82056i −0.0465893 0.0806950i 0.841790 0.539805i \(-0.181502\pi\)
−0.888380 + 0.459110i \(0.848169\pi\)
\(510\) −4.52607 + 7.83938i −0.200418 + 0.347133i
\(511\) 0 0
\(512\) 22.6274 1.00000
\(513\) 10.8284 + 18.7554i 0.478087 + 0.828071i
\(514\) 1.48648 0.858221i 0.0655660 0.0378545i
\(515\) 0.727922 1.26080i 0.0320761 0.0555574i
\(516\) −5.94593 3.43289i −0.261755 0.151124i
\(517\) −25.6033 −1.12603
\(518\) 0 0
\(519\) 11.2328i 0.493067i
\(520\) −10.9706 19.0016i −0.481091 0.833274i
\(521\) −2.69841 1.55793i −0.118220 0.0682542i 0.439724 0.898133i \(-0.355076\pi\)
−0.557944 + 0.829879i \(0.688410\pi\)
\(522\) 10.0294 5.79050i 0.438977 0.253443i
\(523\) 17.3943 10.0426i 0.760601 0.439133i −0.0689104 0.997623i \(-0.521952\pi\)
0.829512 + 0.558490i \(0.188619\pi\)
\(524\) −23.7285 + 13.6997i −1.03659 + 0.598473i
\(525\) 0 0
\(526\) 22.9706 + 13.2621i 1.00156 + 0.578253i
\(527\) 24.7279 14.2767i 1.07717 0.621902i
\(528\) 7.49903 4.32957i 0.326354 0.188420i
\(529\) 23.4706 40.6522i 1.02046 1.76749i
\(530\) 6.49435i 0.282097i
\(531\) 1.97908i 0.0858846i
\(532\) 0 0
\(533\) 1.85514i 0.0803552i
\(534\) 19.5147 0.844484
\(535\) 5.62427 9.74153i 0.243159 0.421163i
\(536\) −16.9706 + 29.3939i −0.733017 + 1.26962i
\(537\) 3.29462 1.90215i 0.142174 0.0820839i
\(538\) 8.66386 15.0062i 0.373525 0.646965i
\(539\) 0 0
\(540\) 12.0000 6.92820i 0.516398 0.298142i
\(541\) 22.4558 12.9649i 0.965452 0.557404i 0.0676054 0.997712i \(-0.478464\pi\)
0.897847 + 0.440308i \(0.145131\pi\)
\(542\) 22.6303 + 39.1969i 0.972056 + 1.68365i
\(543\) 13.2426 + 7.64564i 0.568296 + 0.328106i
\(544\) 21.8538 + 12.6173i 0.936973 + 0.540962i
\(545\) 18.9259i 0.810698i
\(546\) 0 0
\(547\) −20.8284 −0.890559 −0.445280 0.895392i \(-0.646896\pi\)
−0.445280 + 0.895392i \(0.646896\pi\)
\(548\) 8.24264 14.2767i 0.352108 0.609869i
\(549\) 8.77758 15.2032i 0.374618 0.648858i
\(550\) −4.58579 7.94282i −0.195539 0.338683i
\(551\) −9.27958 16.0727i −0.395323 0.684720i
\(552\) −25.6033 −1.08975
\(553\) 0 0
\(554\) −3.51472 2.02922i −0.149326 0.0862135i
\(555\) 1.75736 + 3.04384i 0.0745957 + 0.129204i
\(556\) 34.7904i 1.47544i
\(557\) −2.48528 1.43488i −0.105305 0.0607977i 0.446423 0.894822i \(-0.352698\pi\)
−0.551727 + 0.834024i \(0.686031\pi\)
\(558\) −16.5512 −0.700667
\(559\) 18.5592 0.784969
\(560\) 0 0
\(561\) 9.65685 0.407713
\(562\) −23.6569 −0.997904
\(563\) 3.36124 + 1.94061i 0.141659 + 0.0817871i 0.569155 0.822231i \(-0.307271\pi\)
−0.427495 + 0.904018i \(0.640604\pi\)
\(564\) 27.7128i 1.16692i
\(565\) 0.321658 + 0.557127i 0.0135322 + 0.0234385i
\(566\) −18.6534 10.7695i −0.784060 0.452677i
\(567\) 0 0
\(568\) 0 0
\(569\) −16.9497 29.3578i −0.710570 1.23074i −0.964643 0.263559i \(-0.915104\pi\)
0.254073 0.967185i \(-0.418230\pi\)
\(570\) −4.20441 7.28225i −0.176103 0.305020i
\(571\) 6.17157 10.6895i 0.258272 0.447341i −0.707507 0.706706i \(-0.750180\pi\)
0.965779 + 0.259366i \(0.0835135\pi\)
\(572\) −11.7034 + 20.2710i −0.489346 + 0.847571i
\(573\) −2.19642 −0.0917566
\(574\) 0 0
\(575\) 27.1185i 1.13092i
\(576\) −7.31371 12.6677i −0.304738 0.527821i
