Properties

Label 392.2.e.c.195.3
Level $392$
Weight $2$
Character 392.195
Analytic conductor $3.130$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [392,2,Mod(195,392)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(392, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("392.195"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 392.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.13013575923\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.339738624.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 14x^{4} - 8x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 195.3
Root \(-1.60021 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 392.195
Dual form 392.2.e.c.195.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 1.22474i) q^{2} -1.08239i q^{3} +(-1.00000 - 1.73205i) q^{4} -1.32565 q^{5} +(1.32565 + 0.765367i) q^{6} +2.82843 q^{8} +1.82843 q^{9} +(0.937379 - 1.62359i) q^{10} -2.00000 q^{11} +(-1.87476 + 1.08239i) q^{12} -5.85172 q^{13} +1.43488i q^{15} +(-2.00000 + 3.46410i) q^{16} -4.46088i q^{17} +(-1.29289 + 2.23936i) q^{18} -4.14386i q^{19} +(1.32565 + 2.29610i) q^{20} +(1.41421 - 2.44949i) q^{22} -8.36308i q^{23} -3.06147i q^{24} -3.24264 q^{25} +(4.13779 - 7.16687i) q^{26} -5.22625i q^{27} +4.47871i q^{29} +(-1.75736 - 1.01461i) q^{30} -6.40083 q^{31} +(-2.82843 - 4.89898i) q^{32} +2.16478i q^{33} +(5.46345 + 3.15432i) q^{34} +(-1.82843 - 3.16693i) q^{36} +2.44949i q^{37} +(5.07517 + 2.93015i) q^{38} +6.33386i q^{39} -3.74952 q^{40} -0.317025i q^{41} -3.17157 q^{43} +(2.00000 + 3.46410i) q^{44} -2.42386 q^{45} +(10.2426 + 5.91359i) q^{46} +12.8017 q^{47} +(3.74952 + 2.16478i) q^{48} +(2.29289 - 3.97141i) q^{50} -4.82843 q^{51} +(5.85172 + 10.1355i) q^{52} -3.46410i q^{53} +(6.40083 + 3.69552i) q^{54} +2.65131 q^{55} -4.48528 q^{57} +(-5.48528 - 3.16693i) q^{58} -1.08239i q^{59} +(2.48528 - 1.43488i) q^{60} -9.60124 q^{61} +(4.52607 - 7.83938i) q^{62} +8.00000 q^{64} +7.75736 q^{65} +(-2.65131 - 1.53073i) q^{66} +12.0000 q^{67} +(-7.72648 + 4.46088i) q^{68} -9.05213 q^{69} +5.17157 q^{72} +7.07401i q^{73} +(-3.00000 - 1.73205i) q^{74} +3.50981i q^{75} +(-7.17738 + 4.14386i) q^{76} +(-7.75736 - 4.47871i) q^{78} -2.02922i q^{79} +(2.65131 - 4.59220i) q^{80} -0.171573 q^{81} +(0.388275 + 0.224171i) q^{82} -5.67459i q^{83} +5.91359i q^{85} +(2.24264 - 3.88437i) q^{86} +4.84772 q^{87} -5.65685 q^{88} +12.7486i q^{89} +(1.71393 - 2.96861i) q^{90} +(-14.4853 + 8.36308i) q^{92} +6.92820i q^{93} +(-9.05213 + 15.6788i) q^{94} +5.49333i q^{95} +(-5.30262 + 3.06147i) q^{96} +9.23880i q^{97} -3.65685 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 8 q^{9} - 16 q^{11} - 16 q^{16} - 16 q^{18} + 8 q^{25} - 48 q^{30} + 8 q^{36} - 48 q^{43} + 16 q^{44} + 48 q^{46} + 24 q^{50} - 16 q^{51} + 32 q^{57} + 24 q^{58} - 48 q^{60} + 64 q^{64}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 1.22474i −0.500000 + 0.866025i
\(3\) 1.08239i 0.624919i −0.949931 0.312460i \(-0.898847\pi\)
0.949931 0.312460i \(-0.101153\pi\)
\(4\) −1.00000 1.73205i −0.500000 0.866025i
\(5\) −1.32565 −0.592851 −0.296425 0.955056i \(-0.595795\pi\)
−0.296425 + 0.955056i \(0.595795\pi\)
\(6\) 1.32565 + 0.765367i 0.541196 + 0.312460i
\(7\) 0 0
\(8\) 2.82843 1.00000
\(9\) 1.82843 0.609476
\(10\) 0.937379 1.62359i 0.296425 0.513424i
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) −1.87476 + 1.08239i −0.541196 + 0.312460i
\(13\) −5.85172 −1.62298 −0.811488 0.584369i \(-0.801342\pi\)
−0.811488 + 0.584369i \(0.801342\pi\)
\(14\) 0 0
\(15\) 1.43488i 0.370484i
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) 4.46088i 1.08192i −0.841047 0.540962i \(-0.818060\pi\)
0.841047 0.540962i \(-0.181940\pi\)
\(18\) −1.29289 + 2.23936i −0.304738 + 0.527821i
\(19\) 4.14386i 0.950667i −0.879806 0.475333i \(-0.842327\pi\)
0.879806 0.475333i \(-0.157673\pi\)
\(20\) 1.32565 + 2.29610i 0.296425 + 0.513424i
\(21\) 0 0
\(22\) 1.41421 2.44949i 0.301511 0.522233i
\(23\) 8.36308i 1.74382i −0.489664 0.871911i \(-0.662880\pi\)
0.489664 0.871911i \(-0.337120\pi\)
\(24\) 3.06147i 0.624919i
\(25\) −3.24264 −0.648528
\(26\) 4.13779 7.16687i 0.811488 1.40554i
\(27\) 5.22625i 1.00579i
\(28\) 0 0
\(29\) 4.47871i 0.831676i 0.909439 + 0.415838i \(0.136512\pi\)
−0.909439 + 0.415838i \(0.863488\pi\)
\(30\) −1.75736 1.01461i −0.320848 0.185242i
\(31\) −6.40083 −1.14962 −0.574811 0.818286i \(-0.694924\pi\)
−0.574811 + 0.818286i \(0.694924\pi\)
\(32\) −2.82843 4.89898i −0.500000 0.866025i
\(33\) 2.16478i 0.376841i
\(34\) 5.46345 + 3.15432i 0.936973 + 0.540962i
\(35\) 0 0
\(36\) −1.82843 3.16693i −0.304738 0.527821i
\(37\) 2.44949i 0.402694i 0.979520 + 0.201347i \(0.0645318\pi\)
−0.979520 + 0.201347i \(0.935468\pi\)
\(38\) 5.07517 + 2.93015i 0.823301 + 0.475333i
\(39\) 6.33386i 1.01423i
\(40\) −3.74952 −0.592851
\(41\) 0.317025i 0.0495110i −0.999694 0.0247555i \(-0.992119\pi\)
0.999694 0.0247555i \(-0.00788073\pi\)
\(42\) 0 0
\(43\) −3.17157 −0.483660 −0.241830 0.970319i \(-0.577748\pi\)
−0.241830 + 0.970319i \(0.577748\pi\)
\(44\) 2.00000 + 3.46410i 0.301511 + 0.522233i
\(45\) −2.42386 −0.361328
\(46\) 10.2426 + 5.91359i 1.51019 + 0.871911i
\(47\) 12.8017 1.86731 0.933656 0.358170i \(-0.116599\pi\)
0.933656 + 0.358170i \(0.116599\pi\)
\(48\) 3.74952 + 2.16478i 0.541196 + 0.312460i
\(49\) 0 0
\(50\) 2.29289 3.97141i 0.324264 0.561642i
\(51\) −4.82843 −0.676115
\(52\) 5.85172 + 10.1355i 0.811488 + 1.40554i
\(53\) 3.46410i 0.475831i −0.971286 0.237915i \(-0.923536\pi\)
0.971286 0.237915i \(-0.0764641\pi\)
\(54\) 6.40083 + 3.69552i 0.871042 + 0.502896i
\(55\) 2.65131 0.357502
\(56\) 0 0
\(57\) −4.48528 −0.594090
\(58\) −5.48528 3.16693i −0.720253 0.415838i
\(59\) 1.08239i 0.140915i −0.997515 0.0704577i \(-0.977554\pi\)
0.997515 0.0704577i \(-0.0224460\pi\)
\(60\) 2.48528 1.43488i 0.320848 0.185242i
\(61\) −9.60124 −1.22931 −0.614656 0.788795i \(-0.710705\pi\)
−0.614656 + 0.788795i \(0.710705\pi\)
\(62\) 4.52607 7.83938i 0.574811 0.995602i
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) 7.75736 0.962182
\(66\) −2.65131 1.53073i −0.326354 0.188420i
