Properties

Label 1568.2.e.c.783.5
Level $1568$
Weight $2$
Character 1568.783
Analytic conductor $12.521$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1568,2,Mod(783,1568)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1568, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1568.783"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1568.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5205430369\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.339738624.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 14x^{4} - 8x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 392)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 783.5
Root \(-0.662827 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 1568.783
Dual form 1568.2.e.c.783.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.08239i q^{3} -1.32565 q^{5} +1.82843 q^{9} +2.00000 q^{11} -5.85172 q^{13} -1.43488i q^{15} -4.46088i q^{17} +4.14386i q^{19} +8.36308i q^{23} -3.24264 q^{25} +5.22625i q^{27} +4.47871i q^{29} +6.40083 q^{31} +2.16478i q^{33} +2.44949i q^{37} -6.33386i q^{39} -0.317025i q^{41} +3.17157 q^{43} -2.42386 q^{45} -12.8017 q^{47} +4.82843 q^{51} -3.46410i q^{53} -2.65131 q^{55} -4.48528 q^{57} +1.08239i q^{59} -9.60124 q^{61} +7.75736 q^{65} -12.0000 q^{67} -9.05213 q^{69} +7.07401i q^{73} -3.50981i q^{75} +2.02922i q^{79} -0.171573 q^{81} +5.67459i q^{83} +5.91359i q^{85} -4.84772 q^{87} +12.7486i q^{89} +6.92820i q^{93} -5.49333i q^{95} +9.23880i q^{97} +3.65685 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} + 16 q^{11} + 8 q^{25} + 48 q^{43} + 16 q^{51} + 32 q^{57} + 96 q^{65} - 96 q^{67} - 24 q^{81} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1568\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(1471\) \(1473\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.08239i 0.624919i 0.949931 + 0.312460i \(0.101153\pi\)
−0.949931 + 0.312460i \(0.898847\pi\)
\(4\) 0 0
\(5\) −1.32565 −0.592851 −0.296425 0.955056i \(-0.595795\pi\)
−0.296425 + 0.955056i \(0.595795\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.82843 0.609476
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −5.85172 −1.62298 −0.811488 0.584369i \(-0.801342\pi\)
−0.811488 + 0.584369i \(0.801342\pi\)
\(14\) 0 0
\(15\) − 1.43488i − 0.370484i
\(16\) 0 0
\(17\) − 4.46088i − 1.08192i −0.841047 0.540962i \(-0.818060\pi\)
0.841047 0.540962i \(-0.181940\pi\)
\(18\) 0 0
\(19\) 4.14386i 0.950667i 0.879806 + 0.475333i \(0.157673\pi\)
−0.879806 + 0.475333i \(0.842327\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.36308i 1.74382i 0.489664 + 0.871911i \(0.337120\pi\)
−0.489664 + 0.871911i \(0.662880\pi\)
\(24\) 0 0
\(25\) −3.24264 −0.648528
\(26\) 0 0
\(27\) 5.22625i 1.00579i
\(28\) 0 0
\(29\) 4.47871i 0.831676i 0.909439 + 0.415838i \(0.136512\pi\)
−0.909439 + 0.415838i \(0.863488\pi\)
\(30\) 0 0
\(31\) 6.40083 1.14962 0.574811 0.818286i \(-0.305076\pi\)
0.574811 + 0.818286i \(0.305076\pi\)
\(32\) 0 0
\(33\) 2.16478i 0.376841i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.44949i 0.402694i 0.979520 + 0.201347i \(0.0645318\pi\)
−0.979520 + 0.201347i \(0.935468\pi\)
\(38\) 0 0
\(39\) − 6.33386i − 1.01423i
\(40\) 0 0
\(41\) − 0.317025i − 0.0495110i −0.999694 0.0247555i \(-0.992119\pi\)
0.999694 0.0247555i \(-0.00788073\pi\)
\(42\) 0 0
\(43\) 3.17157 0.483660 0.241830 0.970319i \(-0.422252\pi\)
0.241830 + 0.970319i \(0.422252\pi\)
\(44\) 0 0
\(45\) −2.42386 −0.361328
\(46\) 0 0
\(47\) −12.8017 −1.86731 −0.933656 0.358170i \(-0.883401\pi\)
−0.933656 + 0.358170i \(0.883401\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 4.82843 0.676115
\(52\) 0 0
\(53\) − 3.46410i − 0.475831i −0.971286 0.237915i \(-0.923536\pi\)
0.971286 0.237915i \(-0.0764641\pi\)
\(54\) 0 0
\(55\) −2.65131 −0.357502
\(56\) 0 0
\(57\) −4.48528 −0.594090
\(58\) 0 0
\(59\) 1.08239i 0.140915i 0.997515 + 0.0704577i \(0.0224460\pi\)
−0.997515 + 0.0704577i \(0.977554\pi\)
\(60\) 0 0
\(61\) −9.60124 −1.22931 −0.614656 0.788795i \(-0.710705\pi\)
−0.614656 + 0.788795i \(0.710705\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.75736 0.962182
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 0 0
\(69\) −9.05213 −1.08975
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 7.07401i 0.827950i 0.910288 + 0.413975i \(0.135860\pi\)
