Properties

Label 2-1512-21.20-c1-0-4
Degree $2$
Conductor $1512$
Sign $-0.828 - 0.560i$
Analytic cond. $12.0733$
Root an. cond. $3.47467$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.22·5-s + (−1.48 + 2.19i)7-s + 3.31i·11-s + 1.60i·13-s − 6.11·17-s − 1.35i·19-s + 1.11i·23-s − 3.50·25-s − 9.39i·29-s + 7.00i·31-s + (−1.81 + 2.67i)35-s − 11.7·37-s + 5.86·41-s − 8.58·43-s + 3.15·47-s + ⋯
L(s)  = 1  + 0.546·5-s + (−0.560 + 0.828i)7-s + 0.998i·11-s + 0.443i·13-s − 1.48·17-s − 0.310i·19-s + 0.232i·23-s − 0.701·25-s − 1.74i·29-s + 1.25i·31-s + (−0.306 + 0.452i)35-s − 1.92·37-s + 0.916·41-s − 1.30·43-s + 0.460·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.828 - 0.560i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.828 - 0.560i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1512\)    =    \(2^{3} \cdot 3^{3} \cdot 7\)
Sign: $-0.828 - 0.560i$
Analytic conductor: \(12.0733\)
Root analytic conductor: \(3.47467\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1512} (377, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1512,\ (\ :1/2),\ -0.828 - 0.560i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8199461933\)
\(L(\frac12)\) \(\approx\) \(0.8199461933\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (1.48 - 2.19i)T \)
good5 \( 1 - 1.22T + 5T^{2} \)
11 \( 1 - 3.31iT - 11T^{2} \)
13 \( 1 - 1.60iT - 13T^{2} \)
17 \( 1 + 6.11T + 17T^{2} \)
19 \( 1 + 1.35iT - 19T^{2} \)
23 \( 1 - 1.11iT - 23T^{2} \)
29 \( 1 + 9.39iT - 29T^{2} \)
31 \( 1 - 7.00iT - 31T^{2} \)
37 \( 1 + 11.7T + 37T^{2} \)
41 \( 1 - 5.86T + 41T^{2} \)
43 \( 1 + 8.58T + 43T^{2} \)
47 \( 1 - 3.15T + 47T^{2} \)
53 \( 1 + 0.539iT - 53T^{2} \)
59 \( 1 - 6.87T + 59T^{2} \)
61 \( 1 - 7.40iT - 61T^{2} \)
67 \( 1 + 5.74T + 67T^{2} \)
71 \( 1 - 4.81iT - 71T^{2} \)
73 \( 1 - 14.5iT - 73T^{2} \)
79 \( 1 - 1.15T + 79T^{2} \)
83 \( 1 - 7.27T + 83T^{2} \)
89 \( 1 + 11.4T + 89T^{2} \)
97 \( 1 - 4.04iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.751449502750552464188587803435, −9.048712628892848594759107716190, −8.433782428650259301487694176705, −7.15671218322779841647937617004, −6.60486946508604752329428131013, −5.74280656366367604096795968260, −4.85479690697588282305692379025, −3.90348398572652593111620812341, −2.54320352844475234947584222484, −1.88633823272105763280161259962, 0.29615709143689738051140200712, 1.81994954285830389700883887876, 3.11067295873632857947081817261, 3.91318769960674800666833778727, 5.02898574253519449729656703925, 5.98815709762350091006818897607, 6.63594400133242190000227061232, 7.46819877388058006428857048784, 8.478247398230285954783596163922, 9.127251326229156229548608767806

Graph of the $Z$-function along the critical line