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) −7.72648 + 4.46088i −0.936973 + 0.540962i
\(69\) −9.05213 −1.08975
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 5.17157 0.609476
\(73\) 7.07401i 0.827950i 0.910288 + 0.413975i \(0.135860\pi\)
−0.910288 + 0.413975i \(0.864140\pi\)
\(74\) −3.00000 1.73205i −0.348743 0.201347i
\(75\) 3.50981i 0.405278i
\(76\) −7.17738 + 4.14386i −0.823301 + 0.475333i
\(77\) 0 0
\(78\) −7.75736 4.47871i −0.878348 0.507114i
\(79\) 2.02922i 0.228306i −0.993463 0.114153i \(-0.963585\pi\)
0.993463 0.114153i \(-0.0364153\pi\)
\(80\) 2.65131 4.59220i 0.296425 0.513424i
\(81\) −0.171573 −0.0190637
\(82\) 0.388275 + 0.224171i 0.0428778 + 0.0247555i
\(83\) 5.67459i 0.622868i −0.950268 0.311434i \(-0.899191\pi\)
0.950268 0.311434i \(-0.100809\pi\)
\(84\) 0 0
\(85\) 5.91359i 0.641419i
\(86\) 2.24264 3.88437i 0.241830 0.418862i
\(87\) 4.84772 0.519731
\(88\) −5.65685 −0.603023
\(89\) 12.7486i 1.35135i 0.737200 + 0.675675i \(0.236148\pi\)
−0.737200 + 0.675675i \(0.763852\pi\)
\(90\) 1.71393 2.96861i 0.180664 0.312919i
\(91\) 0 0
\(92\) −14.4853 + 8.36308i −1.51019 + 0.871911i
\(93\) 6.92820i 0.718421i
\(94\) −9.05213 + 15.6788i −0.933656 + 1.61714i
\(95\) 5.49333i 0.563603i
\(96\) −5.30262 + 3.06147i −0.541196 + 0.312460i
\(97\) 9.23880i 0.938058i 0.883183 + 0.469029i \(0.155396\pi\)
−0.883183 + 0.469029i \(0.844604\pi\)
\(98\) 0 0
\(99\) −3.65685 −0.367528
\(100\) 3.24264 + 5.61642i 0.324264 + 0.561642i
\(101\) −0.549104 −0.0546379 −0.0273189 0.999627i \(-0.508697\pi\)
−0.0273189 + 0.999627i \(0.508697\pi\)
\(102\) 3.41421 5.91359i 0.338058 0.585533i
\(103\) 1.09821 0.108210 0.0541048 0.998535i \(-0.482769\pi\)
0.0541048 + 0.998535i \(0.482769\pi\)
\(104\) −16.5512 −1.62298
\(105\) 0 0
\(106\) 4.24264 + 2.44949i 0.412082 + 0.237915i
\(107\) 8.48528 0.820303 0.410152 0.912017i \(-0.365476\pi\)
0.410152 + 0.912017i \(0.365476\pi\)
\(108\) −9.05213 + 5.22625i −0.871042 + 0.502896i
\(109\) 14.2767i 1.36746i −0.729736 0.683729i \(-0.760357\pi\)
0.729736 0.683729i \(-0.239643\pi\)
\(110\) −1.87476 + 3.24718i −0.178751 + 0.309606i
\(111\) 2.65131 0.251651
\(112\) 0 0
\(113\) 0.485281 0.0456514 0.0228257 0.999739i \(-0.492734\pi\)
0.0228257 + 0.999739i \(0.492734\pi\)
\(114\) 3.17157 5.49333i 0.297045 0.514497i
\(115\) 11.0866i 1.03383i
\(116\) 7.75736 4.47871i 0.720253 0.415838i
\(117\) −10.6994 −0.989164
\(118\) 1.32565 + 0.765367i 0.122036 + 0.0704577i
\(119\) 0 0
\(120\) 4.05845i 0.370484i
\(121\) −7.00000 −0.636364
\(122\) 6.78910 11.7591i 0.614656 1.06462i
\(123\) −0.343146 −0.0309404
\(124\) 6.40083 + 11.0866i 0.574811 + 0.995602i
\(125\) 10.9269 0.977331
\(126\) 0 0
\(127\) 15.2913i 1.35688i −0.734655 0.678441i \(-0.762656\pi\)
0.734655 0.678441i \(-0.237344\pi\)
\(128\) −5.65685 + 9.79796i −0.500000 + 0.866025i
\(129\) 3.43289i 0.302249i
\(130\) −5.48528 + 9.50079i −0.481091 + 0.833274i
\(131\) 13.6997i 1.19695i −0.801143 0.598473i \(-0.795774\pi\)
0.801143 0.598473i \(-0.204226\pi\)
\(132\) 3.74952 2.16478i 0.326354 0.188420i
\(133\) 0 0
\(134\) −8.48528 + 14.6969i −0.733017 + 1.26962i
\(135\) 6.92820i 0.596285i
\(136\) 12.6173i 1.08192i
\(137\) −8.24264 −0.704216 −0.352108 0.935959i \(-0.614535\pi\)
−0.352108 + 0.935959i \(0.614535\pi\)
\(138\) 6.40083 11.0866i 0.544874 0.943750i
\(139\) 17.3952i 1.47544i 0.675106 + 0.737721i \(0.264098\pi\)
−0.675106 + 0.737721i \(0.735902\pi\)
\(140\) 0 0
\(141\) 13.8564i 1.16692i
\(142\) 0 0
\(143\) 11.7034 0.978691
\(144\) −3.65685 + 6.33386i −0.304738 + 0.527821i
\(145\) 5.93723i 0.493060i
\(146\) −8.66386 5.00208i −0.717026 0.413975i
\(147\) 0 0
\(148\) 4.24264 2.44949i 0.348743 0.201347i
\(149\) 0.594346i 0.0486907i 0.999704 + 0.0243454i \(0.00775013\pi\)
−0.999704 + 0.0243454i \(0.992250\pi\)
\(150\) −4.29862 2.48181i −0.350981 0.202639i
\(151\) 5.49333i 0.447040i 0.974699 + 0.223520i \(0.0717549\pi\)
−0.974699 + 0.223520i \(0.928245\pi\)
\(152\) 11.7206i 0.950667i
\(153\) 8.15640i 0.659406i
\(154\) 0 0
\(155\) 8.48528 0.681554
\(156\) 10.9706 6.33386i 0.878348 0.507114i
\(157\) 12.5742 1.00353 0.501765 0.865004i \(-0.332684\pi\)
0.501765 + 0.865004i \(0.332684\pi\)
\(158\) 2.48528 + 1.43488i 0.197718 + 0.114153i
\(159\) −3.74952 −0.297356
\(160\) 3.74952 + 6.49435i 0.296425 + 0.513424i
\(161\) 0 0
\(162\) 0.121320 0.210133i 0.00953183 0.0165096i
\(163\) −20.1421 −1.57765 −0.788827 0.614615i \(-0.789311\pi\)
−0.788827 + 0.614615i \(0.789311\pi\)
\(164\) −0.549104 + 0.317025i −0.0428778 + 0.0247555i
\(165\) 2.86976i 0.223410i
\(166\) 6.94993 + 4.01254i 0.539419 + 0.311434i
\(167\) 16.5512 1.28077 0.640384 0.768055i \(-0.278775\pi\)
0.640384 + 0.768055i \(0.278775\pi\)
\(168\) 0 0
\(169\) 21.2426 1.63405
\(170\) −7.24264 4.18154i −0.555485 0.320710i
\(171\) 7.57675i 0.579408i
\(172\) 3.17157 + 5.49333i 0.241830 + 0.418862i
\(173\) 10.3778 0.789009 0.394504 0.918894i \(-0.370916\pi\)
0.394504 + 0.918894i \(0.370916\pi\)
\(174\) −3.42786 + 5.93723i −0.259865 + 0.450100i
\(175\) 0 0
\(176\) 4.00000 6.92820i 0.301511 0.522233i
\(177\) −1.17157 −0.0880608
\(178\) −15.6138 9.01462i −1.17030 0.675675i
\(179\) −3.51472 −0.262702 −0.131351 0.991336i \(-0.541932\pi\)
−0.131351 + 0.991336i \(0.541932\pi\)
\(180\) 2.42386 + 4.19825i 0.180664 + 0.312919i
\(181\) 14.1273 1.05007 0.525037 0.851079i \(-0.324051\pi\)
0.525037 + 0.851079i \(0.324051\pi\)
\(182\) 0 0
\(183\) 10.3923i 0.768221i
\(184\) 23.6544i 1.74382i
\(185\) 3.24718i 0.238737i
\(186\) −8.48528 4.89898i −0.622171 0.359211i
\(187\) 8.92177i 0.652424i
\(188\) −12.8017 22.1731i −0.933656 1.61714i
\(189\) 0 0
\(190\) −6.72792 3.88437i −0.488095 0.281802i
\(191\) 2.02922i 0.146829i −0.997301 0.0734147i \(-0.976610\pi\)
0.997301 0.0734147i \(-0.0233897\pi\)
\(192\) 8.65914i 0.624919i
\(193\) 14.1421 1.01797 0.508987 0.860774i \(-0.330020\pi\)
0.508987 + 0.860774i \(0.330020\pi\)
\(194\) −11.3152 6.53281i −0.812382 0.469029i
\(195\) 8.39651i 0.601286i
\(196\) 0 0
\(197\) 12.6677i 0.902537i −0.892388 0.451269i \(-0.850972\pi\)
0.892388 0.451269i \(-0.149028\pi\)
