L(s) = 1 | − 4.29·5-s + (0.832 − 2.51i)7-s + 2.51i·11-s + 5.36i·13-s − 3.29·17-s − 0.663i·19-s − 6.44i·23-s + 13.4·25-s + 4.26i·29-s − 4.78i·31-s + (−3.58 + 10.7i)35-s − 0.746·37-s + 7.99·41-s + 7.69·43-s + 9.32·47-s + ⋯ |
L(s) = 1 | − 1.92·5-s + (0.314 − 0.949i)7-s + 0.758i·11-s + 1.48i·13-s − 0.798·17-s − 0.152i·19-s − 1.34i·23-s + 2.69·25-s + 0.791i·29-s − 0.860i·31-s + (−0.605 + 1.82i)35-s − 0.122·37-s + 1.24·41-s + 1.17·43-s + 1.35·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.949 + 0.314i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.949 + 0.314i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.004047652\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.004047652\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.832 + 2.51i)T \) |
good | 5 | \( 1 + 4.29T + 5T^{2} \) |
| 11 | \( 1 - 2.51iT - 11T^{2} \) |
| 13 | \( 1 - 5.36iT - 13T^{2} \) |
| 17 | \( 1 + 3.29T + 17T^{2} \) |
| 19 | \( 1 + 0.663iT - 19T^{2} \) |
| 23 | \( 1 + 6.44iT - 23T^{2} \) |
| 29 | \( 1 - 4.26iT - 29T^{2} \) |
| 31 | \( 1 + 4.78iT - 31T^{2} \) |
| 37 | \( 1 + 0.746T + 37T^{2} \) |
| 41 | \( 1 - 7.99T + 41T^{2} \) |
| 43 | \( 1 - 7.69T + 43T^{2} \) |
| 47 | \( 1 - 9.32T + 47T^{2} \) |
| 53 | \( 1 + 11.8iT - 53T^{2} \) |
| 59 | \( 1 - 1.15T + 59T^{2} \) |
| 61 | \( 1 + 10.7iT - 61T^{2} \) |
| 67 | \( 1 - 0.587T + 67T^{2} \) |
| 71 | \( 1 - 9.77iT - 71T^{2} \) |
| 73 | \( 1 - 12.6iT - 73T^{2} \) |
| 79 | \( 1 - 11.1T + 79T^{2} \) |
| 83 | \( 1 - 7.07T + 83T^{2} \) |
| 89 | \( 1 - 3.25T + 89T^{2} \) |
| 97 | \( 1 + 10.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.263054816520121646362966927183, −8.545124971740363486952226489141, −7.72615431611046323640634057266, −7.08881204252985359527906098912, −6.60854641003400280794135395591, −4.80360846669442080795766480136, −4.27748146861632371516865371797, −3.79710701924596235780296857879, −2.29542689015355535862452036218, −0.64793024904421314389048694868,
0.75989560562948769710410682951, 2.69068078189641922203147676246, 3.47515171954064768090935137418, 4.37551570243018983080593834783, 5.36721250699113445421259208702, 6.15692833069205539811010785540, 7.60416044889611298720749281416, 7.71555709274488779412057196594, 8.665861550557762400620561087174, 9.170175657454652202025811251420