gp: [N,k,chi] = [1512,2,Mod(377,1512)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1512, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1512.377");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [16,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,36]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 15 1,\beta_1,\ldots,\beta_{15} 1 , β 1 , … , β 1 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 16 − 6 x 15 + 18 x 14 − 36 x 13 − 45 x 12 + 306 x 11 − 378 x 10 + 1704 x 9 + ⋯ + 256 x^{16} - 6 x^{15} + 18 x^{14} - 36 x^{13} - 45 x^{12} + 306 x^{11} - 378 x^{10} + 1704 x^{9} + \cdots + 256 x 1 6 − 6 x 1 5 + 1 8 x 1 4 − 3 6 x 1 3 − 4 5 x 1 2 + 3 0 6 x 1 1 − 3 7 8 x 1 0 + 1 7 0 4 x 9 + ⋯ + 2 5 6
x^16 - 6*x^15 + 18*x^14 - 36*x^13 - 45*x^12 + 306*x^11 - 378*x^10 + 1704*x^9 + 917*x^8 - 12522*x^7 + 27090*x^6 - 35292*x^5 + 30948*x^4 - 18000*x^3 + 7200*x^2 - 1920*x + 256
:
β 1 \beta_{1} β 1 = = =
( 96 ⋯ 71 ν 15 + ⋯ − 90 ⋯ 32 ) / 76 ⋯ 88 ( 96\!\cdots\!71 \nu^{15} + \cdots - 90\!\cdots\!32 ) / 76\!\cdots\!88 ( 9 6 ⋯ 7 1 ν 1 5 + ⋯ − 9 0 ⋯ 3 2 ) / 7 6 ⋯ 8 8
(9625967735304871*v^15 - 135922610320481566*v^14 + 586463746974274502*v^13 - 1443574468406641356*v^12 + 1516003722014862581*v^11 + 8077218483857604690*v^10 - 24300598042312983470*v^9 + 30275770334978045064*v^8 - 110340558648795826381*v^7 - 280563829185536375770*v^6 + 1148647844033093893974*v^5 - 1796800164972733552596*v^4 + 1839630656591715546764*v^3 - 1185368258007122055024*v^2 + 409906873135003778880*v - 90521992849087319232) / 7684522302142264288
β 2 \beta_{2} β 2 = = =
( 63679977 ν 15 − 438014494 ν 14 + 1443496954 ν 13 − 3073658820 ν 12 + ⋯ − 128641878336 ) / 24698853056 ( 63679977 \nu^{15} - 438014494 \nu^{14} + 1443496954 \nu^{13} - 3073658820 \nu^{12} + \cdots - 128641878336 ) / 24698853056 ( 6 3 6 7 9 9 7 7 ν 1 5 − 4 3 8 0 1 4 4 9 4 ν 1 4 + 1 4 4 3 4 9 6 9 5 4 ν 1 3 − 3 0 7 3 6 5 8 8 2 0 ν 1 2 + ⋯ − 1 2 8 6 4 1 8 7 8 3 3 6 ) / 2 4 6 9 8 8 5 3 0 5 6
(63679977*v^15 - 438014494*v^14 + 1443496954*v^13 - 3073658820*v^12 - 1502246501*v^11 + 23237736362*v^10 - 39143035490*v^9 + 117868348872*v^8 - 24801774291*v^7 - 909061030402*v^6 + 2381970760186*v^5 - 3267629790492*v^4 + 2995055019604*v^3 - 1800396653968*v^2 + 608118237376*v - 128641878336) / 24698853056
β 3 \beta_{3} β 3 = = =
( 12 ⋯ 79 ν 15 + ⋯ + 87 ⋯ 04 ) / 19 ⋯ 72 ( 12\!\cdots\!79 \nu^{15} + \cdots + 87\!\cdots\!04 ) / 19\!\cdots\!72 ( 1 2 ⋯ 7 9 ν 1 5 + ⋯ + 8 7 ⋯ 0 4 ) / 1 9 ⋯ 7 2
(12896919611658579*v^15 - 63670839763550169*v^14 + 164374780549634918*v^13 - 292350862854969940*v^12 - 878506007414906579*v^11 + 2985818238940592013*v^10 - 1657319496483625186*v^9 + 20479970216212369304*v^8 + 32986629793581824055*v^7 - 126785162227774315461*v^6 + 209888009648871349274*v^5 - 242879832966233604796*v^4 + 168246773779286763616*v^3 - 76254427680148237152*v^2 + 23390361071012248832*v + 8748872216183229304) / 1921130575535566072
β 4 \beta_{4} β 4 = = =