−0.910288 + 0.413975i \(0.864140\pi\)
\(74\) 0 0
\(75\) − 3.50981i − 0.405278i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.02922i 0.228306i 0.993463 + 0.114153i \(0.0364153\pi\)
−0.993463 + 0.114153i \(0.963585\pi\)
\(80\) 0 0
\(81\) −0.171573 −0.0190637
\(82\) 0 0
\(83\) 5.67459i 0.622868i 0.950268 + 0.311434i \(0.100809\pi\)
−0.950268 + 0.311434i \(0.899191\pi\)
\(84\) 0 0
\(85\) 5.91359i 0.641419i
\(86\) 0 0
\(87\) −4.84772 −0.519731
\(88\) 0 0
\(89\) 12.7486i 1.35135i 0.737200 + 0.675675i \(0.236148\pi\)
−0.737200 + 0.675675i \(0.763852\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.92820i 0.718421i
\(94\) 0 0
\(95\) − 5.49333i − 0.563603i
\(96\) 0 0
\(97\) 9.23880i 0.938058i 0.883183 + 0.469029i \(0.155396\pi\)
−0.883183 + 0.469029i \(0.844604\pi\)
\(98\) 0 0
\(99\) 3.65685 0.367528
\(100\) 0 0
\(101\) −0.549104 −0.0546379 −0.0273189 0.999627i \(-0.508697\pi\)
−0.0273189 + 0.999627i \(0.508697\pi\)
\(102\) 0 0
\(103\) −1.09821 −0.108210 −0.0541048 0.998535i \(-0.517231\pi\)
−0.0541048 + 0.998535i \(0.517231\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.48528 −0.820303 −0.410152 0.912017i \(-0.634524\pi\)
−0.410152 + 0.912017i \(0.634524\pi\)
\(108\) 0 0
\(109\) − 14.2767i − 1.36746i −0.729736 0.683729i \(-0.760357\pi\)
0.729736 0.683729i \(-0.239643\pi\)
\(110\) 0 0
\(111\) −2.65131 −0.251651
\(112\) 0 0
\(113\) 0.485281 0.0456514 0.0228257 0.999739i \(-0.492734\pi\)
0.0228257 + 0.999739i \(0.492734\pi\)
\(114\) 0 0
\(115\) − 11.0866i − 1.03383i
\(116\) 0 0
\(117\) −10.6994 −0.989164
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0.343146 0.0309404
\(124\) 0 0
\(125\) 10.9269 0.977331
\(126\) 0 0
\(127\) 15.2913i 1.35688i 0.734655 + 0.678441i \(0.237344\pi\)
−0.734655 + 0.678441i \(0.762656\pi\)
\(128\) 0 0
\(129\) 3.43289i 0.302249i
\(130\) 0 0
\(131\) 13.6997i 1.19695i 0.801143 + 0.598473i \(0.204226\pi\)
−0.801143 + 0.598473i \(0.795774\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) − 6.92820i − 0.596285i
\(136\) 0 0
\(137\) −8.24264 −0.704216 −0.352108 0.935959i \(-0.614535\pi\)
−0.352108 + 0.935959i \(0.614535\pi\)
\(138\) 0 0
\(139\) − 17.3952i − 1.47544i −0.675106 0.737721i \(-0.735902\pi\)
0.675106 0.737721i \(-0.264098\pi\)
\(140\) 0 0
\(141\) − 13.8564i − 1.16692i
\(142\) 0 0
\(143\) −11.7034 −0.978691
\(144\) 0 0
\(145\) − 5.93723i − 0.493060i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0.594346i 0.0486907i 0.999704 + 0.0243454i \(0.00775013\pi\)
−0.999704 + 0.0243454i \(0.992250\pi\)
\(150\) 0 0
\(151\) − 5.49333i − 0.447040i −0.974699 0.223520i \(-0.928245\pi\)
0.974699 0.223520i \(-0.0717549\pi\)
\(152\) 0 0
\(153\) − 8.15640i − 0.659406i
\(154\) 0 0
\(155\) −8.48528 −0.681554
\(156\) 0 0
\(157\) 12.5742 1.00353 0.501765 0.865004i \(-0.332684\pi\)
0.501765 + 0.865004i \(0.332684\pi\)
\(158\) 0 0
\(159\) 3.74952 0.297356
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 20.1421 1.57765 0.788827 0.614615i \(-0.210689\pi\)
0.788827 + 0.614615i \(0.210689\pi\)
\(164\) 0 0
\(165\) − 2.86976i − 0.223410i
\(166\) 0 0
\(167\) −16.5512 −1.28077 −0.640384 0.768055i \(-0.721225\pi\)
−0.640384 + 0.768055i \(0.721225\pi\)
\(168\) 0 0
\(169\) 21.2426 1.63405
\(170\) 0 0
\(171\) 7.57675i 0.579408i
\(172\) 0 0
\(173\) 10.3778 0.789009 0.394504 0.918894i \(-0.370916\pi\)
0.394504 + 0.918894i \(0.370916\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1.17157 −0.0880608
\(178\) 0 0
\(179\) 3.51472 0.262702 0.131351 0.991336i \(-0.458068\pi\)
0.131351 + 0.991336i \(0.458068\pi\)
\(180\) 0 0
\(181\) 14.1273 1.05007 0.525037 0.851079i \(-0.324051\pi\)
0.525037 + 0.851079i \(0.324051\pi\)
\(182\) 0 0
\(183\) − 10.3923i − 0.768221i
\(184\) 0 0
\(185\) − 3.24718i − 0.238737i
\(186\) 0 0
\(187\) − 8.92177i − 0.652424i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.02922i 0.146829i 0.997301 + 0.0734147i \(0.0233897\pi\)
−0.997301 + 0.0734147i \(0.976610\pi\)
\(192\) 0 0
\(193\) 14.1421 1.01797 0.508987 0.860774i \(-0.330020\pi\)
0.508987 + 0.860774i \(0.330020\pi\)
\(194\) 0 0
\(195\) 8.39651i 0.601286i
\(196\) 0 0
\(197\) − 12.6677i − 0.902537i −0.892388 0.451269i \(-0.850972\pi\)
0.892388 0.451269i \(-0.149028\pi\)
\(198\) 0 0
\(199\) 6.40083 0.453742 0.226871 0.973925i \(-0.427150\pi\)
0.226871 + 0.973925i \(0.427150\pi\)
\(200\) 0 0