\(198\) 2.58579 4.47871i 0.183764 0.318288i
\(199\) −6.40083 −0.453742 −0.226871 0.973925i \(-0.572850\pi\)
−0.226871 + 0.973925i \(0.572850\pi\)
\(200\) −9.17157 −0.648528
\(201\) 12.9887i 0.916153i
\(202\) 0.388275 0.672512i 0.0273189 0.0473178i
\(203\) 0 0
\(204\) 4.82843 + 8.36308i 0.338058 + 0.585533i
\(205\) 0.420266i 0.0293527i
\(206\) −0.776550 + 1.34502i −0.0541048 + 0.0937123i
\(207\) 15.2913i 1.06282i
\(208\) 11.7034 20.2710i 0.811488 1.40554i
\(209\) 8.28772i 0.573274i
\(210\) 0 0
\(211\) 3.51472 0.241963 0.120982 0.992655i \(-0.461396\pi\)
0.120982 + 0.992655i \(0.461396\pi\)
\(212\) −6.00000 + 3.46410i −0.412082 + 0.237915i
\(213\) 0 0
\(214\) −6.00000 + 10.3923i −0.410152 + 0.710403i
\(215\) 4.20441 0.286738
\(216\) 14.7821i 1.00579i
\(217\) 0 0
\(218\) 17.4853 + 10.0951i 1.18425 + 0.683729i
\(219\) 7.65685 0.517402
\(220\) −2.65131 4.59220i −0.178751 0.309606i
\(221\) 26.1039i 1.75594i
\(222\) −1.87476 + 3.24718i −0.125826 + 0.217936i
\(223\) −4.84772 −0.324628 −0.162314 0.986739i \(-0.551896\pi\)
−0.162314 + 0.986739i \(0.551896\pi\)
\(224\) 0 0
\(225\) −5.92893 −0.395262
\(226\) −0.343146 + 0.594346i −0.0228257 + 0.0395353i
\(227\) 11.7975i 0.783029i −0.920172 0.391515i \(-0.871951\pi\)
0.920172 0.391515i \(-0.128049\pi\)
\(228\) 4.48528 + 7.76874i 0.297045 + 0.514497i
\(229\) 15.2255 1.00613 0.503065 0.864249i \(-0.332206\pi\)
0.503065 + 0.864249i \(0.332206\pi\)
\(230\) −13.5782 7.83938i −0.895320 0.516913i
\(231\) 0 0
\(232\) 12.6677i 0.831676i
\(233\) −11.7574 −0.770250 −0.385125 0.922864i \(-0.625842\pi\)
−0.385125 + 0.922864i \(0.625842\pi\)
\(234\) 7.56565 13.1041i 0.494582 0.856641i
\(235\) −16.9706 −1.10704
\(236\) −1.87476 + 1.08239i −0.122036 + 0.0704577i
\(237\) −2.19642 −0.142673
\(238\) 0 0
\(239\) 6.33386i 0.409703i −0.978793 0.204852i \(-0.934329\pi\)
0.978793 0.204852i \(-0.0656712\pi\)
\(240\) −4.97056 2.86976i −0.320848 0.185242i
\(241\) 16.8155i 1.08318i −0.840641 0.541592i \(-0.817822\pi\)
0.840641 0.541592i \(-0.182178\pi\)
\(242\) 4.94975 8.57321i 0.318182 0.551107i
\(243\) 15.4930i 0.993879i
\(244\) 9.60124 + 16.6298i 0.614656 + 1.06462i
\(245\) 0 0
\(246\) 0.242641 0.420266i 0.0154702 0.0267952i
\(247\) 24.2487i 1.54291i
\(248\) −18.1043 −1.14962
\(249\) −6.14214 −0.389242
\(250\) −7.72648 + 13.3827i −0.488665 + 0.846393i
\(251\) 20.1940i 1.27464i 0.770601 + 0.637318i \(0.219956\pi\)
−0.770601 + 0.637318i \(0.780044\pi\)
\(252\) 0 0
\(253\) 16.7262i 1.05156i
\(254\) 18.7279 + 10.8126i 1.17509 + 0.678441i
\(255\) 6.40083 0.400835
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 1.21371i 0.0757090i 0.999283 + 0.0378545i \(0.0120523\pi\)
−0.999283 + 0.0378545i \(0.987948\pi\)
\(258\) −4.20441 2.42742i −0.261755 0.151124i
\(259\) 0 0
\(260\) −7.75736 13.4361i −0.481091 0.833274i
\(261\) 8.18900i 0.506886i
\(262\) 16.7786 + 9.68714i 1.03659 + 0.598473i
\(263\) 18.7554i 1.15651i −0.815857 0.578253i \(-0.803735\pi\)
0.815857 0.578253i \(-0.196265\pi\)
\(264\) 6.12293i 0.376841i
\(265\) 4.59220i 0.282097i
\(266\) 0 0
\(267\) 13.7990 0.844484
\(268\) −12.0000 20.7846i −0.733017 1.26962i
\(269\) −12.2525 −0.747051 −0.373525 0.927620i \(-0.621851\pi\)
−0.373525 + 0.927620i \(0.621851\pi\)
\(270\) −8.48528 4.89898i −0.516398 0.298142i
\(271\) −32.0041 −1.94411 −0.972056 0.234749i \(-0.924573\pi\)
−0.972056 + 0.234749i \(0.924573\pi\)
\(272\) 15.4530 + 8.92177i 0.936973 + 0.540962i
\(273\) 0 0
\(274\) 5.82843 10.0951i 0.352108 0.609869i
\(275\) 6.48528 0.391077
\(276\) 9.05213 + 15.6788i 0.544874 + 0.943750i
\(277\) 2.86976i 0.172427i 0.996277 + 0.0862135i \(0.0274767\pi\)
−0.996277 + 0.0862135i \(0.972523\pi\)
\(278\) −21.3047 12.3003i −1.27777 0.737721i
\(279\) −11.7034 −0.700667
\(280\) 0 0
\(281\) −16.7279 −0.997904 −0.498952 0.866630i \(-0.666282\pi\)
−0.498952 + 0.866630i \(0.666282\pi\)
\(282\) 16.9706 + 9.79796i 1.01058 + 0.583460i
\(283\) 15.2304i 0.905354i 0.891675 + 0.452677i \(0.149531\pi\)
−0.891675 + 0.452677i \(0.850469\pi\)
\(284\) 0 0
\(285\) 5.94593 0.352207
\(286\) −8.27558 + 14.3337i −0.489346 + 0.847571i
\(287\) 0 0
\(288\) −5.17157 8.95743i −0.304738 0.527821i
\(289\) −2.89949 −0.170559
\(290\) 7.27159 + 4.19825i 0.427002 + 0.246530i
\(291\) 10.0000 0.586210
\(292\) 12.2525 7.07401i 0.717026 0.413975i
\(293\) 5.85172 0.341861 0.170931 0.985283i \(-0.445323\pi\)
0.170931 + 0.985283i \(0.445323\pi\)
\(294\) 0 0
\(295\) 1.43488i 0.0835418i
\(296\) 6.92820i 0.402694i
\(297\) 10.4525i 0.606516i
\(298\) −0.727922 0.420266i −0.0421674 0.0243454i
\(299\) 48.9384i 2.83018i
\(300\) 6.07917 3.50981i 0.350981 0.202639i
\(301\) 0 0
\(302\) −6.72792 3.88437i −0.387148 0.223520i
\(303\) 0.594346i 0.0341443i
\(304\) 14.3548 + 8.28772i 0.823301 + 0.475333i
\(305\) 12.7279 0.728799
\(306\) 9.98951 + 5.76745i 0.571062 + 0.329703i
\(307\) 21.9874i 1.25489i −0.778662 0.627444i \(-0.784101\pi\)
0.778662 0.627444i \(-0.215899\pi\)
\(308\) 0 0
\(309\) 1.18869i 0.0676223i
\(310\) −6.00000 + 10.3923i −0.340777 + 0.590243i
\(311\) −11.2485 −0.637847 −0.318923 0.947781i \(-0.603321\pi\)
−0.318923 + 0.947781i \(0.603321\pi\)
\(312\) 17.9149i 1.01423i
\(313\) 15.0991i 0.853451i −0.904381 0.426726i \(-0.859667\pi\)
0.904381 0.426726i \(-0.140333\pi\)
\(314\) −8.89130 + 15.4002i −0.501765 + 0.869083i
\(315\) 0 0
\(316\) −3.51472 + 2.02922i −0.197718 + 0.114153i
\(317\) 23.6544i 1.32856i −0.747483 0.664281i \(-0.768738\pi\)
0.747483 0.664281i \(-0.231262\pi\)
\(318\) 2.65131 4.59220i 0.148678 0.257518i
\(319\) 8.95743i 0.501520i
\(320\) −10.6052 −0.592851
\(321\) 9.18440i 0.512623i
\(322\) 0 0
\(323\) −18.4853 −1.02855
\(324\) 0.171573 + 0.297173i 0.00953183 + 0.0165096i
\(325\) 18.9750 1.05255
\(326\) 14.2426 24.6690i 0.788827 1.36629i
\(327\) −15.4530 −0.854551
\(328\) 0.896683i 0.0495110i
\(329\) 0 0
\(330\) 3.51472 + 2.02922i 0.193479 + 0.111705i
\(331\) 15.1716 0.833905 0.416953 0.908928i \(-0.363098\pi\)
0.416953 + 0.908928i \(0.363098\pi\)
\(332\) −9.82868 + 5.67459i −0.539419 + 0.311434i
\(333\) 4.47871i 0.245432i
\(334\) −11.7034 + 20.2710i −0.640384 + 1.10918i
\(335\) −15.9079 −0.869139