\(577\) 17.9905 + 10.3868i 0.748956 + 0.432410i 0.825317 0.564670i \(-0.190997\pi\)
−0.0763605 + 0.997080i \(0.524330\pi\)
\(578\) 2.05025 + 3.55114i 0.0852793 + 0.147708i
\(579\) −13.2565 + 7.65367i −0.550923 + 0.318076i
\(580\) −10.2836 + 5.93723i −0.427002 + 0.246530i
\(581\) 0 0
\(582\) −7.07107 + 12.2474i −0.293105 + 0.507673i
\(583\) 6.00000 3.46410i 0.248495 0.143468i
\(584\) −17.3277 10.0042i −0.717026 0.413975i
\(585\) −7.09188 + 12.2835i −0.293213 + 0.507860i
\(586\) 8.27558 0.341861
\(587\) 15.7557i 0.650306i 0.945661 + 0.325153i \(0.105416\pi\)
−0.945661 + 0.325153i \(0.894584\pi\)
\(588\) 0 0
\(589\) 26.5241i 1.09291i
\(590\) 2.02922i 0.0835418i
\(591\) 6.85572 11.8745i 0.282007 0.488450i
\(592\) 8.48528 4.89898i 0.348743 0.201347i
\(593\) −3.08669 + 1.78210i −0.126755 + 0.0731821i −0.562037 0.827112i \(-0.689982\pi\)
0.435282 + 0.900294i \(0.356649\pi\)
\(594\) −12.8017 7.39104i −0.525258 0.303258i
\(595\) 0 0
\(596\) 1.02944 0.594346i 0.0421674 0.0243454i
\(597\) 6.00000 3.46410i 0.245564 0.141776i
\(598\) 59.9371 34.6047i 2.45101 1.41509i
\(599\) 5.27208 + 3.04384i 0.215411 + 0.124368i 0.603824 0.797118i \(-0.293643\pi\)
−0.388412 + 0.921486i \(0.626976\pi\)
\(600\) 8.59724 4.96362i 0.350981 0.202639i
\(601\) 22.2275i 0.906679i −0.891338 0.453339i \(-0.850233\pi\)
0.891338 0.453339i \(-0.149767\pi\)
\(602\) 0 0
\(603\) 21.9411 0.893512
\(604\) −9.51472 5.49333i −0.387148 0.223520i
\(605\) −4.63979 + 8.03635i −0.188634 + 0.326724i
\(606\) 0.727922 0.420266i 0.0295698 0.0170721i
\(607\) 5.30262 + 9.18440i 0.215227 + 0.372783i 0.953343 0.301890i \(-0.0976177\pi\)
−0.738116 + 0.674674i \(0.764284\pi\)
\(608\) −20.3007 + 11.7206i −0.823301 + 0.475333i
\(609\) 0 0
\(610\) −9.00000 + 15.5885i −0.364399 + 0.631158i
\(611\) 37.4558 + 64.8754i 1.51530 + 2.62458i
\(612\) 16.3128i 0.659406i
\(613\) 23.3345 + 13.4722i 0.942473 + 0.544137i 0.890735 0.454524i \(-0.150191\pi\)
0.0517380 + 0.998661i \(0.483524\pi\)
\(614\) 31.0949i 1.25489i
\(615\) 0.454893 0.0183430
\(616\) 0 0
\(617\) 33.2132 1.33711 0.668557 0.743661i \(-0.266912\pi\)
0.668557 + 0.743661i \(0.266912\pi\)
\(618\) 1.68106i 0.0676223i
\(619\) 16.0687 + 9.27726i 0.645855 + 0.372884i 0.786866 0.617124i \(-0.211702\pi\)
−0.141011 + 0.990008i \(0.545035\pi\)
\(620\) 16.9706 0.681554
\(621\) 21.8538 + 37.8519i 0.876962 + 1.51894i
\(622\) 7.95393 13.7766i 0.318923 0.552391i
\(623\) 0 0
\(624\) −21.9411 12.6677i −0.878348 0.507114i
\(625\) −0.863961 1.49642i −0.0345584 0.0598570i
\(626\) −18.4925 + 10.6767i −0.739111 + 0.426726i
\(627\) −4.48528 + 7.76874i −0.179125 + 0.310253i
\(628\) −12.5742 + 21.7792i −0.501765 + 0.869083i
\(629\) 10.9269 0.435684
\(630\) 0 0
\(631\) 39.5400i 1.57406i −0.616913 0.787031i \(-0.711617\pi\)
0.616913 0.787031i \(-0.288383\pi\)
\(632\) −4.97056 + 2.86976i −0.197718 + 0.114153i
\(633\) 3.29462 + 1.90215i 0.130950 + 0.0756038i
\(634\) −28.9706 + 16.7262i −1.15057 + 0.664281i
\(635\) 17.5552 10.1355i 0.696655 0.402214i
\(636\) 3.74952 + 6.49435i 0.148678 + 0.257518i
\(637\) 0 0
\(638\) 10.9706 + 6.33386i 0.434329 + 0.250760i