( 19 ⋯ 21 ν 15 + ⋯ − 91 ⋯ 48 ) / 19 ⋯ 72 ( 19\!\cdots\!21 \nu^{15} + \cdots - 91\!\cdots\!48 ) / 19\!\cdots\!72 ( 1 9 ⋯ 2 1 ν 1 5 + ⋯ − 9 1 ⋯ 4 8 ) / 1 9 ⋯ 7 2
(19830533427325021*v^15 - 109347424813408518*v^14 + 303747509202031774*v^13 - 565356612235773536*v^12 - 1170314294538647425*v^11 + 5505988466081180250*v^10 - 4823158399067954190*v^9 + 31380199749231410196*v^8 + 33529795552648846041*v^7 - 232097741244840672690*v^6 + 425247294085105447534*v^5 - 490058282289866822840*v^4 + 371056209408619765668*v^3 - 170642159006615384472*v^2 + 53009605304413211488*v - 9139436721701545248) / 1921130575535566072
β 5 \beta_{5} β 5 = = =
( 16 ⋯ 99 ν 15 + ⋯ + 98 ⋯ 88 ) / 15 ⋯ 76 ( 16\!\cdots\!99 \nu^{15} + \cdots + 98\!\cdots\!88 ) / 15\!\cdots\!76 ( 1 6 ⋯ 9 9 ν 1 5 + ⋯ + 9 8 ⋯ 8 8 ) / 1 5 ⋯ 7 6
(166495347726429999*v^15 - 718993239773640506*v^14 + 1522520126318531510*v^13 - 2051377156717453308*v^12 - 14580993899421032339*v^11 + 32832904336136207694*v^10 + 10087746234878269970*v^9 + 232014507612254250840*v^8 + 586657112311307922859*v^7 - 1501322878517262329270*v^6 + 1406323934504147906966*v^5 - 577936068553120419876*v^4 - 648330092363001340596*v^3 + 875864394993863957520*v^2 - 354073431298430664384*v + 98191886152776007488) / 15369044604284528576
β 6 \beta_{6} β 6 = = =
( 10 ⋯ 63 ν 15 + ⋯ − 45 ⋯ 60 ) / 76 ⋯ 88 ( 10\!\cdots\!63 \nu^{15} + \cdots - 45\!\cdots\!60 ) / 76\!\cdots\!88 ( 1 0 ⋯ 6 3 ν 1 5 + ⋯ − 4 5 ⋯ 6 0 ) / 7 6 ⋯ 8 8
(103445914180111363*v^15 - 562758338401057656*v^14 + 1549632586804565914*v^13 - 2866347090965366816*v^12 - 6236140769180355679*v^11 + 28122382173670077108*v^10 - 23575723806692084026*v^9 + 163419010013194163900*v^8 + 186231486934515420959*v^7 - 1186408888646239693836*v^6 + 2151136076115084440370*v^5 - 2454209646766613232680*v^4 + 1862112167002892038148*v^3 - 855237181615557275160*v^2 + 265381678914536967264*v - 45979845120272208160) / 7684522302142264288
β 7 \beta_{7} β 7 = = =
( − 14 ⋯ 07 ν 15 + ⋯ − 86 ⋯ 52 ) / 96 ⋯ 36 ( - 14\!\cdots\!07 \nu^{15} + \cdots - 86\!\cdots\!52 ) / 96\!\cdots\!36 ( − 1 4 ⋯ 0 7 ν 1 5 + ⋯ − 8 6 ⋯ 5 2 ) / 9 6 ⋯ 3 6
(-14107663960345207*v^15 + 69657074983267533*v^14 - 179866152511286382*v^13 + 319984785621266012*v^12 + 960645259076306143*v^11 - 3266450045541282705*v^10 + 1814833707151853938*v^9 - 22399813683111549176*v^8 - 36089568444875126467*v^7 + 138694161338870264505*v^6 - 229594268069864059746*v^5 + 265675330140966521196*v^4 - 184034753095094222816*v^3 + 83409227248484142816*v^2 - 25584805500528726272*v - 860136715502795952) / 960565287767783036
β 8 \beta_{8} β 8 = = =
( 28 ⋯ 65 ν 15 + ⋯ − 26 ⋯ 40 ) / 15 ⋯ 76 ( 28\!\cdots\!65 \nu^{15} + \cdots - 26\!\cdots\!40 ) / 15\!\cdots\!76 ( 2 8 ⋯ 6 5 ν 1 5 + ⋯ − 2 6 ⋯ 4 0 ) / 1 5 ⋯ 7 6