\(201\) − 12.9887i − 0.916153i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0.420266i 0.0293527i
\(206\) 0 0
\(207\) 15.2913i 1.06282i
\(208\) 0 0
\(209\) 8.28772i 0.573274i
\(210\) 0 0
\(211\) −3.51472 −0.241963 −0.120982 0.992655i \(-0.538604\pi\)
−0.120982 + 0.992655i \(0.538604\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.20441 −0.286738
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −7.65685 −0.517402
\(220\) 0 0
\(221\) 26.1039i 1.75594i
\(222\) 0 0
\(223\) 4.84772 0.324628 0.162314 0.986739i \(-0.448104\pi\)
0.162314 + 0.986739i \(0.448104\pi\)
\(224\) 0 0
\(225\) −5.92893 −0.395262
\(226\) 0 0
\(227\) 11.7975i 0.783029i 0.920172 + 0.391515i \(0.128049\pi\)
−0.920172 + 0.391515i \(0.871951\pi\)
\(228\) 0 0
\(229\) 15.2255 1.00613 0.503065 0.864249i \(-0.332206\pi\)
0.503065 + 0.864249i \(0.332206\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.7574 −0.770250 −0.385125 0.922864i \(-0.625842\pi\)
−0.385125 + 0.922864i \(0.625842\pi\)
\(234\) 0 0
\(235\) 16.9706 1.10704
\(236\) 0 0
\(237\) −2.19642 −0.142673
\(238\) 0 0
\(239\) 6.33386i 0.409703i 0.978793 + 0.204852i \(0.0656712\pi\)
−0.978793 + 0.204852i \(0.934329\pi\)
\(240\) 0 0
\(241\) − 16.8155i − 1.08318i −0.840641 0.541592i \(-0.817822\pi\)
0.840641 0.541592i \(-0.182178\pi\)
\(242\) 0 0
\(243\) 15.4930i 0.993879i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 24.2487i − 1.54291i
\(248\) 0 0
\(249\) −6.14214 −0.389242
\(250\) 0 0
\(251\) − 20.1940i − 1.27464i −0.770601 0.637318i \(-0.780044\pi\)
0.770601 0.637318i \(-0.219956\pi\)
\(252\) 0 0
\(253\) 16.7262i 1.05156i
\(254\) 0 0
\(255\) −6.40083 −0.400835
\(256\) 0 0
\(257\) 1.21371i 0.0757090i 0.999283 + 0.0378545i \(0.0120523\pi\)
−0.999283 + 0.0378545i \(0.987948\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 8.18900i 0.506886i
\(262\) 0 0
\(263\) 18.7554i 1.15651i 0.815857 + 0.578253i \(0.196265\pi\)
−0.815857 + 0.578253i \(0.803735\pi\)
\(264\) 0 0
\(265\) 4.59220i 0.282097i
\(266\) 0 0
\(267\) −13.7990 −0.844484
\(268\) 0 0
\(269\) −12.2525 −0.747051 −0.373525 0.927620i \(-0.621851\pi\)
−0.373525 + 0.927620i \(0.621851\pi\)
\(270\) 0 0
\(271\) 32.0041 1.94411 0.972056 0.234749i \(-0.0754267\pi\)
0.972056 + 0.234749i \(0.0754267\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.48528 −0.391077
\(276\) 0 0
\(277\) 2.86976i 0.172427i 0.996277 + 0.0862135i \(0.0274767\pi\)
−0.996277 + 0.0862135i \(0.972523\pi\)
\(278\) 0 0
\(279\) 11.7034 0.700667
\(280\) 0 0
\(281\) −16.7279 −0.997904 −0.498952 0.866630i \(-0.666282\pi\)
−0.498952 + 0.866630i \(0.666282\pi\)
\(282\) 0 0
\(283\) − 15.2304i − 0.905354i −0.891675 0.452677i \(-0.850469\pi\)
0.891675 0.452677i \(-0.149531\pi\)
\(284\) 0 0
\(285\) 5.94593 0.352207
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −2.89949 −0.170559
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 0 0
\(293\) 5.85172 0.341861 0.170931 0.985283i \(-0.445323\pi\)
0.170931 + 0.985283i \(0.445323\pi\)
\(294\) 0 0
\(295\) − 1.43488i − 0.0835418i
\(296\) 0 0
\(297\) 10.4525i 0.606516i
\(298\) 0 0
\(299\) − 48.9384i − 2.83018i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) − 0.594346i − 0.0341443i
\(304\) 0 0
\(305\) 12.7279 0.728799
\(306\) 0 0
\(307\) 21.9874i 1.25489i 0.778662 + 0.627444i \(0.215899\pi\)
−0.778662 + 0.627444i \(0.784101\pi\)
\(308\) 0 0
\(309\) − 1.18869i − 0.0676223i
\(310\) 0 0
\(311\) 11.2485 0.637847 0.318923 0.947781i \(-0.396679\pi\)
0.318923 + 0.947781i \(0.396679\pi\)
\(312\) 0 0
\(313\) − 15.0991i − 0.853451i −0.904381 0.426726i \(-0.859667\pi\)
0.904381 0.426726i \(-0.140333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 23.6544i − 1.32856i −0.747483 0.664281i \(-0.768738\pi\)
0.747483 0.664281i \(-0.231262\pi\)
\(318\) 0 0
\(319\) 8.95743i 0.501520i
\(320\) 0 0
\(321\) − 9.18440i − 0.512623i
\(322\) 0 0
\(323\) 18.4853 1.02855
\(324\) 0 0
\(325\) 18.9750 1.05255
\(326\) 0 0
\(327\) 15.4530 0.854551
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −15.1716 −0.833905 −0.416953 0.908928i \(-0.636902\pi\)
−0.416953 + 0.908928i \(0.636902\pi\)
\(332\) 0 0
\(333\) 4.47871i 0.245432i
\(334\) 0 0
\(335\) 15.9079 0.869139
\(336\) 0 0
\(337\) −4.24264 −0.231111 −0.115556 0.993301i \(-0.536865\pi\)
−0.115556 + 0.993301i \(0.536865\pi\)
\(338\) 0 0
\(339\) 0.525265i 0.0285285i
\(340\) 0 0
\(341\) 12.8017 0.693248
