Properties

Label 2-1512-21.20-c1-0-22
Degree $2$
Conductor $1512$
Sign $0.489 + 0.871i$
Analytic cond. $12.0733$
Root an. cond. $3.47467$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.85·5-s + (−2.30 + 1.29i)7-s − 3.55i·11-s − 2.43i·13-s − 0.860·17-s − 3.55i·19-s − 5.94i·23-s + 3.15·25-s + 2.88i·29-s − 9.01i·31-s + (−6.58 + 3.70i)35-s + 7.43·37-s + 6.85·41-s + 3.48·43-s − 0.263·47-s + ⋯
L(s)  = 1  + 1.27·5-s + (−0.871 + 0.489i)7-s − 1.07i·11-s − 0.675i·13-s − 0.208·17-s − 0.816i·19-s − 1.23i·23-s + 0.631·25-s + 0.535i·29-s − 1.61i·31-s + (−1.11 + 0.625i)35-s + 1.22·37-s + 1.07·41-s + 0.532·43-s − 0.0384·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.489 + 0.871i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.489 + 0.871i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1512\)    =    \(2^{3} \cdot 3^{3} \cdot 7\)
Sign: $0.489 + 0.871i$
Analytic conductor: \(12.0733\)
Root analytic conductor: \(3.47467\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1512} (377, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1512,\ (\ :1/2),\ 0.489 + 0.871i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.756942169\)
\(L(\frac12)\) \(\approx\) \(1.756942169\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (2.30 - 1.29i)T \)
good5 \( 1 - 2.85T + 5T^{2} \)
11 \( 1 + 3.55iT - 11T^{2} \)
13 \( 1 + 2.43iT - 13T^{2} \)
17 \( 1 + 0.860T + 17T^{2} \)
19 \( 1 + 3.55iT - 19T^{2} \)
23 \( 1 + 5.94iT - 23T^{2} \)
29 \( 1 - 2.88iT - 29T^{2} \)
31 \( 1 + 9.01iT - 31T^{2} \)
37 \( 1 - 7.43T + 37T^{2} \)
41 \( 1 - 6.85T + 41T^{2} \)
43 \( 1 - 3.48T + 43T^{2} \)
47 \( 1 + 0.263T + 47T^{2} \)
53 \( 1 - 7.76iT - 53T^{2} \)
59 \( 1 + 9.72T + 59T^{2} \)
61 \( 1 - 1.62iT - 61T^{2} \)
67 \( 1 - 15.0T + 67T^{2} \)
71 \( 1 - 15.1iT - 71T^{2} \)
73 \( 1 + 9.20iT - 73T^{2} \)
79 \( 1 + 7.55T + 79T^{2} \)
83 \( 1 - 0.922T + 83T^{2} \)
89 \( 1 + 4.90T + 89T^{2} \)
97 \( 1 + 10.1iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.316663932921178690942006206601, −8.795124553499220359068196157846, −7.80081124394252236690843979359, −6.61945435612860183739615433680, −5.99436953762969303079588294629, −5.54184457169374307258340623771, −4.28284793172589528170139559393, −2.93024969544967206436352925671, −2.40536111560383700892023433738, −0.70398043192168375943062518070, 1.44642254955160223267636647396, 2.38822533076062067935965779125, 3.61092439083925538511104857707, 4.59692579510502018989812374081, 5.63301602445863761030473059951, 6.37047998736714836543254999436, 7.04065617047545025306628203302, 7.909388078503030264691673262783, 9.242179115138732445924696140941, 9.565826677346086050032204814886

Graph of the $Z$-function along the critical line