\(336\) 0 0
\(337\) −4.24264 −0.231111 −0.115556 0.993301i \(-0.536865\pi\)
−0.115556 + 0.993301i \(0.536865\pi\)
\(338\) −15.0208 + 26.0168i −0.817025 + 1.41513i
\(339\) 0.525265i 0.0285285i
\(340\) 10.2426 5.91359i 0.555485 0.320710i
\(341\) 12.8017 0.693248
\(342\) 9.27958 + 5.35757i 0.501782 + 0.289704i
\(343\) 0 0
\(344\) −8.97056 −0.483660
\(345\) 12.0000 0.646058
\(346\) −7.33820 + 12.7101i −0.394504 + 0.683302i
\(347\) −26.9706 −1.44786 −0.723928 0.689876i \(-0.757665\pi\)
−0.723928 + 0.689876i \(0.757665\pi\)
\(348\) −4.84772 8.39651i −0.259865 0.450100i
\(349\) −9.27958 −0.496725 −0.248362 0.968667i \(-0.579892\pi\)
−0.248362 + 0.968667i \(0.579892\pi\)
\(350\) 0 0
\(351\) 30.5826i 1.63238i
\(352\) 5.65685 + 9.79796i 0.301511 + 0.522233i
\(353\) 20.5880i 1.09579i 0.836548 + 0.547894i \(0.184570\pi\)
−0.836548 + 0.547894i \(0.815430\pi\)
\(354\) 0.828427 1.43488i 0.0440304 0.0762629i
\(355\) 0 0
\(356\) 22.0812 12.7486i 1.17030 0.675675i
\(357\) 0 0
\(358\) 2.48528 4.30463i 0.131351 0.227507i
\(359\) 17.3205i 0.914141i −0.889430 0.457071i \(-0.848899\pi\)
0.889430 0.457071i \(-0.151101\pi\)
\(360\) −6.85572 −0.361328
\(361\) 1.82843 0.0962330
\(362\) −9.98951 + 17.3023i −0.525037 + 0.909391i
\(363\) 7.57675i 0.397676i
\(364\) 0 0
\(365\) 9.37769i 0.490851i
\(366\) −12.7279 7.34847i −0.665299 0.384111i
\(367\) −22.9520 −1.19808 −0.599042 0.800718i \(-0.704452\pi\)
−0.599042 + 0.800718i \(0.704452\pi\)
\(368\) 28.9706 + 16.7262i 1.51019 + 0.871911i
\(369\) 0.579658i 0.0301758i
\(370\) 3.97696 + 2.29610i 0.206752 + 0.119369i
\(371\) 0 0
\(372\) 12.0000 6.92820i 0.622171 0.359211i
\(373\) 29.9882i 1.55273i −0.630283 0.776366i \(-0.717061\pi\)
0.630283 0.776366i \(-0.282939\pi\)
\(374\) −10.9269 6.30864i −0.565016 0.326212i
\(375\) 11.8272i 0.610753i
\(376\) 36.2085 1.86731
\(377\) 26.2082i 1.34979i
\(378\) 0 0
\(379\) −5.31371 −0.272947 −0.136473 0.990644i \(-0.543577\pi\)
−0.136473 + 0.990644i \(0.543577\pi\)
\(380\) 9.51472 5.49333i 0.488095 0.281802i
\(381\) −16.5512 −0.847942
\(382\) 2.48528 + 1.43488i 0.127158 + 0.0734147i
\(383\) 12.8017 0.654134 0.327067 0.945001i \(-0.393940\pi\)
0.327067 + 0.945001i \(0.393940\pi\)
\(384\) 10.6052 + 6.12293i 0.541196 + 0.312460i
\(385\) 0 0
\(386\) −10.0000 + 17.3205i −0.508987 + 0.881591i
\(387\) −5.79899 −0.294779
\(388\) 16.0021 9.23880i 0.812382 0.469029i
\(389\) 37.9310i 1.92318i 0.274490 + 0.961590i \(0.411491\pi\)
−0.274490 + 0.961590i \(0.588509\pi\)
\(390\) 10.2836 + 5.93723i 0.520729 + 0.300643i
\(391\) −37.3067 −1.88668
\(392\) 0 0
\(393\) −14.8284 −0.747995
\(394\) 15.5147 + 8.95743i 0.781620 + 0.451269i
\(395\) 2.69005i 0.135351i
\(396\) 3.65685 + 6.33386i 0.183764 + 0.318288i
\(397\) 13.8056 0.692886 0.346443 0.938071i \(-0.387389\pi\)
0.346443 + 0.938071i \(0.387389\pi\)
\(398\) 4.52607 7.83938i 0.226871 0.392953i
\(399\) 0 0
\(400\) 6.48528 11.2328i 0.324264 0.561642i
\(401\) 16.2426 0.811119 0.405559 0.914069i \(-0.367077\pi\)
0.405559 + 0.914069i \(0.367077\pi\)
\(402\) 15.9079 + 9.18440i 0.793412 + 0.458076i
\(403\) 37.4558 1.86581
\(404\) 0.549104 + 0.951076i 0.0273189 + 0.0473178i
\(405\) 0.227446 0.0113019
\(406\) 0 0
\(407\) 4.89898i 0.242833i
\(408\) −13.6569 −0.676115
\(409\) 9.23880i 0.456829i −0.973564 0.228415i \(-0.926646\pi\)
0.973564 0.228415i \(-0.0733541\pi\)
\(410\) −0.514719 0.297173i −0.0254201 0.0146763i
\(411\) 8.92177i 0.440078i
\(412\) −1.09821 1.90215i −0.0541048 0.0937123i
\(413\) 0 0
\(414\) 18.7279 + 10.8126i 0.920427 + 0.531409i
\(415\) 7.52255i 0.369267i
\(416\) 16.5512 + 28.6675i 0.811488 + 1.40554i
\(417\) 18.8284 0.922032
\(418\) −10.1503 5.86030i −0.496469 0.286637i
\(419\) 7.31411i 0.357318i −0.983911 0.178659i \(-0.942824\pi\)
0.983911 0.178659i \(-0.0571759\pi\)
\(420\) 0 0
\(421\) 12.6677i 0.617387i 0.951162 + 0.308693i \(0.0998917\pi\)
−0.951162 + 0.308693i \(0.900108\pi\)
\(422\) −2.48528 + 4.30463i −0.120982 + 0.209546i
\(423\) 23.4069 1.13808
\(424\) 9.79796i 0.475831i
\(425\) 14.4650i 0.701658i
\(426\) 0 0
\(427\) 0 0
\(428\) −8.48528 14.6969i −0.410152 0.710403i
\(429\) 12.6677i 0.611603i
\(430\) −2.97297 + 5.14933i −0.143369 + 0.248323i
\(431\) 27.1185i 1.30625i 0.757250 + 0.653125i \(0.226543\pi\)
−0.757250 + 0.653125i \(0.773457\pi\)
\(432\) 18.1043 + 10.4525i 0.871042 + 0.502896i
\(433\) 28.1647i 1.35351i −0.736208 0.676755i \(-0.763386\pi\)
0.736208 0.676755i \(-0.236614\pi\)
\(434\) 0 0
\(435\) −6.42641 −0.308123
\(436\) −24.7279 + 14.2767i −1.18425 + 0.683729i
\(437\) −34.6554 −1.65779
\(438\) −5.41421 + 9.37769i −0.258701 + 0.448084i
\(439\) −22.3087 −1.06474 −0.532368 0.846513i \(-0.678698\pi\)
−0.532368 + 0.846513i \(0.678698\pi\)
\(440\) 7.49903 0.357502
\(441\) 0 0
\(442\) −31.9706 18.4582i −1.52068 0.877968i
\(443\) 28.2843 1.34383 0.671913 0.740630i \(-0.265473\pi\)
0.671913 + 0.740630i \(0.265473\pi\)
\(444\) −2.65131 4.59220i −0.125826 0.217936i
\(445\) 16.9002i 0.801148i
\(446\) 3.42786 5.93723i 0.162314 0.281136i
\(447\) 0.643315 0.0304278
\(448\) 0 0
\(449\) 5.65685 0.266963 0.133482 0.991051i \(-0.457384\pi\)
0.133482 + 0.991051i \(0.457384\pi\)
\(450\) 4.19239 7.26143i 0.197631 0.342307i
\(451\) 0.634051i 0.0298563i
\(452\) −0.485281 0.840532i −0.0228257 0.0395353i
\(453\) 5.94593 0.279364
\(454\) 14.4490 + 8.34211i 0.678123 + 0.391515i
\(455\) 0 0
\(456\) −12.6863 −0.594090
\(457\) −26.8284 −1.25498 −0.627490 0.778624i \(-0.715918\pi\)
−0.627490 + 0.778624i \(0.715918\pi\)
\(458\) −10.7661 + 18.6474i −0.503065 + 0.871334i
\(459\) −23.3137 −1.08819
\(460\) 19.2025 11.0866i 0.895320 0.516913i
\(461\) 18.9750 0.883755 0.441878 0.897075i \(-0.354313\pi\)
0.441878 + 0.897075i \(0.354313\pi\)
\(462\) 0 0
\(463\) 8.95743i 0.416287i 0.978098 + 0.208143i \(0.0667421\pi\)
−0.978098 + 0.208143i \(0.933258\pi\)
\(464\) −15.5147 8.95743i −0.720253 0.415838i
\(465\) 9.18440i 0.425916i
\(466\) 8.31371 14.3998i 0.385125 0.667056i
\(467\) 36.7695i 1.70149i −0.525580 0.850744i \(-0.676152\pi\)
0.525580 0.850744i \(-0.323848\pi\)
\(468\) 10.6994 + 18.5320i 0.494582 + 0.856641i
\(469\) 0 0
