L(s) = 1 | + 2.85·5-s + (−2.30 + 1.29i)7-s − 3.55i·11-s − 2.43i·13-s − 0.860·17-s − 3.55i·19-s − 5.94i·23-s + 3.15·25-s + 2.88i·29-s − 9.01i·31-s + (−6.58 + 3.70i)35-s + 7.43·37-s + 6.85·41-s + 3.48·43-s − 0.263·47-s + ⋯ |
L(s) = 1 | + 1.27·5-s + (−0.871 + 0.489i)7-s − 1.07i·11-s − 0.675i·13-s − 0.208·17-s − 0.816i·19-s − 1.23i·23-s + 0.631·25-s + 0.535i·29-s − 1.61i·31-s + (−1.11 + 0.625i)35-s + 1.22·37-s + 1.07·41-s + 0.532·43-s − 0.0384·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.489 + 0.871i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.489 + 0.871i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.756942169\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.756942169\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.30 - 1.29i)T \) |
good | 5 | \( 1 - 2.85T + 5T^{2} \) |
| 11 | \( 1 + 3.55iT - 11T^{2} \) |
| 13 | \( 1 + 2.43iT - 13T^{2} \) |
| 17 | \( 1 + 0.860T + 17T^{2} \) |
| 19 | \( 1 + 3.55iT - 19T^{2} \) |
| 23 | \( 1 + 5.94iT - 23T^{2} \) |
| 29 | \( 1 - 2.88iT - 29T^{2} \) |
| 31 | \( 1 + 9.01iT - 31T^{2} \) |
| 37 | \( 1 - 7.43T + 37T^{2} \) |
| 41 | \( 1 - 6.85T + 41T^{2} \) |
| 43 | \( 1 - 3.48T + 43T^{2} \) |
| 47 | \( 1 + 0.263T + 47T^{2} \) |
| 53 | \( 1 - 7.76iT - 53T^{2} \) |
| 59 | \( 1 + 9.72T + 59T^{2} \) |
| 61 | \( 1 - 1.62iT - 61T^{2} \) |
| 67 | \( 1 - 15.0T + 67T^{2} \) |
| 71 | \( 1 - 15.1iT - 71T^{2} \) |
| 73 | \( 1 + 9.20iT - 73T^{2} \) |
| 79 | \( 1 + 7.55T + 79T^{2} \) |
| 83 | \( 1 - 0.922T + 83T^{2} \) |
| 89 | \( 1 + 4.90T + 89T^{2} \) |
| 97 | \( 1 + 10.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.316663932921178690942006206601, −8.795124553499220359068196157846, −7.80081124394252236690843979359, −6.61945435612860183739615433680, −5.99436953762969303079588294629, −5.54184457169374307258340623771, −4.28284793172589528170139559393, −2.93024969544967206436352925671, −2.40536111560383700892023433738, −0.70398043192168375943062518070,
1.44642254955160223267636647396, 2.38822533076062067935965779125, 3.61092439083925538511104857707, 4.59692579510502018989812374081, 5.63301602445863761030473059951, 6.37047998736714836543254999436, 7.04065617047545025306628203302, 7.909388078503030264691673262783, 9.242179115138732445924696140941, 9.565826677346086050032204814886