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 12.0000 0.646058
\(346\) 0 0
\(347\) 26.9706 1.44786 0.723928 0.689876i \(-0.242335\pi\)
0.723928 + 0.689876i \(0.242335\pi\)
\(348\) 0 0
\(349\) −9.27958 −0.496725 −0.248362 0.968667i \(-0.579892\pi\)
−0.248362 + 0.968667i \(0.579892\pi\)
\(350\) 0 0
\(351\) − 30.5826i − 1.63238i
\(352\) 0 0
\(353\) 20.5880i 1.09579i 0.836548 + 0.547894i \(0.184570\pi\)
−0.836548 + 0.547894i \(0.815430\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 17.3205i 0.914141i 0.889430 + 0.457071i \(0.151101\pi\)
−0.889430 + 0.457071i \(0.848899\pi\)
\(360\) 0 0
\(361\) 1.82843 0.0962330
\(362\) 0 0
\(363\) − 7.57675i − 0.397676i
\(364\) 0 0
\(365\) − 9.37769i − 0.490851i
\(366\) 0 0
\(367\) 22.9520 1.19808 0.599042 0.800718i \(-0.295548\pi\)
0.599042 + 0.800718i \(0.295548\pi\)
\(368\) 0 0
\(369\) − 0.579658i − 0.0301758i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) − 29.9882i − 1.55273i −0.630283 0.776366i \(-0.717061\pi\)
0.630283 0.776366i \(-0.282939\pi\)
\(374\) 0 0
\(375\) 11.8272i 0.610753i
\(376\) 0 0
\(377\) − 26.2082i − 1.34979i
\(378\) 0 0
\(379\) 5.31371 0.272947 0.136473 0.990644i \(-0.456423\pi\)
0.136473 + 0.990644i \(0.456423\pi\)
\(380\) 0 0
\(381\) −16.5512 −0.847942
\(382\) 0 0
\(383\) −12.8017 −0.654134 −0.327067 0.945001i \(-0.606060\pi\)
−0.327067 + 0.945001i \(0.606060\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5.79899 0.294779
\(388\) 0 0
\(389\) 37.9310i 1.92318i 0.274490 + 0.961590i \(0.411491\pi\)
−0.274490 + 0.961590i \(0.588509\pi\)
\(390\) 0 0
\(391\) 37.3067 1.88668
\(392\) 0 0
\(393\) −14.8284 −0.747995
\(394\) 0 0
\(395\) − 2.69005i − 0.135351i
\(396\) 0 0
\(397\) 13.8056 0.692886 0.346443 0.938071i \(-0.387389\pi\)
0.346443 + 0.938071i \(0.387389\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.2426 0.811119 0.405559 0.914069i \(-0.367077\pi\)
0.405559 + 0.914069i \(0.367077\pi\)
\(402\) 0 0
\(403\) −37.4558 −1.86581
\(404\) 0 0
\(405\) 0.227446 0.0113019
\(406\) 0 0
\(407\) 4.89898i 0.242833i
\(408\) 0 0
\(409\) − 9.23880i − 0.456829i −0.973564 0.228415i \(-0.926646\pi\)
0.973564 0.228415i \(-0.0733541\pi\)
\(410\) 0 0
\(411\) − 8.92177i − 0.440078i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) − 7.52255i − 0.369267i
\(416\) 0 0
\(417\) 18.8284 0.922032
\(418\) 0 0
\(419\) 7.31411i 0.357318i 0.983911 + 0.178659i \(0.0571759\pi\)
−0.983911 + 0.178659i \(0.942824\pi\)
\(420\) 0 0
\(421\) 12.6677i 0.617387i 0.951162 + 0.308693i \(0.0998917\pi\)
−0.951162 + 0.308693i \(0.900108\pi\)
\(422\) 0 0
\(423\) −23.4069 −1.13808
\(424\) 0 0
\(425\) 14.4650i 0.701658i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) − 12.6677i − 0.611603i
\(430\) 0 0
\(431\) − 27.1185i − 1.30625i −0.757250 0.653125i \(-0.773457\pi\)
0.757250 0.653125i \(-0.226543\pi\)
\(432\) 0 0
\(433\) − 28.1647i − 1.35351i −0.736208 0.676755i \(-0.763386\pi\)
0.736208 0.676755i \(-0.236614\pi\)
\(434\) 0 0
\(435\) 6.42641 0.308123
\(436\) 0 0
\(437\) −34.6554 −1.65779
\(438\) 0 0
\(439\) 22.3087 1.06474 0.532368 0.846513i \(-0.321302\pi\)
0.532368 + 0.846513i \(0.321302\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −28.2843 −1.34383 −0.671913 0.740630i \(-0.734527\pi\)
−0.671913 + 0.740630i \(0.734527\pi\)
\(444\) 0 0
\(445\) − 16.9002i − 0.801148i
\(446\) 0 0
\(447\) −0.643315 −0.0304278
\(448\) 0 0
\(449\) 5.65685 0.266963 0.133482 0.991051i \(-0.457384\pi\)
0.133482 + 0.991051i \(0.457384\pi\)
\(450\) 0 0
\(451\) − 0.634051i − 0.0298563i
\(452\) 0 0
\(453\) 5.94593 0.279364
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −26.8284 −1.25498 −0.627490 0.778624i \(-0.715918\pi\)
−0.627490 + 0.778624i \(0.715918\pi\)
\(458\) 0 0
\(459\) 23.3137 1.08819
\(460\) 0 0
\(461\) 18.9750 0.883755 0.441878 0.897075i \(-0.354313\pi\)
0.441878 + 0.897075i \(0.354313\pi\)
\(462\) 0 0
\(463\) − 8.95743i − 0.416287i −0.978098 0.208143i \(-0.933258\pi\)
0.978098 0.208143i \(-0.0667421\pi\)
\(464\) 0 0
\(465\) − 9.18440i − 0.425916i
\(466\) 0 0
\(467\) 36.7695i 1.70149i 0.525580 + 0.850744i \(0.323848\pi\)
−0.525580 + 0.850744i \(0.676152\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 13.6102i 0.627126i
\(472\) 0 0
\(473\) 6.34315 0.291658
\(474\) 0 0
\(475\) − 13.4370i − 0.616534i
\(476\) 0 0
\(477\) − 6.33386i − 0.290007i
\(478\) 0 0