\(470\) 12.0000 20.7846i 0.553519 0.958723i
\(471\) 13.6102i 0.627126i
\(472\) 3.06147i 0.140915i
\(473\) 6.34315 0.291658
\(474\) 1.55310 2.69005i 0.0713363 0.123558i
\(475\) 13.4370i 0.616534i
\(476\) 0 0
\(477\) 6.33386i 0.290007i
\(478\) 7.75736 + 4.47871i 0.354813 + 0.204852i
\(479\) 10.1503 0.463781 0.231890 0.972742i \(-0.425509\pi\)
0.231890 + 0.972742i \(0.425509\pi\)
\(480\) 7.02944 4.05845i 0.320848 0.185242i
\(481\) 14.3337i 0.653562i
\(482\) 20.5947 + 11.8904i 0.938065 + 0.541592i
\(483\) 0 0
\(484\) 7.00000 + 12.1244i 0.318182 + 0.551107i
\(485\) 12.2474i 0.556128i
\(486\) 18.9750 + 10.9552i 0.860725 + 0.496940i
\(487\) 14.4508i 0.654826i 0.944881 + 0.327413i \(0.106177\pi\)
−0.944881 + 0.327413i \(0.893823\pi\)
\(488\) −27.1564 −1.22931
\(489\) 21.8017i 0.985907i
\(490\) 0 0
\(491\) 7.79899 0.351963 0.175982 0.984393i \(-0.443690\pi\)
0.175982 + 0.984393i \(0.443690\pi\)
\(492\) 0.343146 + 0.594346i 0.0154702 + 0.0267952i
\(493\) 19.9790 0.899810
\(494\) −29.6985 17.1464i −1.33620 0.771454i
\(495\) 4.84772 0.217889
\(496\) 12.8017 22.1731i 0.574811 0.995602i
\(497\) 0 0
\(498\) 4.34315 7.52255i 0.194621 0.337093i
\(499\) 8.48528 0.379853 0.189927 0.981798i \(-0.439175\pi\)
0.189927 + 0.981798i \(0.439175\pi\)
\(500\) −10.9269 18.9259i −0.488665 0.846393i
\(501\) 17.9149i 0.800377i
\(502\) −24.7325 14.2793i −1.10387 0.637318i
\(503\) −4.84772 −0.216149 −0.108075 0.994143i \(-0.534469\pi\)
−0.108075 + 0.994143i \(0.534469\pi\)
\(504\) 0 0
\(505\) 0.727922 0.0323921
\(506\) −20.4853 11.8272i −0.910682 0.525782i
\(507\) 22.9929i 1.02115i
\(508\) −26.4853 + 15.2913i −1.17509 + 0.678441i
\(509\) 2.10220 0.0931786 0.0465893 0.998914i \(-0.485165\pi\)
0.0465893 + 0.998914i \(0.485165\pi\)
\(510\) −4.52607 + 7.83938i −0.200418 + 0.347133i
\(511\) 0 0
\(512\) 22.6274 1.00000
\(513\) −21.6569 −0.956173
\(514\) −1.48648 0.858221i −0.0655660 0.0378545i
\(515\) −1.45584 −0.0641522
\(516\) 5.94593 3.43289i 0.261755 0.151124i
\(517\) −25.6033 −1.12603
\(518\) 0 0
\(519\) 11.2328i 0.493067i
\(520\) 21.9411 0.962182
\(521\) 3.11586i 0.136508i 0.997668 + 0.0682542i \(0.0217429\pi\)
−0.997668 + 0.0682542i \(0.978257\pi\)
\(522\) −10.0294 5.79050i −0.438977 0.253443i
\(523\) 20.0852i 0.878267i 0.898422 + 0.439133i \(0.144714\pi\)
−0.898422 + 0.439133i \(0.855286\pi\)
\(524\) −23.7285 + 13.6997i −1.03659 + 0.598473i
\(525\) 0 0
\(526\) 22.9706 + 13.2621i 1.00156 + 0.578253i
\(527\) 28.5533i 1.24380i
\(528\) −7.49903 4.32957i −0.326354 0.188420i
\(529\) −46.9411 −2.04092
\(530\) −5.62427 3.24718i −0.244303 0.141048i
\(531\) 1.97908i 0.0858846i
\(532\) 0 0
\(533\) 1.85514i 0.0803552i
\(534\) −9.75736 + 16.9002i −0.422242 + 0.731345i
\(535\) −11.2485 −0.486317
\(536\) 33.9411 1.46603
\(537\) 3.80430i 0.164168i
\(538\) 8.66386 15.0062i 0.373525 0.646965i
\(539\) 0 0
\(540\) 12.0000 6.92820i 0.516398 0.298142i
\(541\) 25.9298i 1.11481i 0.830241 + 0.557404i \(0.188203\pi\)
−0.830241 + 0.557404i \(0.811797\pi\)
\(542\) 22.6303 39.1969i 0.972056 1.68365i
\(543\) 15.2913i 0.656212i
\(544\) −21.8538 + 12.6173i −0.936973 + 0.540962i
\(545\) 18.9259i 0.810698i
\(546\) 0 0
\(547\) −20.8284 −0.890559 −0.445280 0.895392i \(-0.646896\pi\)
−0.445280 + 0.895392i \(0.646896\pi\)
\(548\) 8.24264 + 14.2767i 0.352108 + 0.609869i
\(549\) −17.5552 −0.749236
\(550\) −4.58579 + 7.94282i −0.195539 + 0.338683i
\(551\) 18.5592 0.790647
\(552\) −25.6033 −1.08975
\(553\) 0 0
\(554\) −3.51472 2.02922i −0.149326 0.0862135i
\(555\) −3.51472 −0.149191
\(556\) 30.1294 17.3952i 1.27777 0.737721i
\(557\) 2.86976i 0.121595i 0.998150 + 0.0607977i \(0.0193645\pi\)
−0.998150 + 0.0607977i \(0.980636\pi\)
\(558\) 8.27558 14.3337i 0.350333 0.606795i
\(559\) 18.5592 0.784969
\(560\) 0 0
\(561\) 9.65685 0.407713
\(562\) 11.8284 20.4874i 0.498952 0.864210i
\(563\) 3.88123i 0.163574i −0.996650 0.0817871i \(-0.973937\pi\)
0.996650 0.0817871i \(-0.0260628\pi\)
\(564\) −24.0000 + 13.8564i −1.01058 + 0.583460i
\(565\) −0.643315 −0.0270645
\(566\) −18.6534 10.7695i −0.784060 0.452677i
\(567\) 0 0
\(568\) 0 0
\(569\) 33.8995 1.42114 0.710570 0.703626i \(-0.248437\pi\)
0.710570 + 0.703626i \(0.248437\pi\)
\(570\) −4.20441 + 7.28225i −0.176103 + 0.305020i
\(571\) −12.3431 −0.516545 −0.258272 0.966072i \(-0.583153\pi\)
−0.258272 + 0.966072i \(0.583153\pi\)
\(572\) −11.7034 20.2710i −0.489346 0.847571i
\(573\) −2.19642 −0.0917566
\(574\) 0 0
\(575\) 27.1185i 1.13092i
\(576\) 14.6274 0.609476
\(577\) 20.7737i 0.864820i −0.901677 0.432410i \(-0.857663\pi\)
0.901677 0.432410i \(-0.142337\pi\)
\(578\) 2.05025 3.55114i 0.0852793 0.147708i
\(579\) 15.3073i 0.636151i
\(580\) −10.2836 + 5.93723i −0.427002 + 0.246530i
\(581\) 0 0
\(582\) −7.07107 + 12.2474i −0.293105 + 0.507673i
\(583\) 6.92820i 0.286937i
\(584\) 20.0083i 0.827950i
\(585\) 14.1838 0.586427
\(586\) −4.13779 + 7.16687i −0.170931 + 0.296060i
\(587\) 15.7557i 0.650306i 0.945661 + 0.325153i \(0.105416\pi\)
−0.945661 + 0.325153i \(0.894584\pi\)
\(588\) 0 0
\(589\) 26.5241i 1.09291i
\(590\) −1.75736 1.01461i −0.0723493 0.0417709i
\(591\) −13.7114 −0.564013
\(592\) −8.48528 4.89898i −0.348743 0.201347i
\(593\) 3.56420i 0.146364i −0.997319 0.0731821i \(-0.976685\pi\)
0.997319 0.0731821i \(-0.0233154\pi\)
\(594\) −12.8017 7.39104i −0.525258 0.303258i
\(595\) 0 0
\(596\) 1.02944 0.594346i 0.0421674 0.0243454i
\(597\) 6.92820i 0.283552i
\(598\) −59.9371 34.6047i −2.45101 1.41509i
\(599\) 6.08767i 0.248736i −0.992236 0.124368i \(-0.960310\pi\)
0.992236 0.124368i \(-0.0396903\pi\)
\(600\) 9.92724i 0.405278i
\(601\) 22.2275i 0.906679i −0.891338 0.453339i \(-0.850233\pi\)
0.891338 0.453339i \(-0.149767\pi\)
\(602\) 0 0
\(603\) 21.9411 0.893512
\(604\) 9.51472 5.49333i 0.387148 0.223520i
\(605\) 9.27958 0.377269
\(606\) −0.727922 0.420266i −0.0295698 0.0170721i
\(607\) −10.6052 −0.430453 −0.215227 0.976564i \(-0.569049\pi\)
−0.215227 + 0.976564i \(0.569049\pi\)
\(608\) −20.3007 + 11.7206i −0.823301 + 0.475333i
\(609\) 0 0
\(610\) −9.00000 + 15.5885i −0.364399 + 0.631158i
\(611\) −74.9117 −3.03060
\(612\) −14.1273 + 8.15640i −0.571062 + 0.329703i