(285056008857833765*v^15 - 1663183207330582570*v^14 + 4839202878549981066*v^13 - 9392053185843428652*v^12 - 14537311885819777697*v^11 + 85078276272927929526*v^10 - 92360559260180901442*v^9 + 467665489437841643328*v^8 + 338398304276928343289*v^7 - 3540699862484537086286*v^6 + 7075088896396222306842*v^5 - 8768944295897186435364*v^4 + 7215792024074813908276*v^3 - 3724989584265231860832*v^2 + 1309729105070966195648*v - 260758962053897874240) / 15369044604284528576
β 9 \beta_{9} β 9 = = =
( 42 ⋯ 89 ν 15 + ⋯ − 17 ⋯ 92 ) / 15 ⋯ 76 ( 42\!\cdots\!89 \nu^{15} + \cdots - 17\!\cdots\!92 ) / 15\!\cdots\!76 ( 4 2 ⋯ 8 9 ν 1 5 + ⋯ − 1 7 ⋯ 9 2 ) / 1 5 ⋯ 7 6
(425315347188680289*v^15 - 2264341257780881178*v^14 + 6097823575132527650*v^13 - 11056175268959929980*v^12 - 26936081144636182573*v^11 + 112446815018011162998*v^10 - 82678831114224238618*v^9 + 662301871168381505280*v^8 + 839647715163391821573*v^7 - 4796235394155472638766*v^6 + 8208443510027441366546*v^5 - 9170802974279233461588*v^4 + 6579060527466609194276*v^3 - 2927487349506788131872*v^2 + 990675147416249758400*v - 173395593155735587392) / 15369044604284528576
β 10 \beta_{10} β 1 0 = = =
( − 24 ⋯ 29 ν 15 + ⋯ + 15 ⋯ 84 ) / 76 ⋯ 88 ( - 24\!\cdots\!29 \nu^{15} + \cdots + 15\!\cdots\!84 ) / 76\!\cdots\!88 ( − 2 4 ⋯ 2 9 ν 1 5 + ⋯ + 1 5 ⋯ 8 4 ) / 7 6 ⋯ 8 8
(-247812487370796629*v^15 + 1371551676913492126*v^14 - 3815159516715513114*v^13 + 7124583038670140172*v^12 + 14487934719168682481*v^11 - 69074359242044407882*v^10 + 60745062947036955490*v^9 - 393392250764883891936*v^8 - 407759785279442730137*v^7 + 2923298596889134896290*v^6 - 5313429374717505153882*v^5 + 6239123689728757613220*v^4 - 4799054844668716030132*v^3 + 2314691850042689622464*v^2 - 800570606298078334400*v + 151122658785155736384) / 7684522302142264288
β 11 \beta_{11} β 1 1 = = =
( − 29 ⋯ 01 ν 15 + ⋯ + 15 ⋯ 56 ) / 76 ⋯ 88 ( - 29\!\cdots\!01 \nu^{15} + \cdots + 15\!\cdots\!56 ) / 76\!\cdots\!88 ( − 2 9 ⋯ 0 1 ν 1 5 + ⋯ + 1 5 ⋯ 5 6 ) / 7 6 ⋯ 8 8
(-291135571090866401*v^15 + 1644440103187941264*v^14 - 4636454425014531870*v^13 + 8715983809605597256*v^12 + 16523970977232350709*v^11 - 83914631234874493860*v^10 + 78843857616753617150*v^9 - 461702437330773630492*v^8 - 433930421707137283701*v^7 + 3532577508249729418284*v^6 - 6588772098844568088486*v^5 + 7675972396318969309952*v^4 - 5826047463340864722956*v^3 + 2685058836161561509704*v^2 - 835637634442003547424*v + 150396920982869709856) / 7684522302142264288
β 12 \beta_{12} β 1 2 = = =
( − 33 ⋯ 13 ν 15 + ⋯ + 15 ⋯ 88 ) / 76 ⋯ 88 ( - 33\!\cdots\!13 \nu^{15} + \cdots + 15\!\cdots\!88 ) / 76\!\cdots\!88 ( − 3 3 ⋯ 1 3 ν 1 5 + ⋯ + 1 5 ⋯ 8 8 ) / 7 6 ⋯ 8 8
(-335980506902322613*v^15 + 1865845786412506188*v^14 - 5208086892130408390*v^13 + 9732783733294230104*v^12 + 19578299564138657673*v^11 - 94297253750326461456*v^10 + 84608950357766551158*v^9 - 532911706689001127612*v^8 - 548638306586091491705*v^7 + 3973440416942672673336*v^6 - 7318593594721039106686*v^5 + 8520502969779199259536*v^4 - 6411064036377998369420*v^3 + 2950204768948573461960*v^2 - 916968500027046048032*v + 150233508340123593888) / 7684522302142264288
β 13 \beta_{13} β 1 3 = = =