\(479\) −10.1503 −0.463781 −0.231890 0.972742i \(-0.574491\pi\)
−0.231890 + 0.972742i \(0.574491\pi\)
\(480\) 0 0
\(481\) − 14.3337i − 0.653562i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 12.2474i − 0.556128i
\(486\) 0 0
\(487\) − 14.4508i − 0.654826i −0.944881 0.327413i \(-0.893823\pi\)
0.944881 0.327413i \(-0.106177\pi\)
\(488\) 0 0
\(489\) 21.8017i 0.985907i
\(490\) 0 0
\(491\) −7.79899 −0.351963 −0.175982 0.984393i \(-0.556310\pi\)
−0.175982 + 0.984393i \(0.556310\pi\)
\(492\) 0 0
\(493\) 19.9790 0.899810
\(494\) 0 0
\(495\) −4.84772 −0.217889
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −8.48528 −0.379853 −0.189927 0.981798i \(-0.560825\pi\)
−0.189927 + 0.981798i \(0.560825\pi\)
\(500\) 0 0
\(501\) − 17.9149i − 0.800377i
\(502\) 0 0
\(503\) 4.84772 0.216149 0.108075 0.994143i \(-0.465531\pi\)
0.108075 + 0.994143i \(0.465531\pi\)
\(504\) 0 0
\(505\) 0.727922 0.0323921
\(506\) 0 0
\(507\) 22.9929i 1.02115i
\(508\) 0 0
\(509\) 2.10220 0.0931786 0.0465893 0.998914i \(-0.485165\pi\)
0.0465893 + 0.998914i \(0.485165\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −21.6569 −0.956173
\(514\) 0 0
\(515\) 1.45584 0.0641522
\(516\) 0 0
\(517\) −25.6033 −1.12603
\(518\) 0 0
\(519\) 11.2328i 0.493067i
\(520\) 0 0
\(521\) 3.11586i 0.136508i 0.997668 + 0.0682542i \(0.0217429\pi\)
−0.997668 + 0.0682542i \(0.978257\pi\)
\(522\) 0 0
\(523\) − 20.0852i − 0.878267i −0.898422 0.439133i \(-0.855286\pi\)
0.898422 0.439133i \(-0.144714\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 28.5533i − 1.24380i
\(528\) 0 0
\(529\) −46.9411 −2.04092
\(530\) 0 0
\(531\) 1.97908i 0.0858846i
\(532\) 0 0
\(533\) 1.85514i 0.0803552i
\(534\) 0 0
\(535\) 11.2485 0.486317
\(536\) 0 0
\(537\) 3.80430i 0.164168i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 25.9298i 1.11481i 0.830241 + 0.557404i \(0.188203\pi\)
−0.830241 + 0.557404i \(0.811797\pi\)
\(542\) 0 0
\(543\) 15.2913i 0.656212i
\(544\) 0 0
\(545\) 18.9259i 0.810698i
\(546\) 0 0
\(547\) 20.8284 0.890559 0.445280 0.895392i \(-0.353104\pi\)
0.445280 + 0.895392i \(0.353104\pi\)
\(548\) 0 0
\(549\) −17.5552 −0.749236
\(550\) 0 0
\(551\) −18.5592 −0.790647
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 3.51472 0.149191
\(556\) 0 0
\(557\) 2.86976i 0.121595i 0.998150 + 0.0607977i \(0.0193645\pi\)
−0.998150 + 0.0607977i \(0.980636\pi\)
\(558\) 0 0
\(559\) −18.5592 −0.784969
\(560\) 0 0
\(561\) 9.65685 0.407713
\(562\) 0 0
\(563\) 3.88123i 0.163574i 0.996650 + 0.0817871i \(0.0260628\pi\)
−0.996650 + 0.0817871i \(0.973937\pi\)
\(564\) 0 0
\(565\) −0.643315 −0.0270645
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 33.8995 1.42114 0.710570 0.703626i \(-0.248437\pi\)
0.710570 + 0.703626i \(0.248437\pi\)
\(570\) 0 0
\(571\) 12.3431 0.516545 0.258272 0.966072i \(-0.416847\pi\)
0.258272 + 0.966072i \(0.416847\pi\)
\(572\) 0 0
\(573\) −2.19642 −0.0917566
\(574\) 0 0
\(575\) − 27.1185i − 1.13092i
\(576\) 0 0
\(577\) − 20.7737i − 0.864820i −0.901677 0.432410i \(-0.857663\pi\)
0.901677 0.432410i \(-0.142337\pi\)
\(578\) 0 0
\(579\) 15.3073i 0.636151i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 6.92820i − 0.286937i
\(584\) 0 0
\(585\) 14.1838 0.586427
\(586\) 0 0
\(587\) − 15.7557i − 0.650306i −0.945661 0.325153i \(-0.894584\pi\)
0.945661 0.325153i \(-0.105416\pi\)
\(588\) 0 0
\(589\) 26.5241i 1.09291i
\(590\) 0 0
\(591\) 13.7114 0.564013
\(592\) 0 0
\(593\) − 3.56420i − 0.146364i −0.997319 0.0731821i \(-0.976685\pi\)
0.997319 0.0731821i \(-0.0233154\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.92820i 0.283552i
\(598\) 0 0
\(599\) 6.08767i 0.248736i 0.992236 + 0.124368i \(0.0396903\pi\)
−0.992236 + 0.124368i \(0.960310\pi\)
\(600\) 0 0
\(601\) − 22.2275i − 0.906679i −0.891338 0.453339i \(-0.850233\pi\)
0.891338 0.453339i \(-0.149767\pi\)
\(602\) 0 0
\(603\) −21.9411 −0.893512
\(604\) 0 0
\(605\) 9.27958 0.377269
\(606\) 0 0
\(607\) 10.6052 0.430453 0.215227 0.976564i \(-0.430951\pi\)
0.215227 + 0.976564i \(0.430951\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 74.9117 3.03060
\(612\) 0 0
\(613\) − 26.9444i − 1.08827i −0.838997 0.544137i \(-0.816857\pi\)
0.838997 0.544137i \(-0.183143\pi\)
\(614\) 0 0
\(615\) −0.454893 −0.0183430
\(616\) 0 0
\(617\) 33.2132 1.33711 0.668557 0.743661i \(-0.266912\pi\)
0.668557 + 0.743661i \(0.266912\pi\)
\(618\) 0 0