\(613\) 26.9444i 1.08827i −0.838997 0.544137i \(-0.816857\pi\)
0.838997 0.544137i \(-0.183143\pi\)
\(614\) 26.9290 + 15.5474i 1.08676 + 0.627444i
\(615\) 0.454893 0.0183430
\(616\) 0 0
\(617\) 33.2132 1.33711 0.668557 0.743661i \(-0.266912\pi\)
0.668557 + 0.743661i \(0.266912\pi\)
\(618\) 1.45584 + 0.840532i 0.0585626 + 0.0338112i
\(619\) 18.5545i 0.745769i −0.927878 0.372884i \(-0.878369\pi\)
0.927878 0.372884i \(-0.121631\pi\)
\(620\) −8.48528 14.6969i −0.340777 0.590243i
\(621\) −43.7076 −1.75392
\(622\) 7.95393 13.7766i 0.318923 0.552391i
\(623\) 0 0
\(624\) −21.9411 12.6677i −0.878348 0.507114i
\(625\) 1.72792 0.0691169
\(626\) 18.4925 + 10.6767i 0.739111 + 0.426726i
\(627\) 8.97056 0.358250
\(628\) −12.5742 21.7792i −0.501765 0.869083i
\(629\) 10.9269 0.435684
\(630\) 0 0
\(631\) 39.5400i 1.57406i −0.616913 0.787031i \(-0.711617\pi\)
0.616913 0.787031i \(-0.288383\pi\)
\(632\) 5.73951i 0.228306i
\(633\) 3.80430i 0.151208i
\(634\) 28.9706 + 16.7262i 1.15057 + 0.664281i
\(635\) 20.2710i 0.804428i
\(636\) 3.74952 + 6.49435i 0.148678 + 0.257518i
\(637\) 0 0
\(638\) 10.9706 + 6.33386i 0.434329 + 0.250760i
\(639\) 0 0
\(640\) 7.49903 12.9887i 0.296425 0.513424i
\(641\) −31.0711 −1.22723 −0.613617 0.789604i \(-0.710286\pi\)
−0.613617 + 0.789604i \(0.710286\pi\)
\(642\) 11.2485 + 6.49435i 0.443945 + 0.256312i
\(643\) 30.3839i 1.19822i −0.800665 0.599112i \(-0.795520\pi\)
0.800665 0.599112i \(-0.204480\pi\)
\(644\) 0 0
\(645\) 4.55082i 0.179188i
\(646\) 13.0711 22.6398i 0.514274 0.890749i
\(647\) 10.1503 0.399051 0.199526 0.979893i \(-0.436060\pi\)
0.199526 + 0.979893i \(0.436060\pi\)
\(648\) −0.485281 −0.0190637
\(649\) 2.16478i 0.0849752i
\(650\) −13.4174 + 23.2396i −0.526273 + 0.911531i
\(651\) 0 0
\(652\) 20.1421 + 34.8872i 0.788827 + 1.36629i
\(653\) 20.3643i 0.796918i 0.917186 + 0.398459i \(0.130455\pi\)
−0.917186 + 0.398459i \(0.869545\pi\)
\(654\) 10.9269 18.9259i 0.427275 0.740063i
\(655\) 18.1610i 0.709611i
\(656\) 1.09821 + 0.634051i 0.0428778 + 0.0247555i
\(657\) 12.9343i 0.504616i
\(658\) 0 0
\(659\) 42.4853 1.65499 0.827496 0.561472i \(-0.189765\pi\)
0.827496 + 0.561472i \(0.189765\pi\)
\(660\) −4.97056 + 2.86976i −0.193479 + 0.111705i
\(661\) 31.1334 1.21095 0.605474 0.795865i \(-0.292984\pi\)
0.605474 + 0.795865i \(0.292984\pi\)
\(662\) −10.7279 + 18.5813i −0.416953 + 0.722183i
\(663\) 28.2546 1.09732
\(664\) 16.0502i 0.622868i
\(665\) 0 0
\(666\) −5.48528 3.16693i −0.212550 0.122716i
\(667\) 37.4558 1.45030
\(668\) −16.5512 28.6675i −0.640384 1.10918i
\(669\) 5.24714i 0.202866i
\(670\) 11.2485 19.4831i 0.434569 0.752696i
\(671\) 19.2025 0.741303
\(672\) 0 0
\(673\) −6.38478 −0.246115 −0.123058 0.992400i \(-0.539270\pi\)
−0.123058 + 0.992400i \(0.539270\pi\)
\(674\) 3.00000 5.19615i 0.115556 0.200148i
\(675\) 16.9469i 0.652285i
\(676\) −21.2426 36.7933i −0.817025 1.41513i
\(677\) −29.5803 −1.13686 −0.568431 0.822731i \(-0.692449\pi\)
−0.568431 + 0.822731i \(0.692449\pi\)
\(678\) 0.643315 + 0.371418i 0.0247064 + 0.0142642i
\(679\) 0 0
\(680\) 16.7262i 0.641419i
\(681\) −12.7696 −0.489330
\(682\) −9.05213 + 15.6788i −0.346624 + 0.600371i
\(683\) 14.1421 0.541134 0.270567 0.962701i \(-0.412789\pi\)
0.270567 + 0.962701i \(0.412789\pi\)
\(684\) −13.1233 + 7.57675i −0.501782 + 0.289704i
\(685\) 10.9269 0.417495
\(686\) 0 0
\(687\) 16.4800i 0.628750i
\(688\) 6.34315 10.9867i 0.241830 0.418862i
\(689\) 20.2710i 0.772262i
\(690\) −8.48528 + 14.6969i −0.323029 + 0.559503i
\(691\) 40.7276i 1.54935i −0.632358 0.774676i \(-0.717913\pi\)
0.632358 0.774676i \(-0.282087\pi\)
\(692\) −10.3778 17.9749i −0.394504 0.683302i
\(693\) 0 0
\(694\) 19.0711 33.0321i 0.723928 1.25388i
\(695\) 23.0600i 0.874716i
\(696\) 13.7114 0.519731
\(697\) −1.41421 −0.0535672
\(698\) 6.56165 11.3651i 0.248362 0.430176i
\(699\) 12.7261i 0.481344i
\(700\) 0 0
\(701\) 47.7290i 1.80270i −0.433092 0.901350i \(-0.642578\pi\)
0.433092 0.901350i \(-0.357422\pi\)
\(702\) −37.4558 21.6251i −1.41368 0.816188i
\(703\) 10.1503 0.382827
\(704\) −16.0000 −0.603023
\(705\) 18.3688i 0.691809i
\(706\) −25.2150 14.5579i −0.948980 0.547894i
\(707\) 0 0
\(708\) 1.17157 + 2.02922i 0.0440304 + 0.0762629i
\(709\) 36.7423i 1.37989i 0.723863 + 0.689944i \(0.242365\pi\)
−0.723863 + 0.689944i \(0.757635\pi\)
\(710\) 0 0
\(711\) 3.71029i 0.139147i
\(712\) 36.0585i 1.35135i
\(713\) 53.5306i 2.00474i
\(714\) 0 0
\(715\) −15.5147 −0.580218
\(716\) 3.51472 + 6.08767i 0.131351 + 0.227507i
\(717\) −6.85572 −0.256031
\(718\) 21.2132 + 12.2474i 0.791670 + 0.457071i
\(719\) 19.6574 0.733096 0.366548 0.930399i \(-0.380540\pi\)
0.366548 + 0.930399i \(0.380540\pi\)
\(720\) 4.84772 8.39651i 0.180664 0.312919i
\(721\) 0 0
\(722\) −1.29289 + 2.23936i −0.0481165 + 0.0833402i
\(723\) −18.2010 −0.676903
\(724\) −14.1273 24.4692i −0.525037 0.909391i
\(725\) 14.5229i 0.539365i
\(726\) −9.27958 5.35757i −0.344398 0.198838i
\(727\) 49.6535 1.84155 0.920773 0.390098i \(-0.127559\pi\)
0.920773 + 0.390098i \(0.127559\pi\)
\(728\) 0 0
\(729\) −17.2843 −0.640158
\(730\) 11.4853 + 6.63103i 0.425089 + 0.245425i
\(731\) 14.1480i 0.523283i
\(732\) 18.0000 10.3923i 0.665299 0.384111i
\(733\) 26.9290 0.994644 0.497322 0.867566i \(-0.334317\pi\)
0.497322 + 0.867566i \(0.334317\pi\)
\(734\) 16.2295 28.1103i 0.599042 1.03757i
\(735\) 0 0
\(736\) −40.9706 + 23.6544i −1.51019 + 0.871911i
\(737\) −24.0000 −0.884051
\(738\) 0.709933 + 0.409880i 0.0261330 + 0.0150879i
\(739\) 20.8284 0.766186 0.383093 0.923710i \(-0.374859\pi\)
0.383093 + 0.923710i \(0.374859\pi\)
\(740\) −5.62427 + 3.24718i −0.206752 + 0.119369i
\(741\) 26.2466 0.964194
\(742\) 0 0
\(743\) 6.33386i 0.232367i 0.993228 + 0.116183i \(0.0370660\pi\)
−0.993228 + 0.116183i \(0.962934\pi\)
\(744\) 19.5959i 0.718421i
\(745\) 0.787897i 0.0288663i
\(746\) 36.7279 + 21.2049i 1.34470 + 0.776366i
\(747\) 10.3756i 0.379623i
\(748\) 15.4530 8.92177i 0.565016 0.326212i
\(749\) 0 0
\(750\) 14.4853 + 8.36308i 0.528928 + 0.305377i
\(751\) 42.6559i 1.55654i −0.627931 0.778269i \(-0.716098\pi\)
0.627931 0.778269i \(-0.283902\pi\)
