Properties

Label 1512.2.k.b
Level 15121512
Weight 22
Character orbit 1512.k
Analytic conductor 12.07312.073
Analytic rank 00
Dimension 1616
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(377,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.377"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1512=23337 1512 = 2^{3} \cdot 3^{3} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1512.k (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 12.073380785612.0733807856
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x166x15+18x1436x1345x12+306x11378x10+1704x9++256 x^{16} - 6 x^{15} + 18 x^{14} - 36 x^{13} - 45 x^{12} + 306 x^{11} - 378 x^{10} + 1704 x^{9} + \cdots + 256 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 214 2^{14}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q5β12q7+β10q11+(β15+β4)q13β5q17+β4q19+β14q23+(β7+β3+2)q25+(β14+β13++β8)q29++(β15β12++β4)q97+O(q100) q + \beta_1 q^{5} - \beta_{12} q^{7} + \beta_{10} q^{11} + (\beta_{15} + \beta_{4}) q^{13} - \beta_{5} q^{17} + \beta_{4} q^{19} + \beta_{14} q^{23} + ( - \beta_{7} + \beta_{3} + 2) q^{25} + ( - \beta_{14} + \beta_{13} + \cdots + \beta_{8}) q^{29}+ \cdots + ( - \beta_{15} - \beta_{12} + \cdots + \beta_{4}) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q2q7+36q258q37+20q43+2q49+44q67+40q79+16q85+36q91+O(q100) 16 q - 2 q^{7} + 36 q^{25} - 8 q^{37} + 20 q^{43} + 2 q^{49} + 44 q^{67} + 40 q^{79} + 16 q^{85} + 36 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x166x15+18x1436x1345x12+306x11378x10+1704x9++256 x^{16} - 6 x^{15} + 18 x^{14} - 36 x^{13} - 45 x^{12} + 306 x^{11} - 378 x^{10} + 1704 x^{9} + \cdots + 256 : Copy content Toggle raw display

β1\beta_{1}== (96 ⁣ ⁣71ν15+90 ⁣ ⁣32)/76 ⁣ ⁣88 ( 96\!\cdots\!71 \nu^{15} + \cdots - 90\!\cdots\!32 ) / 76\!\cdots\!88 Copy content Toggle raw display
β2\beta_{2}== (63679977ν15438014494ν14+1443496954ν133073658820ν12+128641878336)/24698853056 ( 63679977 \nu^{15} - 438014494 \nu^{14} + 1443496954 \nu^{13} - 3073658820 \nu^{12} + \cdots - 128641878336 ) / 24698853056 Copy content Toggle raw display
β3\beta_{3}== (12 ⁣ ⁣79ν15++87 ⁣ ⁣04)/19 ⁣ ⁣72 ( 12\!\cdots\!79 \nu^{15} + \cdots + 87\!\cdots\!04 ) / 19\!\cdots\!72 Copy content Toggle raw display
β4\beta_{4}== (19 ⁣ ⁣21ν15+91 ⁣ ⁣48)/19 ⁣ ⁣72 ( 19\!\cdots\!21 \nu^{15} + \cdots - 91\!\cdots\!48 ) / 19\!\cdots\!72 Copy content Toggle raw display
β5\beta_{5}== (16 ⁣ ⁣99ν15++98 ⁣ ⁣88)/15 ⁣ ⁣76 ( 16\!\cdots\!99 \nu^{15} + \cdots + 98\!\cdots\!88 ) / 15\!\cdots\!76 Copy content Toggle raw display
β6\beta_{6}== (10 ⁣ ⁣63ν15+45 ⁣ ⁣60)/76 ⁣ ⁣88 ( 10\!\cdots\!63 \nu^{15} + \cdots - 45\!\cdots\!60 ) / 76\!\cdots\!88 Copy content Toggle raw display
β7\beta_{7}== (14 ⁣ ⁣07ν15+86 ⁣ ⁣52)/96 ⁣ ⁣36 ( - 14\!\cdots\!07 \nu^{15} + \cdots - 86\!\cdots\!52 ) / 96\!\cdots\!36 Copy content Toggle raw display
β8\beta_{8}== (28 ⁣ ⁣65ν15+26 ⁣ ⁣40)/15 ⁣ ⁣76 ( 28\!\cdots\!65 \nu^{15} + \cdots - 26\!\cdots\!40 ) / 15\!\cdots\!76 Copy content Toggle raw display
