L(s) = 1 | + (0.937 − 0.541i)3-s + (0.662 − 1.14i)5-s + (−0.914 + 1.58i)9-s + (−1 − 1.73i)11-s − 5.85·13-s − 1.43i·15-s + (−3.86 + 2.23i)17-s + (−3.58 − 2.07i)19-s + (−7.24 − 4.18i)23-s + (1.62 + 2.80i)25-s + 5.22i·27-s + 4.47i·29-s + (−3.20 − 5.54i)31-s + (−1.87 − 1.08i)33-s + (−2.12 − 1.22i)37-s + ⋯ |
L(s) = 1 | + (0.541 − 0.312i)3-s + (0.296 − 0.513i)5-s + (−0.304 + 0.527i)9-s + (−0.301 − 0.522i)11-s − 1.62·13-s − 0.370i·15-s + (−0.936 + 0.540i)17-s + (−0.823 − 0.475i)19-s + (−1.51 − 0.871i)23-s + (0.324 + 0.561i)25-s + 1.00i·27-s + 0.831i·29-s + (−0.574 − 0.995i)31-s + (−0.326 − 0.188i)33-s + (−0.348 − 0.201i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 - 0.0956i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.995 - 0.0956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3188725648\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3188725648\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.937 + 0.541i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.662 + 1.14i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1 + 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 5.85T + 13T^{2} \) |
| 17 | \( 1 + (3.86 - 2.23i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.58 + 2.07i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (7.24 + 4.18i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 4.47iT - 29T^{2} \) |
| 31 | \( 1 + (3.20 + 5.54i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.12 + 1.22i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 0.317iT - 41T^{2} \) |
| 43 | \( 1 - 3.17T + 43T^{2} \) |
| 47 | \( 1 + (-6.40 + 11.0i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (3 - 1.73i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.937 + 0.541i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.80 + 8.31i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6 - 10.3i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + (-6.12 + 3.53i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (1.75 + 1.01i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 5.67iT - 83T^{2} \) |
| 89 | \( 1 + (11.0 + 6.37i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 9.23iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.820679868934094786308263047057, −8.371515404482903138371921651918, −7.51325599649114276198957273133, −6.71846716176014519116621373427, −5.62092078041616768755501493266, −4.92071318838923920432292271701, −3.93257462366133089728975013385, −2.50626032696532254105675834434, −2.04268143573349750016100253322, −0.10008941964297490691661040854,
2.15198205152095622688720893160, 2.72285076053280675015495599217, 3.93872956910222530576610489092, 4.72434473250123299084840652024, 5.83260495581484462605002071552, 6.67107712035539428192855927493, 7.47035966725347054976250146670, 8.265412431959844252639177290788, 9.213821954850366015735864884163, 9.804650833041360397960138890644