\(752\) −25.6033 + 44.3462i −0.933656 + 1.61714i
\(753\) 21.8579 0.796545
\(754\) 32.0983 + 18.5320i 1.16895 + 0.674895i
\(755\) 7.28225i 0.265028i
\(756\) 0 0
\(757\) 8.18900i 0.297634i −0.988865 0.148817i \(-0.952453\pi\)
0.988865 0.148817i \(-0.0475466\pi\)
\(758\) 3.75736 6.50794i 0.136473 0.236379i
\(759\) 18.1043 0.657143
\(760\) 15.5375i 0.563603i
\(761\) 4.72352i 0.171227i −0.996328 0.0856137i \(-0.972715\pi\)
0.996328 0.0856137i \(-0.0272851\pi\)
\(762\) 11.7034 20.2710i 0.423971 0.734339i
\(763\) 0 0
\(764\) −3.51472 + 2.02922i −0.127158 + 0.0734147i
\(765\) 10.8126i 0.390929i
\(766\) −9.05213 + 15.6788i −0.327067 + 0.566496i
\(767\) 6.33386i 0.228702i
\(768\) −14.9981 + 8.65914i −0.541196 + 0.312460i
\(769\) 19.1342i 0.689996i 0.938603 + 0.344998i \(0.112120\pi\)
−0.938603 + 0.344998i \(0.887880\pi\)
\(770\) 0 0
\(771\) 1.31371 0.0473121
\(772\) −14.1421 24.4949i −0.508987 0.881591i
\(773\) 42.8368 1.54073 0.770366 0.637601i \(-0.220073\pi\)
0.770366 + 0.637601i \(0.220073\pi\)
\(774\) 4.10051 7.10228i 0.147390 0.255286i
\(775\) 20.7556 0.745562
\(776\) 26.1313i 0.938058i
\(777\) 0 0
\(778\) −46.4558 26.8213i −1.66552 0.961590i
\(779\) −1.31371 −0.0470685
\(780\) −14.5432 + 8.39651i −0.520729 + 0.300643i
\(781\) 0 0
\(782\) 26.3799 45.6912i 0.943342 1.63392i
\(783\) 23.4069 0.836494
\(784\) 0 0
\(785\) −16.6690 −0.594944
\(786\) 10.4853 18.1610i 0.373998 0.647783i
\(787\) 46.6967i 1.66456i 0.554357 + 0.832279i \(0.312964\pi\)
−0.554357 + 0.832279i \(0.687036\pi\)
\(788\) −21.9411 + 12.6677i −0.781620 + 0.451269i
\(789\) −20.3007 −0.722723
\(790\) −3.29462 1.90215i −0.117217 0.0676755i
\(791\) 0 0
\(792\) −10.3431 −0.367528
\(793\) 56.1838 1.99514
\(794\) −9.76207 + 16.9084i −0.346443 + 0.600056i
\(795\) 4.97056 0.176288
\(796\) 6.40083 + 11.0866i 0.226871 + 0.392953i
\(797\) −50.6575 −1.79438 −0.897190 0.441644i \(-0.854395\pi\)
−0.897190 + 0.441644i \(0.854395\pi\)
\(798\) 0 0
\(799\) 57.1067i 2.02029i
\(800\) 9.17157 + 15.8856i 0.324264 + 0.561642i
\(801\) 23.3099i 0.823615i
\(802\) −11.4853 + 19.8931i −0.405559 + 0.702449i
\(803\) 14.1480i 0.499273i
\(804\) −22.4971 + 12.9887i −0.793412 + 0.458076i
\(805\) 0 0
\(806\) −26.4853 + 45.8739i −0.932904 + 1.61584i
\(807\) 13.2621i 0.466847i
\(808\) −1.55310 −0.0546379
\(809\) 35.4558 1.24656 0.623281 0.781998i \(-0.285799\pi\)
0.623281 + 0.781998i \(0.285799\pi\)
\(810\) −0.160829 + 0.278564i −0.00565095 + 0.00978773i
\(811\) 9.63274i 0.338251i −0.985594 0.169126i \(-0.945906\pi\)
0.985594 0.169126i \(-0.0540944\pi\)
\(812\) 0 0
\(813\) 34.6410i 1.21491i
\(814\) 6.00000 + 3.46410i 0.210300 + 0.121417i
\(815\) 26.7015 0.935313
\(816\) 9.65685 16.7262i 0.338058 0.585533i
\(817\) 13.1426i 0.459800i
\(818\) 11.3152 + 6.53281i 0.395626 + 0.228415i
\(819\) 0 0
\(820\) 0.727922 0.420266i 0.0254201 0.0146763i
\(821\) 37.5108i 1.30913i 0.756004 + 0.654567i \(0.227149\pi\)
−0.756004 + 0.654567i \(0.772851\pi\)
\(822\) −10.9269 6.30864i −0.381119 0.220039i
\(823\) 20.7846i 0.724506i 0.932080 + 0.362253i \(0.117992\pi\)
−0.932080 + 0.362253i \(0.882008\pi\)
\(824\) 3.10620 0.108210
\(825\) 7.01962i 0.244392i
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) −26.4853 + 15.2913i −0.920427 + 0.531409i
\(829\) 4.29862 0.149297 0.0746486 0.997210i \(-0.476216\pi\)
0.0746486 + 0.997210i \(0.476216\pi\)
\(830\) −9.21320 5.31925i −0.319795 0.184634i
\(831\) 3.10620 0.107753
\(832\) −46.8138 −1.62298
\(833\) 0 0
\(834\) −13.3137 + 23.0600i −0.461016 + 0.798503i
\(835\) −21.9411 −0.759304
\(836\) 14.3548 8.28772i 0.496469 0.286637i
\(837\) 33.4523i 1.15628i
\(838\) 8.95792 + 5.17186i 0.309446 + 0.178659i
\(839\) 35.1103 1.21214 0.606072 0.795410i \(-0.292745\pi\)
0.606072 + 0.795410i \(0.292745\pi\)
\(840\) 0 0
\(841\) 8.94113 0.308315
\(842\) −15.5147 8.95743i −0.534673 0.308693i
\(843\) 18.1062i 0.623610i
\(844\) −3.51472 6.08767i −0.120982 0.209546i
\(845\) −28.1604 −0.968747
\(846\) −16.5512 + 28.6675i −0.569041 + 0.985608i
\(847\) 0 0
\(848\) 12.0000 + 6.92820i 0.412082 + 0.237915i
\(849\) 16.4853 0.565773
\(850\) −17.7160 10.2283i −0.607654 0.350829i
\(851\) 20.4853 0.702226
\(852\) 0 0
\(853\) −20.9830 −0.718445 −0.359223 0.933252i \(-0.616958\pi\)
−0.359223 + 0.933252i \(0.616958\pi\)
\(854\) 0 0
\(855\) 10.0441i 0.343503i
\(856\) 24.0000 0.820303
\(857\) 5.62020i 0.191982i −0.995382 0.0959912i \(-0.969398\pi\)
0.995382 0.0959912i \(-0.0306021\pi\)
\(858\) 15.5147 + 8.95743i 0.529664 + 0.305802i
\(859\) 33.5992i 1.14639i 0.819419 + 0.573195i \(0.194296\pi\)
−0.819419 + 0.573195i \(0.805704\pi\)
\(860\) −4.20441 7.28225i −0.143369 0.248323i
\(861\) 0 0
\(862\) −33.2132 19.1757i −1.13125 0.653125i
\(863\) 23.6544i 0.805204i −0.915375 0.402602i \(-0.868106\pi\)
0.915375 0.402602i \(-0.131894\pi\)
\(864\) −25.6033 + 14.7821i −0.871042 + 0.502896i
\(865\) −13.7574 −0.467764
\(866\) 34.4946 + 19.9155i 1.17217 + 0.676755i
\(867\) 3.13839i 0.106585i
\(868\) 0 0
\(869\) 4.05845i 0.137673i
\(870\) 4.54416 7.87071i 0.154061 0.266842i
\(871\) −70.2207 −2.37934
\(872\) 40.3805i 1.36746i
\(873\) 16.8925i 0.571723i
\(874\) 24.5051 42.4441i 0.828897 1.43569i
\(875\) 0 0
\(876\) −7.65685 13.2621i −0.258701 0.448084i
\(877\) 37.0905i 1.25246i −0.779639 0.626229i \(-0.784598\pi\)
0.779639 0.626229i \(-0.215402\pi\)
\(878\) 15.7746 27.3224i 0.532368 0.922088i
\(879\) 6.33386i 0.213636i
\(880\) −5.30262 + 9.18440i −0.178751 + 0.309606i
\(881\) 36.0810i 1.21560i −0.794090 0.607800i \(-0.792052\pi\)
0.794090 0.607800i \(-0.207948\pi\)
\(882\) 0 0
\(883\) −46.4264 −1.56237 −0.781186 0.624298i \(-0.785385\pi\)
−0.781186 + 0.624298i \(0.785385\pi\)
\(884\) 45.2132 26.1039i 1.52068 0.877968i
\(885\) 1.55310 0.0522069
\(886\) −20.0000 + 34.6410i −0.671913 + 1.16379i
\(887\) 5.94593 0.199645 0.0998224 0.995005i \(-0.468173\pi\)
0.0998224 + 0.995005i \(0.468173\pi\)
\(888\) 7.49903 0.251651
\(889\) 0 0
\(890\) 20.6985 + 11.9503i 0.693815 + 0.400574i
\(891\) 0.343146 0.0114958
\(892\) 4.84772 + 8.39651i 0.162314 + 0.281136i
\(893\) 53.0482i 1.77519i
\(894\) −0.454893 + 0.787897i −0.0152139 + 0.0263512i