( − 21499912175367 ν 15 + 118714615744902 ν 14 − 331040469619086 ν 13 + ⋯ + 13 ⋯ 68 ) / 434694100132496 ( - 21499912175367 \nu^{15} + 118714615744902 \nu^{14} - 331040469619086 \nu^{13} + \cdots + 13\!\cdots\!68 ) / 434694100132496 ( − 2 1 4 9 9 9 1 2 1 7 5 3 6 7 ν 1 5 + 1 1 8 7 1 4 6 1 5 7 4 4 9 0 2 ν 1 4 − 3 3 1 0 4 0 4 6 9 6 1 9 0 8 6 ν 1 3 + ⋯ + 1 3 ⋯ 6 8 ) / 4 3 4 6 9 4 1 0 0 1 3 2 4 9 6
(-21499912175367*v^15 + 118714615744902*v^14 - 331040469619086*v^13 + 619813991867076*v^12 + 1253112709022811*v^11 - 5960180317929130*v^10 + 5331726217263510*v^9 - 34284127789537632*v^8 - 35996761740085251*v^7 + 250693834742223922*v^6 - 464511509659530078*v^5 + 545001311541427884*v^4 - 418925624772450876*v^3 + 201983454004697152*v^2 - 69828260949961536*v + 13175314775391168) / 434694100132496
β 14 \beta_{14} β 1 4 = = =
( 12 ⋯ 41 ν 15 + ⋯ − 75 ⋯ 96 ) / 15 ⋯ 76 ( 12\!\cdots\!41 \nu^{15} + \cdots - 75\!\cdots\!96 ) / 15\!\cdots\!76 ( 1 2 ⋯ 4 1 ν 1 5 + ⋯ − 7 5 ⋯ 9 6 ) / 1 5 ⋯ 7 6
(1240747642399240641*v^15 - 6856827026809858242*v^14 + 19103269614095631970*v^13 - 35733762908496343068*v^12 - 72396225461829865421*v^11 + 344643919038718439934*v^10 - 306400368700789644986*v^9 + 1975303852222086794016*v^8 + 2064376738135099866693*v^7 - 14529482345426408592374*v^6 + 26733031893110706133426*v^5 - 31374365399252977991988*v^4 + 24122384513063254660324*v^3 - 11632056514056489451456*v^2 + 4021991012936718836416*v - 759002784629311903296) / 15369044604284528576
β 15 \beta_{15} β 1 5 = = =
( − 73 ⋯ 01 ν 15 + ⋯ + 34 ⋯ 00 ) / 76 ⋯ 88 ( - 73\!\cdots\!01 \nu^{15} + \cdots + 34\!\cdots\!00 ) / 76\!\cdots\!88 ( − 7 3 ⋯ 0 1 ν 1 5 + ⋯ + 3 4 ⋯ 0 0 ) / 7 6 ⋯ 8 8
(-738158905111162601*v^15 + 4103720694856443000*v^14 - 11459302404703427278*v^13 + 21409340134734606944*v^12 + 42981643978667404477*v^11 - 207566655142818235692*v^10 + 186530862938561573742*v^9 - 1169554041448852139572*v^8 - 1198325909011618735165*v^7 + 8745715316358408665652*v^6 - 16122917299412198591318*v^5 + 18688582627295661656696*v^4 - 14133556987400189799500*v^3 + 6504653598592364971464*v^2 - 2021950457437052554016*v + 347623021430852021600) / 7684522302142264288
ν \nu ν = = =
( − 2 β 12 + 2 β 11 + 2 β 10 + 3 β 9 + β 8 + β 7 − β 5 − 2 β 4 − β 2 + 4 ) / 8 ( -2\beta_{12} + 2\beta_{11} + 2\beta_{10} + 3\beta_{9} + \beta_{8} + \beta_{7} - \beta_{5} - 2\beta_{4} - \beta_{2} + 4 ) / 8 ( − 2 β 1 2 + 2 β 1 1 + 2 β 1 0 + 3 β 9 + β 8 + β 7 − β 5 − 2 β 4 − β 2 + 4 ) / 8
(-2*b12 + 2*b11 + 2*b10 + 3*b9 + b8 + b7 - b5 - 2*b4 - b2 + 4) / 8
ν 2 \nu^{2} ν 2 = = =
( − 4 β 14 − 3 β 13 + 8 β 9 − 24 β 2 + 12 β 1 ) / 8 ( -4\beta_{14} - 3\beta_{13} + 8\beta_{9} - 24\beta_{2} + 12\beta_1 ) / 8 ( − 4 β 1 4 − 3 β 1 3 + 8 β 9 − 2 4 β 2 + 1 2 β 1 ) / 8
(-4*b14 - 3*b13 + 8*b9 - 24*b2 + 12*b1) / 8
ν 3 \nu^{3} ν 3 = = =
( 6 β 15 − 4 β 12 − 4 β 11 + 11 β 9 − 11 β 8 + 2 β 6 − 7 β 5 + ⋯ + 8 β 1 ) / 4 ( 6 \beta_{15} - 4 \beta_{12} - 4 \beta_{11} + 11 \beta_{9} - 11 \beta_{8} + 2 \beta_{6} - 7 \beta_{5} + \cdots + 8 \beta_1 ) / 4 ( 6 β 1 5 − 4 β 1 2 − 4 β 1 1 + 1 1 β 9 − 1 1 β 8 + 2 β 6 − 7 β 5 + ⋯ + 8 β 1 ) / 4