\(639\) 0 0
\(640\) 7.49903 + 12.9887i 0.296425 + 0.513424i
\(641\) 15.5355 26.9083i 0.613617 1.06282i −0.377009 0.926210i \(-0.623047\pi\)
0.990626 0.136606i \(-0.0436193\pi\)
\(642\) 12.9887i 0.512623i
\(643\) 30.3839i 1.19822i −0.800665 0.599112i \(-0.795520\pi\)
0.800665 0.599112i \(-0.204480\pi\)
\(644\) 0 0
\(645\) 4.55082i 0.179188i
\(646\) −26.1421 −1.02855
\(647\) −5.07517 + 8.79045i −0.199526 + 0.345588i −0.948375 0.317152i \(-0.897273\pi\)
0.748849 + 0.662741i \(0.230607\pi\)
\(648\) 0.242641 0.420266i 0.00953183 0.0165096i
\(649\) 1.87476 1.08239i 0.0735907 0.0424876i
\(650\) −13.4174 + 23.2396i −0.526273 + 0.911531i
\(651\) 0 0
\(652\) 20.1421 + 34.8872i 0.788827 + 1.36629i
\(653\) 17.6360 10.1822i 0.690152 0.398459i −0.113517 0.993536i \(-0.536212\pi\)
0.803669 + 0.595077i \(0.202878\pi\)
\(654\) 10.9269 + 18.9259i 0.427275 + 0.740063i
\(655\) −15.7279 9.08052i −0.614541 0.354805i
\(656\) 1.26810i 0.0495110i
\(657\) 12.9343i 0.504616i
\(658\) 0 0
\(659\) 42.4853 1.65499 0.827496 0.561472i \(-0.189765\pi\)
0.827496 + 0.561472i \(0.189765\pi\)
\(660\) 4.97056 + 2.86976i 0.193479 + 0.111705i
\(661\) −15.5667 + 26.9623i −0.605474 + 1.04871i 0.386503 + 0.922288i \(0.373683\pi\)
−0.991976 + 0.126423i \(0.959650\pi\)
\(662\) −10.7279 18.5813i −0.416953 0.722183i
\(663\) −14.1273 24.4692i −0.548659 0.950305i
\(664\) 16.0502i 0.622868i
\(665\) 0 0
\(666\) −5.48528 3.16693i −0.212550 0.122716i
\(667\) −18.7279 32.4377i −0.725148 1.25599i
\(668\) 33.1023 1.28077
\(669\) −4.54416 2.62357i −0.175687 0.101433i
\(670\) −22.4971 −0.869139
\(671\) 19.2025 0.741303
\(672\) 0 0
\(673\) −6.38478 −0.246115 −0.123058 0.992400i \(-0.539270\pi\)
−0.123058 + 0.992400i \(0.539270\pi\)
\(674\) −6.00000 −0.231111
\(675\) −14.6764 8.47343i −0.564895 0.326142i
\(676\) 42.4853 1.63405
\(677\) 14.7901 + 25.6173i 0.568431 + 0.984551i 0.996721 + 0.0809101i \(0.0257827\pi\)
−0.428290 + 0.903641i \(0.640884\pi\)
\(678\) 0.643315 + 0.371418i 0.0247064 + 0.0142642i
\(679\) 0 0
\(680\) 16.7262i 0.641419i
\(681\) 6.38478 + 11.0588i 0.244665 + 0.423772i
\(682\) −9.05213 15.6788i −0.346624 0.600371i
\(683\) −7.07107 + 12.2474i −0.270567 + 0.468636i −0.969007 0.247033i \(-0.920544\pi\)
0.698440 + 0.715668i \(0.253878\pi\)
\(684\) 13.1233 + 7.57675i 0.501782 + 0.289704i
\(685\) 10.9269 0.417495
\(686\) 0 0
\(687\) 16.4800i 0.628750i
\(688\) −12.6863 −0.483660
\(689\) −17.5552 10.1355i −0.668798 0.386131i
\(690\) −8.48528 14.6969i −0.323029 0.559503i
\(691\) −35.2712 + 20.3638i −1.34178 + 0.774676i −0.987068 0.160301i \(-0.948754\pi\)
−0.354710 + 0.934976i \(0.615420\pi\)
\(692\) −10.3778 17.9749i −0.394504 0.683302i
\(693\) 0 0
\(694\) 19.0711 33.0321i 0.723928 1.25388i
\(695\) −19.9706 + 11.5300i −0.757527 + 0.437358i
\(696\) −6.85572 + 11.8745i −0.259865 + 0.450100i
\(697\) 0.707107 1.22474i 0.0267836 0.0463905i
\(698\) −13.1233 −0.496725
\(699\) 12.7261i 0.481344i
\(700\) 0 0
\(701\) 47.7290i 1.80270i −0.433092 0.901350i \(-0.642578\pi\)
0.433092 0.901350i \(-0.357422\pi\)
\(702\) 43.2503i 1.63238i
\(703\) −5.07517 + 8.79045i −0.191414 + 0.331538i