β9\beta_{9}== (42 ⁣ ⁣89ν15+17 ⁣ ⁣92)/15 ⁣ ⁣76 ( 42\!\cdots\!89 \nu^{15} + \cdots - 17\!\cdots\!92 ) / 15\!\cdots\!76 Copy content Toggle raw display
β10\beta_{10}== (24 ⁣ ⁣29ν15++15 ⁣ ⁣84)/76 ⁣ ⁣88 ( - 24\!\cdots\!29 \nu^{15} + \cdots + 15\!\cdots\!84 ) / 76\!\cdots\!88 Copy content Toggle raw display
β11\beta_{11}== (29 ⁣ ⁣01ν15++15 ⁣ ⁣56)/76 ⁣ ⁣88 ( - 29\!\cdots\!01 \nu^{15} + \cdots + 15\!\cdots\!56 ) / 76\!\cdots\!88 Copy content Toggle raw display
β12\beta_{12}== (33 ⁣ ⁣13ν15++15 ⁣ ⁣88)/76 ⁣ ⁣88 ( - 33\!\cdots\!13 \nu^{15} + \cdots + 15\!\cdots\!88 ) / 76\!\cdots\!88 Copy content Toggle raw display
β13\beta_{13}== (21499912175367ν15+118714615744902ν14331040469619086ν13++13 ⁣ ⁣68)/434694100132496 ( - 21499912175367 \nu^{15} + 118714615744902 \nu^{14} - 331040469619086 \nu^{13} + \cdots + 13\!\cdots\!68 ) / 434694100132496 Copy content Toggle raw display
β14\beta_{14}== (12 ⁣ ⁣41ν15+75 ⁣ ⁣96)/15 ⁣ ⁣76 ( 12\!\cdots\!41 \nu^{15} + \cdots - 75\!\cdots\!96 ) / 15\!\cdots\!76 Copy content Toggle raw display
β15\beta_{15}== (73 ⁣ ⁣01ν15++34 ⁣ ⁣00)/76 ⁣ ⁣88 ( - 73\!\cdots\!01 \nu^{15} + \cdots + 34\!\cdots\!00 ) / 76\!\cdots\!88 Copy content Toggle raw display
ν\nu== (2β12+2β11+2β10+3β9+β8+β7β52β4β2+4)/8 ( -2\beta_{12} + 2\beta_{11} + 2\beta_{10} + 3\beta_{9} + \beta_{8} + \beta_{7} - \beta_{5} - 2\beta_{4} - \beta_{2} + 4 ) / 8 Copy content Toggle raw display
ν2\nu^{2}== (4β143β13+8β924β2+12β1)/8 ( -4\beta_{14} - 3\beta_{13} + 8\beta_{9} - 24\beta_{2} + 12\beta_1 ) / 8 Copy content Toggle raw display
ν3\nu^{3}== (6β154β124β11+11β911β8+2β67β5++8β1)/4 ( 6 \beta_{15} - 4 \beta_{12} - 4 \beta_{11} + 11 \beta_{9} - 11 \beta_{8} + 2 \beta_{6} - 7 \beta_{5} + \cdots + 8 \beta_1 ) / 4 Copy content Toggle raw display
ν4\nu^{4}== (67β15112β12+8β11+4β7+65β6+128β444β3+204)/8 ( 67\beta_{15} - 112\beta_{12} + 8\beta_{11} + 4\beta_{7} + 65\beta_{6} + 128\beta_{4} - 44\beta_{3} + 204 ) / 8 Copy content Toggle raw display
ν5\nu^{5}== (84β15128β144β13370β12+250β11+130β10++636)/8 ( 84 \beta_{15} - 128 \beta_{14} - 4 \beta_{13} - 370 \beta_{12} + 250 \beta_{11} + 130 \beta_{10} + \cdots + 636 ) / 8 Copy content Toggle raw display
ν6\nu^{6}== (500β14187β13+176β10+796β9+796β8)/4 ( -500\beta_{14} - 187\beta_{13} + 176\beta_{10} + 796\beta_{9} + 796\beta_{8} ) / 4 Copy content Toggle raw display
ν7\nu^{7}== (1090β151768β14266β13+2966β124558β11+1374β10+8588)/8 ( 1090 \beta_{15} - 1768 \beta_{14} - 266 \beta_{13} + 2966 \beta_{12} - 4558 \beta_{11} + 1374 \beta_{10} + \cdots - 8588 ) / 8 Copy content Toggle raw display
ν8\nu^{8}== (9979β15+2712β1217760β111356β7+7817β6+23184β4+28012)/8 ( 9979 \beta_{15} + 2712 \beta_{12} - 17760 \beta_{11} - 1356 \beta_{7} + 7817 \beta_{6} + 23184 \beta_{4} + \cdots - 28012 ) / 8 Copy content Toggle raw display