(6*b15 - 4*b12 - 4*b11 + 11*b9 - 11*b8 + 2*b6 - 7*b5 + 22*b4 - 15*b2 + 8*b1) / 4
ν 4 \nu^{4} ν 4 = = =
( 67 β 15 − 112 β 12 + 8 β 11 + 4 β 7 + 65 β 6 + 128 β 4 − 44 β 3 + 204 ) / 8 ( 67\beta_{15} - 112\beta_{12} + 8\beta_{11} + 4\beta_{7} + 65\beta_{6} + 128\beta_{4} - 44\beta_{3} + 204 ) / 8 ( 6 7 β 1 5 − 1 1 2 β 1 2 + 8 β 1 1 + 4 β 7 + 6 5 β 6 + 1 2 8 β 4 − 4 4 β 3 + 2 0 4 ) / 8
(67*b15 - 112*b12 + 8*b11 + 4*b7 + 65*b6 + 128*b4 - 44*b3 + 204) / 8
ν 5 \nu^{5} ν 5 = = =
( 84 β 15 − 128 β 14 − 4 β 13 − 370 β 12 + 250 β 11 + 130 β 10 + ⋯ + 636 ) / 8 ( 84 \beta_{15} - 128 \beta_{14} - 4 \beta_{13} - 370 \beta_{12} + 250 \beta_{11} + 130 \beta_{10} + \cdots + 636 ) / 8 ( 8 4 β 1 5 − 1 2 8 β 1 4 − 4 β 1 3 − 3 7 0 β 1 2 + 2 5 0 β 1 1 + 1 3 0 β 1 0 + ⋯ + 6 3 6 ) / 8
(84*b15 - 128*b14 - 4*b13 - 370*b12 + 250*b11 + 130*b10 + 185*b9 + 435*b8 + 65*b7 + 44*b6 + 65*b5 + 250*b4 - 128*b3 + 233*b2 - 128*b1 + 636) / 8
ν 6 \nu^{6} ν 6 = = =
( − 500 β 14 − 187 β 13 + 176 β 10 + 796 β 9 + 796 β 8 ) / 4 ( -500\beta_{14} - 187\beta_{13} + 176\beta_{10} + 796\beta_{9} + 796\beta_{8} ) / 4 ( − 5 0 0 β 1 4 − 1 8 7 β 1 3 + 1 7 6 β 1 0 + 7 9 6 β 9 + 7 9 6 β 8 ) / 4
(-500*b14 - 187*b13 + 176*b10 + 796*b9 + 796*b8) / 4
ν 7 \nu^{7} ν 7 = = =
( 1090 β 15 − 1768 β 14 − 266 β 13 + 2966 β 12 − 4558 β 11 + 1374 β 10 + ⋯ − 8588 ) / 8 ( 1090 \beta_{15} - 1768 \beta_{14} - 266 \beta_{13} + 2966 \beta_{12} - 4558 \beta_{11} + 1374 \beta_{10} + \cdots - 8588 ) / 8 ( 1 0 9 0 β 1 5 − 1 7 6 8 β 1 4 − 2 6 6 β 1 3 + 2 9 6 6 β 1 2 − 4 5 5 8 β 1 1 + 1 3 7 4 β 1 0 + ⋯ − 8 5 8 8 ) / 8
(1090*b15 - 1768*b14 - 266*b13 + 2966*b12 - 4558*b11 + 1374*b10 + 5245*b9 + 2279*b8 - 687*b7 + 678*b6 - 687*b5 + 2966*b4 + 1768*b3 - 3223*b2 + 1768*b1 - 8588) / 8
ν 8 \nu^{8} ν 8 = = =
( 9979 β 15 + 2712 β 12 − 17760 β 11 − 1356 β 7 + 7817 β 6 + 23184 β 4 + ⋯ − 28012 ) / 8 ( 9979 \beta_{15} + 2712 \beta_{12} - 17760 \beta_{11} - 1356 \beta_{7} + 7817 \beta_{6} + 23184 \beta_{4} + \cdots - 28012 ) / 8 ( 9 9 7 9 β 1 5 + 2 7 1 2 β 1 2 − 1 7 7 6 0 β 1 1 − 1 3 5 6 β 7 + 7 8 1 7 β 6 + 2 3 1 8 4 β 4 + ⋯ − 2 8 0 1 2 ) / 8
(9979*b15 + 2712*b12 - 17760*b11 - 1356*b7 + 7817*b6 + 23184*b4 + 5932*b3 - 28012) / 8
ν 9 \nu^{9} ν 9 = = =
( 13880 β 15 − 10236 β 12 − 10236 β 11 − 18053 β 9 + 18053 β 8 + ⋯ − 23184 β 1 ) / 4 ( 13880 \beta_{15} - 10236 \beta_{12} - 10236 \beta_{11} - 18053 \beta_{9} + 18053 \beta_{8} + \cdots - 23184 \beta_1 ) / 4 ( 1 3 8 8 0 β 1 5 − 1 0 2 3 6 β 1 2 − 1 0 2 3 6 β 1 1 − 1 8 0 5 3 β 9 + 1 8 0 5 3 β 8 + ⋯ − 2 3 1 8 4 β 1 ) / 4
(13880*b15 - 10236*b12 - 10236*b11 - 18053*b9 + 18053*b8 + 9304*b6 + 7817*b5 + 36106*b4 + 42321*b2 - 23184*b1) / 4
ν 10 \nu^{10} ν 1 0 = = =