\(619\) 18.5545i 0.745769i 0.927878 + 0.372884i \(0.121631\pi\)
−0.927878 + 0.372884i \(0.878369\pi\)
\(620\) 0 0
\(621\) −43.7076 −1.75392
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.72792 0.0691169
\(626\) 0 0
\(627\) −8.97056 −0.358250
\(628\) 0 0
\(629\) 10.9269 0.435684
\(630\) 0 0
\(631\) 39.5400i 1.57406i 0.616913 + 0.787031i \(0.288383\pi\)
−0.616913 + 0.787031i \(0.711617\pi\)
\(632\) 0 0
\(633\) − 3.80430i − 0.151208i
\(634\) 0 0
\(635\) − 20.2710i − 0.804428i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −31.0711 −1.22723 −0.613617 0.789604i \(-0.710286\pi\)
−0.613617 + 0.789604i \(0.710286\pi\)
\(642\) 0 0
\(643\) 30.3839i 1.19822i 0.800665 + 0.599112i \(0.204480\pi\)
−0.800665 + 0.599112i \(0.795520\pi\)
\(644\) 0 0
\(645\) − 4.55082i − 0.179188i
\(646\) 0 0
\(647\) −10.1503 −0.399051 −0.199526 0.979893i \(-0.563940\pi\)
−0.199526 + 0.979893i \(0.563940\pi\)
\(648\) 0 0
\(649\) 2.16478i 0.0849752i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.3643i 0.796918i 0.917186 + 0.398459i \(0.130455\pi\)
−0.917186 + 0.398459i \(0.869545\pi\)
\(654\) 0 0
\(655\) − 18.1610i − 0.709611i
\(656\) 0 0
\(657\) 12.9343i 0.504616i
\(658\) 0 0
\(659\) −42.4853 −1.65499 −0.827496 0.561472i \(-0.810235\pi\)
−0.827496 + 0.561472i \(0.810235\pi\)
\(660\) 0 0
\(661\) 31.1334 1.21095 0.605474 0.795865i \(-0.292984\pi\)
0.605474 + 0.795865i \(0.292984\pi\)
\(662\) 0 0
\(663\) −28.2546 −1.09732
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −37.4558 −1.45030
\(668\) 0 0
\(669\) 5.24714i 0.202866i
\(670\) 0 0
\(671\) −19.2025 −0.741303
\(672\) 0 0
\(673\) −6.38478 −0.246115 −0.123058 0.992400i \(-0.539270\pi\)
−0.123058 + 0.992400i \(0.539270\pi\)
\(674\) 0 0
\(675\) − 16.9469i − 0.652285i
\(676\) 0 0
\(677\) −29.5803 −1.13686 −0.568431 0.822731i \(-0.692449\pi\)
−0.568431 + 0.822731i \(0.692449\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −12.7696 −0.489330
\(682\) 0 0
\(683\) −14.1421 −0.541134 −0.270567 0.962701i \(-0.587211\pi\)
−0.270567 + 0.962701i \(0.587211\pi\)
\(684\) 0 0
\(685\) 10.9269 0.417495
\(686\) 0 0
\(687\) 16.4800i 0.628750i
\(688\) 0 0
\(689\) 20.2710i 0.772262i
\(690\) 0 0
\(691\) 40.7276i 1.54935i 0.632358 + 0.774676i \(0.282087\pi\)
−0.632358 + 0.774676i \(0.717913\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 23.0600i 0.874716i
\(696\) 0 0
\(697\) −1.41421 −0.0535672
\(698\) 0 0
\(699\) − 12.7261i − 0.481344i
\(700\) 0 0
\(701\) − 47.7290i − 1.80270i −0.433092 0.901350i \(-0.642578\pi\)
0.433092 0.901350i \(-0.357422\pi\)
\(702\) 0 0
\(703\) −10.1503 −0.382827
\(704\) 0 0
\(705\) 18.3688i 0.691809i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 36.7423i 1.37989i 0.723863 + 0.689944i \(0.242365\pi\)
−0.723863 + 0.689944i \(0.757635\pi\)
\(710\) 0 0
\(711\) 3.71029i 0.139147i
\(712\) 0 0
\(713\) 53.5306i 2.00474i
\(714\) 0 0
\(715\) 15.5147 0.580218
\(716\) 0 0
\(717\) −6.85572 −0.256031
\(718\) 0 0
\(719\) −19.6574 −0.733096 −0.366548 0.930399i \(-0.619460\pi\)
−0.366548 + 0.930399i \(0.619460\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 18.2010 0.676903
\(724\) 0 0
\(725\) − 14.5229i − 0.539365i
\(726\) 0 0
\(727\) −49.6535 −1.84155 −0.920773 0.390098i \(-0.872441\pi\)
−0.920773 + 0.390098i \(0.872441\pi\)
\(728\) 0 0
\(729\) −17.2843 −0.640158
\(730\) 0 0
\(731\) − 14.1480i − 0.523283i
\(732\) 0 0
\(733\) 26.9290 0.994644 0.497322 0.867566i \(-0.334317\pi\)
0.497322 + 0.867566i \(0.334317\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −24.0000 −0.884051
\(738\) 0 0
\(739\) −20.8284 −0.766186 −0.383093 0.923710i \(-0.625141\pi\)
−0.383093 + 0.923710i \(0.625141\pi\)
\(740\) 0 0
\(741\) 26.2466 0.964194
\(742\) 0 0
\(743\) − 6.33386i − 0.232367i −0.993228 0.116183i \(-0.962934\pi\)
0.993228 0.116183i \(-0.0370660\pi\)
\(744\) 0 0
\(745\) − 0.787897i − 0.0288663i
\(746\) 0 0
\(747\) 10.3756i 0.379623i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 42.6559i 1.55654i 0.627931 + 0.778269i \(0.283902\pi\)
−0.627931 + 0.778269i \(0.716098\pi\)
\(752\) 0 0
\(753\) 21.8579 0.796545
\(754\) 0 0
\(755\) 7.28225i 0.265028i
\(756\) 0 0
\(757\) − 8.18900i − 0.297634i −0.988865 0.148817i \(-0.952453\pi\)
0.988865 0.148817i \(-0.0475466\pi\)
\(758\) 0 0
\(759\) −18.1043 −0.657143
\(760\) 0 0
\(761\) − 4.72352i − 0.171227i −0.996328 0.0856137i \(-0.972715\pi\)