\(895\) 4.65930 0.155743
\(896\) 0 0
\(897\) 52.9706 1.76864
\(898\) −4.00000 + 6.92820i −0.133482 + 0.231197i
\(899\) 28.6675i 0.956113i
\(900\) 5.92893 + 10.2692i 0.197631 + 0.342307i
\(901\) −15.4530 −0.514813
\(902\) −0.776550 0.448342i −0.0258563 0.0149281i
\(903\) 0 0
\(904\) 1.37258 0.0456514
\(905\) −18.7279 −0.622537
\(906\) −4.20441 + 7.28225i −0.139682 + 0.241937i
\(907\) −16.0000 −0.531271 −0.265636 0.964073i \(-0.585582\pi\)
−0.265636 + 0.964073i \(0.585582\pi\)
\(908\) −20.4339 + 11.7975i −0.678123 + 0.391515i
\(909\) −1.00400 −0.0333005
\(910\) 0 0
\(911\) 15.2913i 0.506623i 0.967385 + 0.253311i \(0.0815197\pi\)
−0.967385 + 0.253311i \(0.918480\pi\)
\(912\) 8.97056 15.5375i 0.297045 0.514497i
\(913\) 11.3492i 0.375603i
\(914\) 18.9706 32.8580i 0.627490 1.08685i
\(915\) 13.7766i 0.455440i
\(916\) −15.2255 26.3714i −0.503065 0.871334i
\(917\) 0 0
\(918\) 16.4853 28.5533i 0.544095 0.942401i
\(919\) 37.5108i 1.23737i 0.785641 + 0.618683i \(0.212334\pi\)
−0.785641 + 0.618683i \(0.787666\pi\)
\(920\) 31.3575i 1.03383i
\(921\) −23.7990 −0.784203
\(922\) −13.4174 + 23.2396i −0.441878 + 0.765354i
\(923\) 0 0
\(924\) 0 0
\(925\) 7.94282i 0.261158i
\(926\) −10.9706 6.33386i −0.360515 0.208143i
\(927\) 2.00799 0.0659512
\(928\) 21.9411 12.6677i 0.720253 0.415838i
\(929\) 22.3044i 0.731784i 0.930657 + 0.365892i \(0.119236\pi\)
−0.930657 + 0.365892i \(0.880764\pi\)
\(930\) 11.2485 + 6.49435i 0.368854 + 0.212958i
\(931\) 0 0
\(932\) 11.7574 + 20.3643i 0.385125 + 0.667056i
\(933\) 12.1753i 0.398603i
\(934\) 45.0332 + 25.9999i 1.47353 + 0.850744i
\(935\) 11.8272i 0.386790i
\(936\) −30.2626 −0.989164
\(937\) 51.4202i 1.67983i 0.542721 + 0.839913i \(0.317394\pi\)
−0.542721 + 0.839913i \(0.682606\pi\)
\(938\) 0 0
\(939\) −16.3431 −0.533338
\(940\) 16.9706 + 29.3939i 0.553519 + 0.958723i
\(941\) −12.2525 −0.399422 −0.199711 0.979855i \(-0.564000\pi\)
−0.199711 + 0.979855i \(0.564000\pi\)
\(942\) 16.6690 + 9.62388i 0.543107 + 0.313563i
\(943\) −2.65131 −0.0863385
\(944\) 3.74952 + 2.16478i 0.122036 + 0.0704577i
\(945\) 0 0
\(946\) −4.48528 + 7.76874i −0.145829 + 0.252583i
\(947\) 0.544156 0.0176827 0.00884135 0.999961i \(-0.497186\pi\)
0.00884135 + 0.999961i \(0.497186\pi\)
\(948\) 2.19642 + 3.80430i 0.0713363 + 0.123558i
\(949\) 41.3951i 1.34374i
\(950\) −16.4570 9.50143i −0.533934 0.308267i
\(951\) −25.6033 −0.830244
\(952\) 0 0
\(953\) −18.6863 −0.605308 −0.302654 0.953100i \(-0.597873\pi\)
−0.302654 + 0.953100i \(0.597873\pi\)
\(954\) 7.75736 + 4.47871i 0.251154 + 0.145004i
\(955\) 2.69005i 0.0870479i
\(956\) −10.9706 + 6.33386i −0.354813 + 0.204852i
\(957\) −9.69545 −0.313409
\(958\) −7.17738 + 12.4316i −0.231890 + 0.401646i
\(959\) 0 0
\(960\) 11.4790i 0.370484i
\(961\) 9.97056 0.321631
\(962\) 17.5552 + 10.1355i 0.566001 + 0.326781i
\(963\) 15.5147 0.499955
\(964\) −29.1254 + 16.8155i −0.938065 + 0.541592i
\(965\) −18.7476 −0.603506
\(966\) 0 0
\(967\) 27.9590i 0.899101i 0.893255 + 0.449550i \(0.148416\pi\)
−0.893255 + 0.449550i \(0.851584\pi\)
\(968\) −19.7990 −0.636364
\(969\) 20.0083i 0.642760i
\(970\) 15.0000 + 8.66025i 0.481621 + 0.278064i
\(971\) 8.10201i 0.260006i −0.991514 0.130003i \(-0.958501\pi\)
0.991514 0.130003i \(-0.0414987\pi\)
\(972\) −26.8347 + 15.4930i −0.860725 + 0.496940i
\(973\) 0 0
\(974\) −17.6985 10.2182i −0.567096 0.327413i
\(975\) 20.5384i 0.657756i
\(976\) 19.2025 33.2597i 0.614656 1.06462i
\(977\) −5.21320 −0.166785 −0.0833926 0.996517i \(-0.526576\pi\)
−0.0833926 + 0.996517i \(0.526576\pi\)
\(978\) −26.7015 15.4161i −0.853820 0.492953i
\(979\) 25.4972i 0.814894i
\(980\) 0 0
\(981\) 26.1039i 0.833432i
\(982\) −5.51472 + 9.55177i −0.175982 + 0.304809i
\(983\) 26.7015 0.851646 0.425823 0.904807i \(-0.359985\pi\)
0.425823 + 0.904807i \(0.359985\pi\)
\(984\) −0.970563 −0.0309404
\(985\) 16.7930i 0.535070i
\(986\) −14.1273 + 24.4692i −0.449905 + 0.779258i
\(987\) 0 0
\(988\) 42.0000 24.2487i 1.33620 0.771454i
\(989\) 26.5241i 0.843418i
\(990\) −3.42786 + 5.93723i −0.108945 + 0.188697i
\(991\) 46.1200i 1.46505i 0.680739 + 0.732526i \(0.261659\pi\)
−0.680739 + 0.732526i \(0.738341\pi\)
\(992\) 18.1043 + 31.3575i 0.574811 + 0.995602i
\(993\) 16.4216i 0.521123i
\(994\) 0 0
\(995\) 8.48528 0.269002
\(996\) 6.14214 + 10.6385i 0.194621 + 0.337093i
\(997\) −32.2316 −1.02078 −0.510392 0.859942i \(-0.670500\pi\)
−0.510392 + 0.859942i \(0.670500\pi\)
\(998\) −6.00000 + 10.3923i −0.189927 + 0.328963i
\(999\) 12.8017 0.405026
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.2.e.c.195.3 yes 8
4.3 odd 2 1568.2.e.c.783.5 8
7.2 even 3 392.2.m.e.227.4 8
7.3 odd 6 392.2.m.c.19.2 8
7.4 even 3 392.2.m.c.19.1 8
7.5 odd 6 392.2.m.e.227.3 8
7.6 odd 2 inner 392.2.e.c.195.4 yes 8
8.3 odd 2 inner 392.2.e.c.195.1 8
8.5 even 2 1568.2.e.c.783.6 8
28.3 even 6 1568.2.q.c.1391.2 8
28.11 odd 6 1568.2.q.c.1391.3 8
28.19 even 6 1568.2.q.d.815.3 8
28.23 odd 6 1568.2.q.d.815.2 8
28.27 even 2 1568.2.e.c.783.4 8
56.3 even 6 392.2.m.e.19.4 8
56.5 odd 6 1568.2.q.c.815.3 8
56.11 odd 6 392.2.m.e.19.3 8
56.13 odd 2 1568.2.e.c.783.3 8
56.19 even 6 392.2.m.c.227.1 8
56.27 even 2 inner 392.2.e.c.195.2 yes 8
56.37 even 6 1568.2.q.c.815.2 8
56.45 odd 6 1568.2.q.d.1391.2 8
56.51 odd 6 392.2.m.c.227.2 8
56.53 even 6 1568.2.q.d.1391.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
392.2.e.c.195.1 8 8.3 odd 2 inner
392.2.e.c.195.2 yes 8 56.27 even 2 inner
392.2.e.c.195.3 yes 8 1.1 even 1 trivial
392.2.e.c.195.4 yes 8 7.6 odd 2 inner
392.2.m.c.19.1 8 7.4 even 3
392.2.m.c.19.2 8 7.3 odd 6
392.2.m.c.227.1 8 56.19 even 6
392.2.m.c.227.2 8 56.51 odd 6
392.2.m.e.19.3 8 56.11 odd 6
392.2.m.e.19.4 8 56.3 even 6
392.2.m.e.227.3 8 7.5 odd 6
392.2.m.e.227.4 8 7.2 even 3
1568.2.e.c.783.3 8 56.13 odd 2
1568.2.e.c.783.4 8 28.27 even 2
1568.2.e.c.783.5 8 4.3 odd 2
1568.2.e.c.783.6 8 8.5 even 2
1568.2.q.c.815.2 8 56.37 even 6
1568.2.q.c.815.3 8 56.5 odd 6
1568.2.q.c.1391.2 8 28.3 even 6
1568.2.q.c.1391.3 8 28.11 odd 6
1568.2.q.d.815.2 8 28.23 odd 6
1568.2.q.d.815.3 8 28.19 even 6
1568.2.q.d.1391.2 8 56.45 odd 6
1568.2.q.d.1391.3 8 56.53 even 6