ν9\nu^{9}== (13880β1510236β1210236β1118053β9+18053β8+23184β1)/4 ( 13880 \beta_{15} - 10236 \beta_{12} - 10236 \beta_{11} - 18053 \beta_{9} + 18053 \beta_{8} + \cdots - 23184 \beta_1 ) / 4 Copy content Toggle raw display
ν10\nu^{10}== (72212β1420739β13+37216β1018608β9+278408β8+216636β1)/8 ( - 72212 \beta_{14} - 20739 \beta_{13} + 37216 \beta_{10} - 18608 \beta_{9} + 278408 \beta_{8} + \cdots - 216636 \beta_1 ) / 8 Copy content Toggle raw display
ν11\nu^{11}== (175310β15297016β1468102β13+705502β12445702β11+1423612)/8 ( - 175310 \beta_{15} - 297016 \beta_{14} - 68102 \beta_{13} + 705502 \beta_{12} - 445702 \beta_{11} + \cdots - 1423612 ) / 8 Copy content Toggle raw display
ν12\nu^{12}== 409507β12409507β1160853β7+222851β31060651 409507\beta_{12} - 409507\beta_{11} - 60853\beta_{7} + 222851\beta_{3} - 1060651 Copy content Toggle raw display
ν13\nu^{13}== (2205436β15+3762880β14+909452β13+5542138β128818194β11+17998140)/8 ( 2205436 \beta_{15} + 3762880 \beta_{14} + 909452 \beta_{13} + 5542138 \beta_{12} - 8818194 \beta_{11} + \cdots - 17998140 ) / 8 Copy content Toggle raw display
ν14\nu^{14}== (11084276β14+2912299β136229776β1044295104β9+33252828β1)/8 ( 11084276 \beta_{14} + 2912299 \beta_{13} - 6229776 \beta_{10} - 44295104 \beta_{9} + \cdots - 33252828 \beta_1 ) / 8 Copy content Toggle raw display
ν15\nu^{15}== (27689690β15+20590108β12+20590108β1134586683β9+47409992β1)/4 ( - 27689690 \beta_{15} + 20590108 \beta_{12} + 20590108 \beta_{11} - 34586683 \beta_{9} + \cdots - 47409992 \beta_1 ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1512Z)×\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times.

nn 757757 785785 10811081 11351135
χ(n)\chi(n) 11 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
377.1
0.453016 0.121385i
0.453016 + 0.121385i
−0.651359 2.43091i
−0.651359 + 2.43091i
0.924776 + 0.247793i
0.924776 0.247793i
0.916156 + 3.41914i
0.916156 3.41914i
3.41914 0.916156i
3.41914 + 0.916156i
0.247793 0.924776i
0.247793 + 0.924776i
−2.43091 + 0.651359i
−2.43091 0.651359i
0.121385 + 0.453016i
0.121385 0.453016i
0 0 0 −4.29876 0 0.832811 2.51126i 0 0 0
377.2 0 0 0 −4.29876 0 0.832811 + 2.51126i 0 0 0
377.3 0 0 0 −2.85593 0 −2.30652 1.29613i 0 0 0
377.4 0 0 0 −2.85593 0 −2.30652 + 1.29613i 0 0 0
377.5 0 0 0 −1.22223 0 −1.48321 2.19091i 0 0 0
377.6 0 0 0 −1.22223 0 −1.48321 + 2.19091i 0 0 0
377.7 0 0 0 −0.933004 0 2.45692 0.981597i 0 0 0
377.8 0 0 0 −0.933004 0 2.45692 + 0.981597i 0 0 0
377.9 0 0 0 0.933004 0 2.45692 0.981597i 0 0 0
377.10 0 0 0 0.933004 0 2.45692 + 0.981597i 0 0 0
377.11 0 0 0 1.22223 0 −1.48321 2.19091i 0 0 0
377.12 0 0 0 1.22223 0 −1.48321 + 2.19091i 0 0 0
377.13 0 0 0 2.85593 0 −2.30652 1.29613i 0 0 0
377.14 0 0 0 2.85593 0 −2.30652 + 1.29613i 0 0 0
377.15 0 0 0 4.29876 0 0.832811 2.51126i 0 0 0
377.16 0 0 0 4.29876 0 0.832811 + 2.51126i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 377.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1512.2.k.b 16
3.b odd 2 1 inner 1512.2.k.b 16
4.b odd 2 1 3024.2.k.l 16
7.b odd 2 1 inner 1512.2.k.b 16