\(704\) 8.00000 13.8564i 0.301511 0.522233i
\(705\) 15.9079 9.18440i 0.599124 0.345905i
\(706\) −25.2150 14.5579i −0.948980 0.547894i
\(707\) 0 0
\(708\) 1.17157 + 2.02922i 0.0440304 + 0.0762629i
\(709\) 31.8198 18.3712i 1.19502 0.689944i 0.235578 0.971856i \(-0.424302\pi\)
0.959440 + 0.281912i \(0.0909685\pi\)
\(710\) 0 0
\(711\) 3.21320 + 1.85514i 0.120505 + 0.0695733i
\(712\) 31.2276 18.0292i 1.17030 0.675675i
\(713\) 53.5306i 2.00474i
\(714\) 0 0
\(715\) −15.5147 −0.580218
\(716\) 3.51472 6.08767i 0.131351 0.227507i
\(717\) 3.42786 5.93723i 0.128016 0.221730i
\(718\) −21.2132 + 12.2474i −0.791670 + 0.457071i
\(719\) −9.82868 17.0238i −0.366548 0.634880i 0.622475 0.782639i \(-0.286127\pi\)
−0.989023 + 0.147760i \(0.952794\pi\)
\(720\) 4.84772 8.39651i 0.180664 0.312919i
\(721\) 0 0
\(722\) −1.29289 + 2.23936i −0.0481165 + 0.0833402i
\(723\) 9.10051 + 15.7625i 0.338451 + 0.586215i
\(724\) 28.2546 1.05007
\(725\) 12.5772 + 7.26143i 0.467104 + 0.269683i
\(726\) 10.7151i 0.397676i
\(727\) 49.6535 1.84155 0.920773 0.390098i \(-0.127559\pi\)
0.920773 + 0.390098i \(0.127559\pi\)
\(728\) 0 0
\(729\) −17.2843 −0.640158
\(730\) 13.2621i 0.490851i
\(731\) −12.2525 7.07401i −0.453177 0.261642i
\(732\) 20.7846i 0.768221i
\(733\) −13.4645 23.3212i −0.497322 0.861387i 0.502673 0.864476i \(-0.332350\pi\)
−0.999995 + 0.00308974i \(0.999017\pi\)
\(734\) 16.2295 28.1103i 0.599042 1.03757i
\(735\) 0 0
\(736\) −40.9706 + 23.6544i −1.51019 + 0.871911i
\(737\) 12.0000 + 20.7846i 0.442026 + 0.765611i
\(738\) −0.709933 + 0.409880i −0.0261330 + 0.0150879i
\(739\) −10.4142 + 18.0379i −0.383093 + 0.663537i −0.991503 0.130087i \(-0.958474\pi\)
0.608410 + 0.793623i \(0.291808\pi\)
\(740\) 5.62427 + 3.24718i 0.206752 + 0.119369i
\(741\) 26.2466 0.964194
\(742\) 0 0
\(743\) 6.33386i 0.232367i 0.993228 + 0.116183i \(0.0370660\pi\)
−0.993228 + 0.116183i \(0.962934\pi\)
\(744\) 16.9706 9.79796i 0.622171 0.359211i
\(745\) 0.682339 + 0.393949i 0.0249990 + 0.0144332i
\(746\) −36.7279 + 21.2049i −1.34470 + 0.776366i
\(747\) −8.98552 + 5.18779i −0.328763 + 0.189811i
\(748\) 15.4530 8.92177i 0.565016 0.326212i
\(749\) 0 0
\(750\) 14.4853 + 8.36308i 0.528928 + 0.305377i
\(751\) −36.9411 + 21.3280i −1.34800 + 0.778269i −0.987966 0.154670i \(-0.950568\pi\)
−0.360035 + 0.932939i \(0.617235\pi\)
\(752\) −25.6033 44.3462i −0.933656 1.61714i
\(753\) −10.9289 + 18.9295i −0.398272 + 0.689828i
\(754\) 37.0640i 1.34979i
\(755\) 7.28225i 0.265028i
\(756\) 0 0
\(757\) 8.18900i 0.297634i −0.988865 0.148817i \(-0.952453\pi\)
0.988865 0.148817i \(-0.0475466\pi\)
\(758\) −7.51472 −0.272947
\(759\) −9.05213 + 15.6788i −0.328572 + 0.569103i
\(760\) −13.4558 7.76874i −0.488095 0.281802i
\(761\) −4.09069 + 2.36176i −0.148287 + 0.0856137i −0.572308 0.820039i \(-0.693952\pi\)
0.424021 + 0.905653i \(0.360618\pi\)
\(762\) 11.7034 20.2710i 0.423971 0.734339i
\(763\) 0 0
\(764\) −3.51472 + 2.02922i −0.127158 + 0.0734147i
\(765\) 9.36396 5.40629i 0.338555 0.195465i
\(766\) −9.05213 15.6788i −0.327067 0.566496i
\(767\) −5.48528 3.16693i −0.198062 0.114351i