0.996328 0.0856137i \(-0.0272851\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 10.8126i 0.390929i
\(766\) 0 0
\(767\) − 6.33386i − 0.228702i
\(768\) 0 0
\(769\) 19.1342i 0.689996i 0.938603 + 0.344998i \(0.112120\pi\)
−0.938603 + 0.344998i \(0.887880\pi\)
\(770\) 0 0
\(771\) −1.31371 −0.0473121
\(772\) 0 0
\(773\) 42.8368 1.54073 0.770366 0.637601i \(-0.220073\pi\)
0.770366 + 0.637601i \(0.220073\pi\)
\(774\) 0 0
\(775\) −20.7556 −0.745562
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.31371 0.0470685
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −23.4069 −0.836494
\(784\) 0 0
\(785\) −16.6690 −0.594944
\(786\) 0 0
\(787\) − 46.6967i − 1.66456i −0.554357 0.832279i \(-0.687036\pi\)
0.554357 0.832279i \(-0.312964\pi\)
\(788\) 0 0
\(789\) −20.3007 −0.722723
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 56.1838 1.99514
\(794\) 0 0
\(795\) −4.97056 −0.176288
\(796\) 0 0
\(797\) −50.6575 −1.79438 −0.897190 0.441644i \(-0.854395\pi\)
−0.897190 + 0.441644i \(0.854395\pi\)
\(798\) 0 0
\(799\) 57.1067i 2.02029i
\(800\) 0 0
\(801\) 23.3099i 0.823615i
\(802\) 0 0
\(803\) 14.1480i 0.499273i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 13.2621i − 0.466847i
\(808\) 0 0
\(809\) 35.4558 1.24656 0.623281 0.781998i \(-0.285799\pi\)
0.623281 + 0.781998i \(0.285799\pi\)
\(810\) 0 0
\(811\) 9.63274i 0.338251i 0.985594 + 0.169126i \(0.0540944\pi\)
−0.985594 + 0.169126i \(0.945906\pi\)
\(812\) 0 0
\(813\) 34.6410i 1.21491i
\(814\) 0 0
\(815\) −26.7015 −0.935313
\(816\) 0 0
\(817\) 13.1426i 0.459800i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 37.5108i 1.30913i 0.756004 + 0.654567i \(0.227149\pi\)
−0.756004 + 0.654567i \(0.772851\pi\)
\(822\) 0 0
\(823\) − 20.7846i − 0.724506i −0.932080 0.362253i \(-0.882008\pi\)
0.932080 0.362253i \(-0.117992\pi\)
\(824\) 0 0
\(825\) − 7.01962i − 0.244392i
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) 4.29862 0.149297 0.0746486 0.997210i \(-0.476216\pi\)
0.0746486 + 0.997210i \(0.476216\pi\)
\(830\) 0 0
\(831\) −3.10620 −0.107753
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 21.9411 0.759304
\(836\) 0 0
\(837\) 33.4523i 1.15628i
\(838\) 0 0
\(839\) −35.1103 −1.21214 −0.606072 0.795410i \(-0.707255\pi\)
−0.606072 + 0.795410i \(0.707255\pi\)
\(840\) 0 0
\(841\) 8.94113 0.308315
\(842\) 0 0
\(843\) − 18.1062i − 0.623610i
\(844\) 0 0
\(845\) −28.1604 −0.968747
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 16.4853 0.565773
\(850\) 0 0
\(851\) −20.4853 −0.702226
\(852\) 0 0
\(853\) −20.9830 −0.718445 −0.359223 0.933252i \(-0.616958\pi\)
−0.359223 + 0.933252i \(0.616958\pi\)
\(854\) 0 0
\(855\) − 10.0441i − 0.343503i
\(856\) 0 0
\(857\) − 5.62020i − 0.191982i −0.995382 0.0959912i \(-0.969398\pi\)
0.995382 0.0959912i \(-0.0306021\pi\)
\(858\) 0 0
\(859\) − 33.5992i − 1.14639i −0.819419 0.573195i \(-0.805704\pi\)
0.819419 0.573195i \(-0.194296\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 23.6544i 0.805204i 0.915375 + 0.402602i \(0.131894\pi\)
−0.915375 + 0.402602i \(0.868106\pi\)
\(864\) 0 0
\(865\) −13.7574 −0.467764
\(866\) 0 0
\(867\) − 3.13839i − 0.106585i
\(868\) 0 0
\(869\) 4.05845i 0.137673i
\(870\) 0 0
\(871\) 70.2207 2.37934
\(872\) 0 0
\(873\) 16.8925i 0.571723i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 37.0905i − 1.25246i −0.779639 0.626229i \(-0.784598\pi\)
0.779639 0.626229i \(-0.215402\pi\)
\(878\) 0 0
\(879\) 6.33386i 0.213636i
\(880\) 0 0
\(881\) − 36.0810i − 1.21560i −0.794090 0.607800i \(-0.792052\pi\)
0.794090 0.607800i \(-0.207948\pi\)
\(882\) 0 0
\(883\) 46.4264 1.56237 0.781186 0.624298i \(-0.214615\pi\)
0.781186 + 0.624298i \(0.214615\pi\)
\(884\) 0 0
\(885\) 1.55310 0.0522069
\(886\) 0 0
\(887\) −5.94593 −0.199645 −0.0998224 0.995005i \(-0.531827\pi\)
−0.0998224 + 0.995005i \(0.531827\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −0.343146 −0.0114958
\(892\) 0 0
\(893\) − 53.0482i − 1.77519i
\(894\) 0 0
\(895\) −4.65930 −0.155743
\(896\) 0 0
\(897\) 52.9706 1.76864
\(898\) 0 0
\(899\) 28.6675i 0.956113i
\(900\) 0 0
\(901\) −15.4530 −0.514813
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −18.7279 −0.622537
\(906\) 0 0
\(907\) 16.0000 0.531271 0.265636 0.964073i \(-0.414418\pi\)
0.265636 + 0.964073i \(0.414418\pi\)
\(908\) 0 0
\(909\) −1.00400 −0.0333005
\(910\) 0 0