12.b even 2 1 3024.2.k.l 16
21.c even 2 1 inner 1512.2.k.b 16
28.d even 2 1 3024.2.k.l 16
84.h odd 2 1 3024.2.k.l 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1512.2.k.b 16 1.a even 1 1 trivial
1512.2.k.b 16 3.b odd 2 1 inner
1512.2.k.b 16 7.b odd 2 1 inner
1512.2.k.b 16 21.c even 2 1 inner
3024.2.k.l 16 4.b odd 2 1
3024.2.k.l 16 12.b even 2 1
3024.2.k.l 16 28.d even 2 1
3024.2.k.l 16 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5829T56+215T54391T52+196 T_{5}^{8} - 29T_{5}^{6} + 215T_{5}^{4} - 391T_{5}^{2} + 196 acting on S2new(1512,[χ])S_{2}^{\mathrm{new}}(1512, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16 T^{16} Copy content Toggle raw display
33 T16 T^{16} Copy content Toggle raw display
55 (T829T6++196)2 (T^{8} - 29 T^{6} + \cdots + 196)^{2} Copy content Toggle raw display
77 (T8+T77T5++2401)2 (T^{8} + T^{7} - 7 T^{5} + \cdots + 2401)^{2} Copy content Toggle raw display
1111 (T8+33T6++2704)2 (T^{8} + 33 T^{6} + \cdots + 2704)^{2} Copy content Toggle raw display
1313 (T8+55T6++7744)2 (T^{8} + 55 T^{6} + \cdots + 7744)^{2} Copy content Toggle raw display
1717 (T849T6++16)2 (T^{8} - 49 T^{6} + \cdots + 16)^{2} Copy content Toggle raw display
1919 (T8+40T6++256)2 (T^{8} + 40 T^{6} + \cdots + 256)^{2} Copy content Toggle raw display
2323 (T8+85T6++12544)2 (T^{8} + 85 T^{6} + \cdots + 12544)^{2} Copy content Toggle raw display
2929 (T8+129T6++190096)2 (T^{8} + 129 T^{6} + \cdots + 190096)^{2} Copy content Toggle raw display
3131 (T8+154T6++64516)2 (T^{8} + 154 T^{6} + \cdots + 64516)^{2} Copy content Toggle raw display
3737 (T4+2T3++196)4 (T^{4} + 2 T^{3} + \cdots + 196)^{4} Copy content Toggle raw display
4141 (T8226T6++8340544)2 (T^{8} - 226 T^{6} + \cdots + 8340544)^{2} Copy content Toggle raw display
4343 (T45T3+554)4 (T^{4} - 5 T^{3} + \cdots - 554)^{4} Copy content Toggle raw display
4747 (T898T6++64)2 (T^{8} - 98 T^{6} + \cdots + 64)^{2} Copy content Toggle raw display
5353 (T8+282T6++200704)2 (T^{8} + 282 T^{6} + \cdots + 200704)^{2} Copy content Toggle raw display
5959 (T8189T6++272484)2 (T^{8} - 189 T^{6} + \cdots + 272484)^{2} Copy content Toggle raw display
6161 (T8+252T6++1327104)2 (T^{8} + 252 T^{6} + \cdots + 1327104)^{2} Copy content Toggle raw display
6767 (T411T3+56)4 (T^{4} - 11 T^{3} + \cdots - 56)^{4} Copy content Toggle raw display
7171 (T8+401T6++26543104)2 (T^{8} + 401 T^{6} + \cdots + 26543104)^{2} Copy content Toggle raw display
7373 (T8+467T6++33918976)2 (T^{8} + 467 T^{6} + \cdots + 33918976)^{2} Copy content Toggle raw display
7979 (T410T3+512)4 (T^{4} - 10 T^{3} + \cdots - 512)^{4} Copy content Toggle raw display
8383 (T8325T6++498436)2 (T^{8} - 325 T^{6} + \cdots + 498436)^{2} Copy content Toggle raw display
8989 (T8391T6++7529536)2 (T^{8} - 391 T^{6} + \cdots + 7529536)^{2} Copy content Toggle raw display
9797 (T8+239T6++529984)2 (T^{8} + 239 T^{6} + \cdots + 529984)^{2} Copy content Toggle raw display
show more
show less