( − 72212 β 14 − 20739 β 13 + 37216 β 10 − 18608 β 9 + 278408 β 8 + ⋯ − 216636 β 1 ) / 8 ( - 72212 \beta_{14} - 20739 \beta_{13} + 37216 \beta_{10} - 18608 \beta_{9} + 278408 \beta_{8} + \cdots - 216636 \beta_1 ) / 8 ( − 7 2 2 1 2 β 1 4 − 2 0 7 3 9 β 1 3 + 3 7 2 1 6 β 1 0 − 1 8 6 0 8 β 9 + 2 7 8 4 0 8 β 8 + ⋯ − 2 1 6 6 3 6 β 1 ) / 8
(-72212*b14 - 20739*b13 + 37216*b10 - 18608*b9 + 278408*b8 + 55824*b5 + 396360*b2 - 216636*b1) / 8
ν 11 \nu^{11} ν 1 1 = = =
( − 175310 β 15 − 297016 β 14 − 68102 β 13 + 705502 β 12 − 445702 β 11 + ⋯ − 1423612 ) / 8 ( - 175310 \beta_{15} - 297016 \beta_{14} - 68102 \beta_{13} + 705502 \beta_{12} - 445702 \beta_{11} + \cdots - 1423612 ) / 8 ( − 1 7 5 3 1 0 β 1 5 − 2 9 7 0 1 6 β 1 4 − 6 8 1 0 2 β 1 3 + 7 0 5 5 0 2 β 1 2 − 4 4 5 7 0 2 β 1 1 + ⋯ − 1 4 2 3 6 1 2 ) / 8
(-175310*b15 - 297016*b14 - 68102*b13 + 705502*b12 - 445702*b11 + 185902*b10 + 352751*b9 + 798453*b8 - 92951*b7 - 121706*b6 + 92951*b5 - 445702*b4 + 297016*b3 + 542559*b2 - 297016*b1 - 1423612) / 8
ν 12 \nu^{12} ν 1 2 = = =
409507 β 12 − 409507 β 11 − 60853 β 7 + 222851 β 3 − 1060651 409507\beta_{12} - 409507\beta_{11} - 60853\beta_{7} + 222851\beta_{3} - 1060651 4 0 9 5 0 7 β 1 2 − 4 0 9 5 0 7 β 1 1 − 6 0 8 5 3 β 7 + 2 2 2 8 5 1 β 3 − 1 0 6 0 6 5 1
409507*b12 - 409507*b11 - 60853*b7 + 222851*b3 - 1060651
ν 13 \nu^{13} ν 1 3 = = =
( 2205436 β 15 + 3762880 β 14 + 909452 β 13 + 5542138 β 12 − 8818194 β 11 + ⋯ − 17998140 ) / 8 ( 2205436 \beta_{15} + 3762880 \beta_{14} + 909452 \beta_{13} + 5542138 \beta_{12} - 8818194 \beta_{11} + \cdots - 17998140 ) / 8 ( 2 2 0 5 4 3 6 β 1 5 + 3 7 6 2 8 8 0 β 1 4 + 9 0 9 4 5 2 β 1 3 + 5 5 4 2 1 3 8 β 1 2 − 8 8 1 8 1 9 4 β 1 1 + ⋯ − 1 7 9 9 8 1 4 0 ) / 8
(2205436*b15 + 3762880*b14 + 909452*b13 + 5542138*b12 - 8818194*b11 - 2266082*b10 - 9951235*b9 - 4409097*b8 - 1133041*b7 + 1557444*b6 + 1133041*b5 + 5542138*b4 + 3762880*b3 + 6875993*b2 - 3762880*b1 - 17998140) / 8
ν 14 \nu^{14} ν 1 4 = = =
( 11084276 β 14 + 2912299 β 13 − 6229776 β 10 − 44295104 β 9 + ⋯ − 33252828 β 1 ) / 8 ( 11084276 \beta_{14} + 2912299 \beta_{13} - 6229776 \beta_{10} - 44295104 \beta_{9} + \cdots - 33252828 \beta_1 ) / 8 ( 1 1 0 8 4 2 7 6 β 1 4 + 2 9 1 2 2 9 9 β 1 3 − 6 2 2 9 7 7 6 β 1 0 − 4 4 2 9 5 1 0 4 β 9 + ⋯ − 3 3 2 5 2 8 2 8 β 1 ) / 8
(11084276*b14 + 2912299*b13 - 6229776*b10 - 44295104*b9 + 3114888*b8 + 9344664*b5 + 60798800*b2 - 33252828*b1) / 8
ν 15 \nu^{15} ν 1 5 = = =
( − 27689690 β 15 + 20590108 β 12 + 20590108 β 11 − 34586683 β 9 + ⋯ − 47409992 β 1 ) / 4 ( - 27689690 \beta_{15} + 20590108 \beta_{12} + 20590108 \beta_{11} - 34586683 \beta_{9} + \cdots - 47409992 \beta_1 ) / 4 ( − 2 7 6 8 9 6 9 0 β 1 5 + 2 0 5 9 0 1 0 8 β 1 2 + 2 0 5 9 0 1 0 8 β 1 1 − 3 4 5 8 6 6 8 3 β 9 + ⋯ − 4 7 4 0 9 9 9 2 β 1 ) / 4
(-27689690*b15 + 20590108*b12 + 20590108*b11 - 34586683*b9 + 34586683*b8 - 19720302*b6 + 13996575*b5 - 69173366*b4 + 86648007*b2 - 47409992*b1) / 4
Character values
We give the values of χ \chi χ on generators for ( Z / 1512 Z ) × \left(\mathbb{Z}/1512\mathbb{Z}\right)^\times ( Z / 1 5 1 2 Z ) × .