\(768\) 14.9981 + 8.65914i 0.541196 + 0.312460i
\(769\) 19.1342i 0.689996i 0.938603 + 0.344998i \(0.112120\pi\)
−0.938603 + 0.344998i \(0.887880\pi\)
\(770\) 0 0
\(771\) 1.31371 0.0473121
\(772\) −14.1421 + 24.4949i −0.508987 + 0.881591i
\(773\) −21.4184 + 37.0978i −0.770366 + 1.33431i 0.166996 + 0.985958i \(0.446593\pi\)
−0.937362 + 0.348356i \(0.886740\pi\)
\(774\) 4.10051 + 7.10228i 0.147390 + 0.255286i
\(775\) −10.3778 17.9749i −0.372781 0.645676i
\(776\) 26.1313i 0.938058i
\(777\) 0 0
\(778\) −46.4558 26.8213i −1.66552 0.961590i
\(779\) 0.656854 + 1.13770i 0.0235342 + 0.0407625i
\(780\) 16.7930i 0.601286i
\(781\) 0 0
\(782\) −52.7597 −1.88668
\(783\) 23.4069 0.836494
\(784\) 0 0
\(785\) −16.6690 −0.594944
\(786\) −20.9706 −0.747995
\(787\) −40.4405 23.3484i −1.44155 0.832279i −0.443596 0.896227i \(-0.646298\pi\)
−0.997953 + 0.0639477i \(0.979631\pi\)
\(788\) 25.3354i 0.902537i
\(789\) 10.1503 + 17.5809i 0.361362 + 0.625897i
\(790\) −3.29462 1.90215i −0.117217 0.0676755i
\(791\) 0 0
\(792\) −10.3431 −0.367528
\(793\) −28.0919 48.6566i −0.997572 1.72785i
\(794\) −9.76207 16.9084i −0.346443 0.600056i
\(795\) −2.48528 + 4.30463i −0.0881438 + 0.152670i
\(796\) 6.40083 11.0866i 0.226871 0.392953i
\(797\) −50.6575 −1.79438 −0.897190 0.441644i \(-0.854395\pi\)
−0.897190 + 0.441644i \(0.854395\pi\)
\(798\) 0 0
\(799\) 57.1067i 2.02029i
\(800\) 9.17157 15.8856i 0.324264 0.561642i
\(801\) −20.1870 11.6549i −0.713271 0.411807i
\(802\) −11.4853 19.8931i −0.405559 0.702449i
\(803\) −12.2525 + 7.07401i −0.432383 + 0.249636i
\(804\) −22.4971 + 12.9887i −0.793412 + 0.458076i
\(805\) 0 0
\(806\) −26.4853 + 45.8739i −0.932904 + 1.61584i
\(807\) 11.4853 6.63103i 0.404301 0.233423i
\(808\) 0.776550 1.34502i 0.0273189 0.0473178i
\(809\) −17.7279 + 30.7057i −0.623281 + 1.07955i 0.365590 + 0.930776i \(0.380867\pi\)
−0.988871 + 0.148778i \(0.952466\pi\)
\(810\) 0.321658 0.0113019
\(811\) 9.63274i 0.338251i −0.985594 0.169126i \(-0.945906\pi\)
0.985594 0.169126i \(-0.0540944\pi\)
\(812\) 0 0
\(813\) 34.6410i 1.21491i
\(814\) 6.92820i 0.242833i
\(815\) −13.3508 + 23.1242i −0.467657 + 0.810005i
\(816\) 9.65685 + 16.7262i 0.338058 + 0.585533i
\(817\) 11.3818 6.57128i 0.398198 0.229900i
\(818\) 11.3152 + 6.53281i 0.395626 + 0.228415i
\(819\) 0 0
\(820\) 0.727922 0.420266i 0.0254201 0.0146763i
\(821\) 32.4853 18.7554i 1.13374 0.654567i 0.188870 0.982002i \(-0.439517\pi\)
0.944874 + 0.327435i \(0.106184\pi\)
\(822\) 10.9269 6.30864i 0.381119 0.220039i
\(823\) −18.0000 10.3923i −0.627441 0.362253i 0.152320 0.988331i \(-0.451326\pi\)
−0.779760 + 0.626078i \(0.784659\pi\)
\(824\) −1.55310 2.69005i −0.0541048 0.0937123i
\(825\) 7.01962i 0.244392i
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 26.4853 + 15.2913i 0.920427 + 0.531409i
\(829\) −2.14931 + 3.72271i −0.0746486 + 0.129295i −0.900933 0.433957i \(-0.857117\pi\)
0.826285 + 0.563253i \(0.190450\pi\)
\(830\) 9.21320 5.31925i 0.319795 0.184634i
\(831\) −1.55310 2.69005i −0.0538765 0.0933168i
\(832\) −46.8138 −1.62298
\(833\) 0 0
\(834\) −13.3137 + 23.0600i −0.461016 + 0.798503i
