Properties

Label 1512.2.k
Level 15121512
Weight 22
Character orbit 1512.k
Rep. character χ1512(377,)\chi_{1512}(377,\cdot)
Character field Q\Q
Dimension 3232
Newform subspaces 22
Sturm bound 576576
Trace bound 2525

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1512=23337 1512 = 2^{3} \cdot 3^{3} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1512.k (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 21 21
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 576576
Trace bound: 2525
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M2(1512,[χ])M_{2}(1512, [\chi]).

Total New Old
Modular forms 312 32 280
Cusp forms 264 32 232
Eisenstein series 48 0 48

Trace form

32q4q7+24q2516q37+28q43+4q49+16q674q79+32q85+54q91+O(q100) 32 q - 4 q^{7} + 24 q^{25} - 16 q^{37} + 28 q^{43} + 4 q^{49} + 16 q^{67} - 4 q^{79} + 32 q^{85} + 54 q^{91}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1512,[χ])S_{2}^{\mathrm{new}}(1512, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1512.2.k.a 1512.k 21.c 1616 12.07312.073 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 1512.2.k.a 00 00 00 2-2 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ9q5β1q7β10q11β5q13+q-\beta _{9}q^{5}-\beta _{1}q^{7}-\beta _{10}q^{11}-\beta _{5}q^{13}+\cdots
1512.2.k.b 1512.k 21.c 1616 12.07312.073 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 1512.2.k.b 00 00 00 2-2 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q5β12q7+β10q11+(β4+)q13+q+\beta _{1}q^{5}-\beta _{12}q^{7}+\beta _{10}q^{11}+(\beta _{4}+\cdots)q^{13}+\cdots

Decomposition of S2old(1512,[χ])S_{2}^{\mathrm{old}}(1512, [\chi]) into lower level spaces