n n n
757 757 7 5 7
785 785 7 8 5
1081 1081 1 0 8 1
1135 1135 1 1 3 5
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 8 − 29 T 5 6 + 215 T 5 4 − 391 T 5 2 + 196 T_{5}^{8} - 29T_{5}^{6} + 215T_{5}^{4} - 391T_{5}^{2} + 196 T 5 8 − 2 9 T 5 6 + 2 1 5 T 5 4 − 3 9 1 T 5 2 + 1 9 6
T5^8 - 29*T5^6 + 215*T5^4 - 391*T5^2 + 196
acting on S 2 n e w ( 1512 , [ χ ] ) S_{2}^{\mathrm{new}}(1512, [\chi]) S 2 n e w ( 1 5 1 2 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 16 T^{16} T 1 6
T^16
3 3 3
T 16 T^{16} T 1 6
T^16
5 5 5
( T 8 − 29 T 6 + ⋯ + 196 ) 2 (T^{8} - 29 T^{6} + \cdots + 196)^{2} ( T 8 − 2 9 T 6 + ⋯ + 1 9 6 ) 2
(T^8 - 29*T^6 + 215*T^4 - 391*T^2 + 196)^2
7 7 7
( T 8 + T 7 − 7 T 5 + ⋯ + 2401 ) 2 (T^{8} + T^{7} - 7 T^{5} + \cdots + 2401)^{2} ( T 8 + T 7 − 7 T 5 + ⋯ + 2 4 0 1 ) 2
(T^8 + T^7 - 7*T^5 + 14*T^4 - 49*T^3 + 343*T + 2401)^2
11 11 1 1
( T 8 + 33 T 6 + ⋯ + 2704 ) 2 (T^{8} + 33 T^{6} + \cdots + 2704)^{2} ( T 8 + 3 3 T 6 + ⋯ + 2 7 0 4 ) 2
(T^8 + 33*T^6 + 380*T^4 + 1764*T^2 + 2704)^2
13 13 1 3
( T 8 + 55 T 6 + ⋯ + 7744 ) 2 (T^{8} + 55 T^{6} + \cdots + 7744)^{2} ( T 8 + 5 5 T 6 + ⋯ + 7 7 4 4 ) 2
(T^8 + 55*T^6 + 920*T^4 + 5036*T^2 + 7744)^2
17 17 1 7
( T 8 − 49 T 6 + ⋯ + 16 ) 2 (T^{8} - 49 T^{6} + \cdots + 16)^{2} ( T 8 − 4 9 T 6 + ⋯ + 1 6 ) 2
(T^8 - 49*T^6 + 443*T^4 - 323*T^2 + 16)^2
19 19 1 9
( T 8 + 40 T 6 + ⋯ + 256 ) 2 (T^{8} + 40 T^{6} + \cdots + 256)^{2} ( T 8 + 4 0 T 6 + ⋯ + 2 5 6 ) 2
(T^8 + 40*T^6 + 404*T^4 + 752*T^2 + 256)^2
23 23 2 3
( T 8 + 85 T 6 + ⋯ + 12544 ) 2 (T^{8} + 85 T^{6} + \cdots + 12544)^{2} ( T 8 + 8 5 T 6 + ⋯ + 1 2 5 4 4 ) 2
(T^8 + 85*T^6 + 2100*T^4 + 12544*T^2 + 12544)^2
29 29 2 9
( T 8 + 129 T 6 + ⋯ + 190096 ) 2 (T^{8} + 129 T^{6} + \cdots + 190096)^{2} ( T 8 + 1 2 9 T 6 + ⋯ + 1 9 0 0 9 6 ) 2
(T^8 + 129*T^6 + 4124*T^4 + 48804*T^2 + 190096)^2
31 31 3 1
( T 8 + 154 T 6 + ⋯ + 64516 ) 2 (T^{8} + 154 T^{6} + \cdots + 64516)^{2} ( T 8 + 1 5 4 T 6 + ⋯ + 6 4 5 1 6 ) 2
(T^8 + 154*T^6 + 7085*T^4 + 96356*T^2 + 64516)^2
37 37 3 7
( T 4 + 2 T 3 + ⋯ + 196 ) 4 (T^{4} + 2 T^{3} + \cdots + 196)^{4} ( T 4 + 2 T 3 + ⋯ + 1 9 6 ) 4
(T^4 + 2*T^3 - 99*T^2 + 188*T + 196)^4
41 41 4 1