\(835\) 10.9706 + 19.0016i 0.379652 + 0.657577i
\(836\) 16.5754i 0.573274i
\(837\) −28.9706 16.7262i −1.00137 0.578141i
\(838\) 10.3437i 0.357318i
\(839\) 35.1103 1.21214 0.606072 0.795410i \(-0.292745\pi\)
0.606072 + 0.795410i \(0.292745\pi\)
\(840\) 0 0
\(841\) 8.94113 0.308315
\(842\) 17.9149i 0.617387i
\(843\) −15.6804 9.05309i −0.540062 0.311805i
\(844\) 7.02944 0.241963
\(845\) 14.0802 + 24.3876i 0.484374 + 0.838960i
\(846\) −16.5512 + 28.6675i −0.569041 + 0.985608i
\(847\) 0 0
\(848\) 12.0000 + 6.92820i 0.412082 + 0.237915i
\(849\) −8.24264 14.2767i −0.282887 0.489974i
\(850\) 17.7160 10.2283i 0.607654 0.350829i
\(851\) −10.2426 + 17.7408i −0.351113 + 0.608146i
\(852\) 0 0
\(853\) −20.9830 −0.718445 −0.359223 0.933252i \(-0.616958\pi\)
−0.359223 + 0.933252i \(0.616958\pi\)
\(854\) 0 0
\(855\) 10.0441i 0.343503i
\(856\) −12.0000 20.7846i −0.410152 0.710403i
\(857\) 4.86724 + 2.81010i 0.166262 + 0.0959912i 0.580822 0.814031i \(-0.302731\pi\)
−0.414560 + 0.910022i \(0.636065\pi\)
\(858\) −15.5147 + 8.95743i −0.529664 + 0.305802i
\(859\) 29.0978 16.7996i 0.992803 0.573195i 0.0866923 0.996235i \(-0.472370\pi\)
0.906111 + 0.423040i \(0.139037\pi\)
\(860\) −4.20441 7.28225i −0.143369 0.248323i
\(861\) 0 0
\(862\) −33.2132 19.1757i −1.13125 0.653125i
\(863\) −20.4853 + 11.8272i −0.697327 + 0.402602i −0.806351 0.591437i \(-0.798561\pi\)
0.109024 + 0.994039i \(0.465227\pi\)
\(864\) 29.5641i 1.00579i
\(865\) 6.87868 11.9142i 0.233882 0.405096i
\(866\) 39.8309i 1.35351i
\(867\) 3.13839i 0.106585i
\(868\) 0 0
\(869\) 4.05845i 0.137673i
\(870\) −9.08831 −0.308123
\(871\) 35.1103 60.8129i 1.18967 2.06057i
\(872\) 34.9706 + 20.1903i 1.18425 + 0.683729i
\(873\) 14.6293 8.44623i 0.495127 0.285862i
\(874\) 24.5051 42.4441i 0.828897 1.43569i
\(875\) 0 0
\(876\) −7.65685 13.2621i −0.258701 0.448084i
\(877\) −32.1213 + 18.5453i −1.08466 + 0.626229i −0.932150 0.362073i \(-0.882069\pi\)
−0.152510 + 0.988302i \(0.548736\pi\)
\(878\) 15.7746 + 27.3224i 0.532368 + 0.922088i
\(879\) 5.48528 + 3.16693i 0.185014 + 0.106818i
\(880\) 10.6052 0.357502
\(881\) 36.0810i 1.21560i −0.794090 0.607800i \(-0.792052\pi\)
0.794090 0.607800i \(-0.207948\pi\)
\(882\) 0 0
\(883\) −46.4264 −1.56237 −0.781186 0.624298i \(-0.785385\pi\)
−0.781186 + 0.624298i \(0.785385\pi\)
\(884\) −45.2132 26.1039i −1.52068 0.877968i
\(885\) −0.776550 + 1.34502i −0.0261035 + 0.0452125i
\(886\) −20.0000 34.6410i −0.671913 1.16379i
\(887\) −2.97297 5.14933i −0.0998224 0.172898i 0.811789 0.583951i \(-0.198494\pi\)
−0.911611 + 0.411054i \(0.865161\pi\)
\(888\) 7.49903 0.251651
\(889\) 0 0
\(890\) 20.6985 + 11.9503i 0.693815 + 0.400574i
\(891\) −0.171573 0.297173i −0.00574791 0.00995567i
\(892\) −9.69545 −0.324628
\(893\) 45.9411 + 26.5241i 1.53736 + 0.887596i
\(894\) 0.909785 0.0304278
\(895\) 4.65930 0.155743
\(896\) 0 0
\(897\) 52.9706 1.76864
\(898\) 8.00000 0.266963
\(899\) 24.8268 + 14.3337i 0.828018 + 0.478057i
\(900\) −11.8579 −0.395262
\(901\) 7.72648 + 13.3827i 0.257406 + 0.445841i
\(902\) −0.776550 0.448342i −0.0258563 0.0149281i
\(903\) 0 0
\(904\) 1.37258 0.0456514