\(911\) − 15.2913i − 0.506623i −0.967385 0.253311i \(-0.918480\pi\)
0.967385 0.253311i \(-0.0815197\pi\)
\(912\) 0 0
\(913\) 11.3492i 0.375603i
\(914\) 0 0
\(915\) 13.7766i 0.455440i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) − 37.5108i − 1.23737i −0.785641 0.618683i \(-0.787666\pi\)
0.785641 0.618683i \(-0.212334\pi\)
\(920\) 0 0
\(921\) −23.7990 −0.784203
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 7.94282i − 0.261158i
\(926\) 0 0
\(927\) −2.00799 −0.0659512
\(928\) 0 0
\(929\) 22.3044i 0.731784i 0.930657 + 0.365892i \(0.119236\pi\)
−0.930657 + 0.365892i \(0.880764\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 12.1753i 0.398603i
\(934\) 0 0
\(935\) 11.8272i 0.386790i
\(936\) 0 0
\(937\) 51.4202i 1.67983i 0.542721 + 0.839913i \(0.317394\pi\)
−0.542721 + 0.839913i \(0.682606\pi\)
\(938\) 0 0
\(939\) 16.3431 0.533338
\(940\) 0 0
\(941\) −12.2525 −0.399422 −0.199711 0.979855i \(-0.564000\pi\)
−0.199711 + 0.979855i \(0.564000\pi\)
\(942\) 0 0
\(943\) 2.65131 0.0863385
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.544156 −0.0176827 −0.00884135 0.999961i \(-0.502814\pi\)
−0.00884135 + 0.999961i \(0.502814\pi\)
\(948\) 0 0
\(949\) − 41.3951i − 1.34374i
\(950\) 0 0
\(951\) 25.6033 0.830244
\(952\) 0 0
\(953\) −18.6863 −0.605308 −0.302654 0.953100i \(-0.597873\pi\)
−0.302654 + 0.953100i \(0.597873\pi\)
\(954\) 0 0
\(955\) − 2.69005i − 0.0870479i
\(956\) 0 0
\(957\) −9.69545 −0.313409
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 9.97056 0.321631
\(962\) 0 0
\(963\) −15.5147 −0.499955
\(964\) 0 0
\(965\) −18.7476 −0.603506
\(966\) 0 0
\(967\) − 27.9590i − 0.899101i −0.893255 0.449550i \(-0.851584\pi\)
0.893255 0.449550i \(-0.148416\pi\)
\(968\) 0 0
\(969\) 20.0083i 0.642760i
\(970\) 0 0
\(971\) 8.10201i 0.260006i 0.991514 + 0.130003i \(0.0414987\pi\)
−0.991514 + 0.130003i \(0.958501\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 20.5384i 0.657756i
\(976\) 0 0
\(977\) −5.21320 −0.166785 −0.0833926 0.996517i \(-0.526576\pi\)
−0.0833926 + 0.996517i \(0.526576\pi\)
\(978\) 0 0
\(979\) 25.4972i 0.814894i
\(980\) 0 0
\(981\) − 26.1039i − 0.833432i
\(982\) 0 0
\(983\) −26.7015 −0.851646 −0.425823 0.904807i \(-0.640015\pi\)
−0.425823 + 0.904807i \(0.640015\pi\)
\(984\) 0 0
\(985\) 16.7930i 0.535070i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 26.5241i 0.843418i
\(990\) 0 0
\(991\) − 46.1200i − 1.46505i −0.680739 0.732526i \(-0.738341\pi\)
0.680739 0.732526i \(-0.261659\pi\)
\(992\) 0 0
\(993\) − 16.4216i − 0.521123i
\(994\) 0 0
\(995\) −8.48528 −0.269002
\(996\) 0 0
\(997\) −32.2316 −1.02078 −0.510392 0.859942i \(-0.670500\pi\)
−0.510392 + 0.859942i \(0.670500\pi\)
\(998\) 0 0
\(999\) −12.8017 −0.405026
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1568.2.e.c.783.5 8
4.3 odd 2 392.2.e.c.195.3 yes 8
7.2 even 3 1568.2.q.d.815.2 8
7.3 odd 6 1568.2.q.c.1391.2 8
7.4 even 3 1568.2.q.c.1391.3 8
7.5 odd 6 1568.2.q.d.815.3 8
7.6 odd 2 inner 1568.2.e.c.783.4 8
8.3 odd 2 inner 1568.2.e.c.783.6 8
8.5 even 2 392.2.e.c.195.1 8
28.3 even 6 392.2.m.c.19.2 8
28.11 odd 6 392.2.m.c.19.1 8
28.19 even 6 392.2.m.e.227.3 8
28.23 odd 6 392.2.m.e.227.4 8
28.27 even 2 392.2.e.c.195.4 yes 8
56.3 even 6 1568.2.q.d.1391.2 8
56.5 odd 6 392.2.m.c.227.1 8
56.11 odd 6 1568.2.q.d.1391.3 8
56.13 odd 2 392.2.e.c.195.2 yes 8
56.19 even 6 1568.2.q.c.815.3 8
56.27 even 2 inner 1568.2.e.c.783.3 8
56.37 even 6 392.2.m.c.227.2 8
56.45 odd 6 392.2.m.e.19.4 8
56.51 odd 6 1568.2.q.c.815.2 8
56.53 even 6 392.2.m.e.19.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
392.2.e.c.195.1 8 8.5 even 2
392.2.e.c.195.2 yes 8 56.13 odd 2
392.2.e.c.195.3 yes 8 4.3 odd 2
392.2.e.c.195.4 yes 8 28.27 even 2
392.2.m.c.19.1 8 28.11 odd 6
392.2.m.c.19.2 8 28.3 even 6
392.2.m.c.227.1 8 56.5 odd 6
392.2.m.c.227.2 8 56.37 even 6
392.2.m.e.19.3 8 56.53 even 6
392.2.m.e.19.4 8 56.45 odd 6
392.2.m.e.227.3 8 28.19 even 6
392.2.m.e.227.4 8 28.23 odd 6
1568.2.e.c.783.3 8 56.27 even 2 inner
1568.2.e.c.783.4 8 7.6 odd 2 inner
1568.2.e.c.783.5 8 1.1 even 1 trivial
1568.2.e.c.783.6 8 8.3 odd 2 inner
1568.2.q.c.815.2 8 56.51 odd 6
1568.2.q.c.815.3 8 56.19 even 6
1568.2.q.c.1391.2 8 7.3 odd 6
1568.2.q.c.1391.3 8 7.4 even 3
1568.2.q.d.815.2 8 7.2 even 3
1568.2.q.d.815.3 8 7.5 odd 6
1568.2.q.d.1391.2 8 56.3 even 6
1568.2.q.d.1391.3 8 56.11 odd 6