( T 8 − 226 T 6 + ⋯ + 8340544 ) 2 (T^{8} - 226 T^{6} + \cdots + 8340544)^{2} ( T 8 − 2 2 6 T 6 + ⋯ + 8 3 4 0 5 4 4 ) 2
(T^8 - 226*T^6 + 18545*T^4 - 653660*T^2 + 8340544)^2
43 43 4 3
( T 4 − 5 T 3 + ⋯ − 554 ) 4 (T^{4} - 5 T^{3} + \cdots - 554)^{4} ( T 4 − 5 T 3 + ⋯ − 5 5 4 ) 4
(T^4 - 5*T^3 - 63*T^2 + 397*T - 554)^4
47 47 4 7
( T 8 − 98 T 6 + ⋯ + 64 ) 2 (T^{8} - 98 T^{6} + \cdots + 64)^{2} ( T 8 − 9 8 T 6 + ⋯ + 6 4 ) 2
(T^8 - 98*T^6 + 977*T^4 - 988*T^2 + 64)^2
53 53 5 3
( T 8 + 282 T 6 + ⋯ + 200704 ) 2 (T^{8} + 282 T^{6} + \cdots + 200704)^{2} ( T 8 + 2 8 2 T 6 + ⋯ + 2 0 0 7 0 4 ) 2
(T^8 + 282*T^6 + 24857*T^4 + 696192*T^2 + 200704)^2
59 59 5 9
( T 8 − 189 T 6 + ⋯ + 272484 ) 2 (T^{8} - 189 T^{6} + \cdots + 272484)^{2} ( T 8 − 1 8 9 T 6 + ⋯ + 2 7 2 4 8 4 ) 2
(T^8 - 189*T^6 + 11223*T^4 - 219591*T^2 + 272484)^2
61 61 6 1
( T 8 + 252 T 6 + ⋯ + 1327104 ) 2 (T^{8} + 252 T^{6} + \cdots + 1327104)^{2} ( T 8 + 2 5 2 T 6 + ⋯ + 1 3 2 7 1 0 4 ) 2
(T^8 + 252*T^6 + 20484*T^4 + 554688*T^2 + 1327104)^2
67 67 6 7
( T 4 − 11 T 3 + ⋯ − 56 ) 4 (T^{4} - 11 T^{3} + \cdots - 56)^{4} ( T 4 − 1 1 T 3 + ⋯ − 5 6 ) 4
(T^4 - 11*T^3 - 70*T^2 + 140*T - 56)^4
71 71 7 1
( T 8 + 401 T 6 + ⋯ + 26543104 ) 2 (T^{8} + 401 T^{6} + \cdots + 26543104)^{2} ( T 8 + 4 0 1 T 6 + ⋯ + 2 6 5 4 3 1 0 4 ) 2
(T^8 + 401*T^6 + 47712*T^4 + 2047808*T^2 + 26543104)^2
73 73 7 3
( T 8 + 467 T 6 + ⋯ + 33918976 ) 2 (T^{8} + 467 T^{6} + \cdots + 33918976)^{2} ( T 8 + 4 6 7 T 6 + ⋯ + 3 3 9 1 8 9 7 6 ) 2
(T^8 + 467*T^6 + 70448*T^4 + 3625216*T^2 + 33918976)^2
79 79 7 9
( T 4 − 10 T 3 + ⋯ − 512 ) 4 (T^{4} - 10 T^{3} + \cdots - 512)^{4} ( T 4 − 1 0 T 3 + ⋯ − 5 1 2 ) 4
(T^4 - 10*T^3 - 55*T^2 + 520*T - 512)^4
83 83 8 3
( T 8 − 325 T 6 + ⋯ + 498436 ) 2 (T^{8} - 325 T^{6} + \cdots + 498436)^{2} ( T 8 − 3 2 5 T 6 + ⋯ + 4 9 8 4 3 6 ) 2
(T^8 - 325*T^6 + 25703*T^4 - 607631*T^2 + 498436)^2
89 89 8 9
( T 8 − 391 T 6 + ⋯ + 7529536 ) 2 (T^{8} - 391 T^{6} + \cdots + 7529536)^{2} ( T 8 − 3 9 1 T 6 + ⋯ + 7 5 2 9 5 3 6 ) 2
(T^8 - 391*T^6 + 42140*T^4 - 1114064*T^2 + 7529536)^2
97 97 9 7
( T 8 + 239 T 6 + ⋯ + 529984 ) 2 (T^{8} + 239 T^{6} + \cdots + 529984)^{2} ( T 8 + 2 3 9 T 6 + ⋯ + 5 2 9 9 8 4 ) 2
(T^8 + 239*T^6 + 16280*T^4 + 239308*T^2 + 529984)^2
show more
show less