\(905\) 9.36396 + 16.2189i 0.311269 + 0.539133i
\(906\) −4.20441 7.28225i −0.139682 0.241937i
\(907\) 8.00000 13.8564i 0.265636 0.460094i −0.702094 0.712084i \(-0.747752\pi\)
0.967730 + 0.251990i \(0.0810849\pi\)
\(908\) 20.4339 + 11.7975i 0.678123 + 0.391515i
\(909\) −1.00400 −0.0333005
\(910\) 0 0
\(911\) 15.2913i 0.506623i 0.967385 + 0.253311i \(0.0815197\pi\)
−0.967385 + 0.253311i \(0.918480\pi\)
\(912\) −17.9411 −0.594090
\(913\) −9.82868 5.67459i −0.325282 0.187802i
\(914\) 18.9706 + 32.8580i 0.627490 + 1.08685i
\(915\) −11.9309 + 6.88830i −0.394423 + 0.227720i
\(916\) −15.2255 26.3714i −0.503065 0.871334i
\(917\) 0 0
\(918\) 16.4853 28.5533i 0.544095 0.942401i
\(919\) 32.4853 18.7554i 1.07159 0.618683i 0.142975 0.989726i \(-0.454333\pi\)
0.928616 + 0.371043i \(0.121000\pi\)
\(920\) −27.1564 15.6788i −0.895320 0.516913i
\(921\) 11.8995 20.6105i 0.392102 0.679140i
\(922\) 26.8347 0.883755
\(923\) 0 0
\(924\) 0 0
\(925\) 7.94282i 0.261158i
\(926\) 12.6677i 0.416287i
\(927\) −1.00400 + 1.73897i −0.0329756 + 0.0571154i
\(928\) 25.3354i 0.831676i
\(929\) 19.3162 11.1522i 0.633744 0.365892i −0.148457 0.988919i \(-0.547431\pi\)
0.782201 + 0.623027i \(0.214097\pi\)
\(930\) 11.2485 + 6.49435i 0.368854 + 0.212958i
\(931\) 0 0
\(932\) 11.7574 + 20.3643i 0.385125 + 0.667056i
\(933\) 10.5442 6.08767i 0.345200 0.199301i
\(934\) −45.0332 + 25.9999i −1.47353 + 0.850744i
\(935\) 10.2426 + 5.91359i 0.334970 + 0.193395i
\(936\) 15.1313 + 26.2082i 0.494582 + 0.856641i
\(937\) 51.4202i 1.67983i 0.542721 + 0.839913i \(0.317394\pi\)
−0.542721 + 0.839913i \(0.682606\pi\)
\(938\) 0 0
\(939\) −16.3431 −0.533338
\(940\) 16.9706 29.3939i 0.553519 0.958723i
\(941\) 6.12627 10.6110i 0.199711 0.345909i −0.748724 0.662882i \(-0.769333\pi\)
0.948435 + 0.316973i \(0.102666\pi\)
\(942\) −16.6690 + 9.62388i −0.543107 + 0.313563i
\(943\) 1.32565 + 2.29610i 0.0431692 + 0.0747713i
\(944\) 3.74952 + 2.16478i 0.122036 + 0.0704577i
\(945\) 0 0
\(946\) −4.48528 + 7.76874i −0.145829 + 0.252583i
\(947\) −0.272078 0.471253i −0.00884135 0.0153137i 0.861571 0.507637i \(-0.169481\pi\)
−0.870412 + 0.492324i \(0.836148\pi\)
\(948\) −4.39283 −0.142673
\(949\) 35.8492 + 20.6976i 1.16372 + 0.671872i
\(950\) 19.0029i 0.616534i
\(951\) −25.6033 −0.830244
\(952\) 0 0
\(953\) −18.6863 −0.605308 −0.302654 0.953100i \(-0.597873\pi\)
−0.302654 + 0.953100i \(0.597873\pi\)
\(954\) 8.95743i 0.290007i
\(955\) −2.32965 1.34502i −0.0753857 0.0435240i
\(956\) 12.6677i 0.409703i
\(957\) 4.84772 + 8.39651i 0.156705 + 0.271420i
\(958\) −7.17738 + 12.4316i −0.231890 + 0.401646i
\(959\) 0 0
\(960\) 11.4790i 0.370484i
\(961\) −4.98528 8.63476i −0.160816 0.278541i
\(962\) −17.5552 + 10.1355i −0.566001 + 0.326781i
\(963\) −7.75736 + 13.4361i −0.249977 + 0.432974i
\(964\) 29.1254 + 16.8155i 0.938065 + 0.541592i
\(965\) −18.7476 −0.603506
\(966\) 0 0
\(967\) 27.9590i 0.899101i 0.893255 + 0.449550i \(0.148416\pi\)
−0.893255 + 0.449550i \(0.851584\pi\)
\(968\) 9.89949 + 17.1464i 0.318182 + 0.551107i
\(969\) −17.3277 10.0042i −0.556646 0.321380i
\(970\) −15.0000 + 8.66025i −0.481621 + 0.278064i
