Defining parameters
Level: | \( N \) | = | \( 1568 = 2^{5} \cdot 7^{2} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 24 \) | ||
Sturm bound: | \(301056\) | ||
Trace bound: | \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1568))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 77184 | 41111 | 36073 |
Cusp forms | 73345 | 40141 | 33204 |
Eisenstein series | 3839 | 970 | 2869 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1568))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1568))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(1568)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(112))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(196))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(224))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(392))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(784))\)\(^{\oplus 2}\)