\(971\) −7.01655 + 4.05101i −0.225172 + 0.130003i −0.608343 0.793675i \(-0.708165\pi\)
0.383171 + 0.923677i \(0.374832\pi\)
\(972\) −26.8347 + 15.4930i −0.860725 + 0.496940i
\(973\) 0 0
\(974\) −17.6985 10.2182i −0.567096 0.327413i
\(975\) −17.7868 + 10.2692i −0.569633 + 0.328878i
\(976\) 19.2025 + 33.2597i 0.614656 + 1.06462i
\(977\) 2.60660 4.51477i 0.0833926 0.144440i −0.821313 0.570478i \(-0.806758\pi\)
0.904705 + 0.426038i \(0.140091\pi\)
\(978\) 30.8322i 0.985907i
\(979\) 25.4972i 0.814894i
\(980\) 0 0
\(981\) 26.1039i 0.833432i
\(982\) 11.0294 0.351963
\(983\) −13.3508 + 23.1242i −0.425823 + 0.737547i −0.996497 0.0836298i \(-0.973349\pi\)
0.570674 + 0.821177i \(0.306682\pi\)
\(984\) 0.485281 0.840532i 0.0154702 0.0267952i
\(985\) 14.5432 8.39651i 0.463384 0.267535i
\(986\) −14.1273 + 24.4692i −0.449905 + 0.779258i
\(987\) 0 0
\(988\) 42.0000 24.2487i 1.33620 0.771454i
\(989\) 22.9706 13.2621i 0.730421 0.421709i
\(990\) −3.42786 5.93723i −0.108945 0.188697i
\(991\) −39.9411 23.0600i −1.26877 0.732526i −0.294016 0.955800i \(-0.594992\pi\)
−0.974756 + 0.223275i \(0.928325\pi\)
\(992\) 18.1043 31.3575i 0.574811 0.995602i
\(993\) 16.4216i 0.521123i
\(994\) 0 0
\(995\) 8.48528 0.269002
\(996\) 6.14214 10.6385i 0.194621 0.337093i
\(997\) 16.1158 27.9134i 0.510392 0.884025i −0.489535 0.871983i \(-0.662834\pi\)
0.999927 0.0120416i \(-0.00383305\pi\)
\(998\) −6.00000 10.3923i −0.189927 0.328963i
\(999\) −6.40083 11.0866i −0.202513 0.350763i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.2.m.e.227.4 8
4.3 odd 2 1568.2.q.d.815.2 8
7.2 even 3 392.2.m.c.19.1 8
7.3 odd 6 392.2.e.c.195.4 yes 8
7.4 even 3 392.2.e.c.195.3 yes 8
7.5 odd 6 392.2.m.c.19.2 8
7.6 odd 2 inner 392.2.m.e.227.3 8
8.3 odd 2 392.2.m.c.227.2 8
8.5 even 2 1568.2.q.c.815.2 8
28.3 even 6 1568.2.e.c.783.4 8
28.11 odd 6 1568.2.e.c.783.5 8
28.19 even 6 1568.2.q.c.1391.2 8
28.23 odd 6 1568.2.q.c.1391.3 8
28.27 even 2 1568.2.q.d.815.3 8
56.3 even 6 392.2.e.c.195.2 yes 8
56.5 odd 6 1568.2.q.d.1391.2 8
56.11 odd 6 392.2.e.c.195.1 8
56.13 odd 2 1568.2.q.c.815.3 8
56.19 even 6 inner 392.2.m.e.19.4 8
56.27 even 2 392.2.m.c.227.1 8
56.37 even 6 1568.2.q.d.1391.3 8
56.45 odd 6 1568.2.e.c.783.3 8
56.51 odd 6 inner 392.2.m.e.19.3 8
56.53 even 6 1568.2.e.c.783.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
392.2.e.c.195.1 8 56.11 odd 6
392.2.e.c.195.2 yes 8 56.3 even 6
392.2.e.c.195.3 yes 8 7.4 even 3
392.2.e.c.195.4 yes 8 7.3 odd 6
392.2.m.c.19.1 8 7.2 even 3
392.2.m.c.19.2 8 7.5 odd 6
392.2.m.c.227.1 8 56.27 even 2
392.2.m.c.227.2 8 8.3 odd 2
392.2.m.e.19.3 8 56.51 odd 6 inner
392.2.m.e.19.4 8 56.19 even 6 inner
392.2.m.e.227.3 8 7.6 odd 2 inner
392.2.m.e.227.4 8 1.1 even 1 trivial
1568.2.e.c.783.3 8 56.45 odd 6
1568.2.e.c.783.4 8 28.3 even 6
1568.2.e.c.783.5 8 28.11 odd 6
1568.2.e.c.783.6 8 56.53 even 6
1568.2.q.c.815.2 8 8.5 even 2
1568.2.q.c.815.3 8 56.13 odd 2
1568.2.q.c.1391.2 8 28.19 even 6
1568.2.q.c.1391.3 8 28.23 odd 6
1568.2.q.d.815.2 8 4.3 odd 2
1568.2.q.d.815.3 8 28.27 even 2
1568.2.q.d.1391.2 8 56.5 odd 6
1568.2.q.d.1391.3 8 56.37 even 6