Properties

Label 1512.2.cx.a.17.16
Level $1512$
Weight $2$
Character 1512.17
Analytic conductor $12.073$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(17,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.cx (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.16
Character \(\chi\) \(=\) 1512.17
Dual form 1512.2.cx.a.89.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.07485 q^{5} +(-1.26701 - 2.32265i) q^{7} +4.09931i q^{11} +(-3.69867 - 2.13543i) q^{13} +(-0.717607 + 1.24293i) q^{17} +(6.41973 - 3.70644i) q^{19} -6.27615i q^{23} -3.84469 q^{25} +(8.09846 - 4.67565i) q^{29} +(5.96282 - 3.44264i) q^{31} +(-1.36185 - 2.49651i) q^{35} +(-0.453413 - 0.785334i) q^{37} +(-3.88978 + 6.73730i) q^{41} +(-6.32181 - 10.9497i) q^{43} +(4.21764 - 7.30517i) q^{47} +(-3.78938 + 5.88563i) q^{49} +(-1.50593 - 0.869452i) q^{53} +4.40616i q^{55} +(3.05073 + 5.28402i) q^{59} +(-2.36055 - 1.36287i) q^{61} +(-3.97553 - 2.29528i) q^{65} +(-6.01953 - 10.4261i) q^{67} +0.783113i q^{71} +(-1.95868 - 1.13085i) q^{73} +(9.52125 - 5.19386i) q^{77} +(-0.817713 + 1.41632i) q^{79} +(-4.48646 - 7.77077i) q^{83} +(-0.771322 + 1.33597i) q^{85} +(-1.71834 - 2.97625i) q^{89} +(-0.273602 + 11.2963i) q^{91} +(6.90027 - 3.98387i) q^{95} +(5.05015 - 2.91570i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{25} - 18 q^{29} + 18 q^{31} + 6 q^{41} - 6 q^{43} - 18 q^{47} - 12 q^{49} + 12 q^{53} + 18 q^{61} + 36 q^{65} + 12 q^{77} + 6 q^{79} + 18 q^{89} + 6 q^{91} + 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.07485 0.480689 0.240345 0.970688i \(-0.422740\pi\)
0.240345 + 0.970688i \(0.422740\pi\)
\(6\) 0 0
\(7\) −1.26701 2.32265i −0.478884 0.877878i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.09931i 1.23599i 0.786183 + 0.617994i \(0.212055\pi\)
−0.786183 + 0.617994i \(0.787945\pi\)
\(12\) 0 0
\(13\) −3.69867 2.13543i −1.02583 0.592262i −0.110041 0.993927i \(-0.535098\pi\)
−0.915787 + 0.401665i \(0.868432\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.717607 + 1.24293i −0.174045 + 0.301455i −0.939830 0.341641i \(-0.889017\pi\)
0.765785 + 0.643096i \(0.222351\pi\)
\(18\) 0 0
\(19\) 6.41973 3.70644i 1.47279 0.850315i 0.473257 0.880925i \(-0.343078\pi\)
0.999531 + 0.0306101i \(0.00974502\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.27615i 1.30867i −0.756206 0.654334i \(-0.772949\pi\)
0.756206 0.654334i \(-0.227051\pi\)
\(24\) 0 0
\(25\) −3.84469 −0.768938
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.09846 4.67565i 1.50385 0.868246i 0.503856 0.863788i \(-0.331914\pi\)
0.999990 0.00445828i \(-0.00141912\pi\)
\(30\) 0 0
\(31\) 5.96282 3.44264i 1.07095 0.618316i 0.142512 0.989793i \(-0.454482\pi\)
0.928442 + 0.371478i \(0.121149\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.36185 2.49651i −0.230194 0.421986i
\(36\) 0 0
\(37\) −0.453413 0.785334i −0.0745406 0.129108i 0.826346 0.563163i \(-0.190416\pi\)
−0.900886 + 0.434055i \(0.857082\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.88978 + 6.73730i −0.607482 + 1.05219i 0.384172 + 0.923262i \(0.374487\pi\)
−0.991654 + 0.128928i \(0.958846\pi\)
\(42\) 0 0
\(43\) −6.32181 10.9497i −0.964067 1.66981i −0.712102 0.702076i \(-0.752257\pi\)
−0.251965 0.967736i \(-0.581077\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.21764 7.30517i 0.615206 1.06557i −0.375142 0.926967i \(-0.622406\pi\)
0.990348 0.138601i \(-0.0442606\pi\)
\(48\) 0 0
\(49\) −3.78938 + 5.88563i −0.541340 + 0.840804i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.50593 0.869452i −0.206856 0.119428i 0.392993 0.919541i \(-0.371440\pi\)
−0.599849 + 0.800113i \(0.704773\pi\)
\(54\) 0 0
\(55\) 4.40616i 0.594126i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.05073 + 5.28402i 0.397171 + 0.687921i 0.993376 0.114912i \(-0.0366586\pi\)
−0.596205 + 0.802833i \(0.703325\pi\)
\(60\) 0 0
\(61\) −2.36055 1.36287i −0.302238 0.174497i 0.341210 0.939987i \(-0.389163\pi\)
−0.643448 + 0.765490i \(0.722497\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.97553 2.29528i −0.493104 0.284694i
\(66\) 0 0
\(67\) −6.01953 10.4261i −0.735403 1.27375i −0.954546 0.298062i \(-0.903660\pi\)
0.219144 0.975693i \(-0.429674\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.783113i 0.0929385i 0.998920 + 0.0464692i \(0.0147969\pi\)
−0.998920 + 0.0464692i \(0.985203\pi\)
\(72\) 0 0
\(73\) −1.95868 1.13085i −0.229247 0.132356i 0.380978 0.924584i \(-0.375587\pi\)
−0.610224 + 0.792229i \(0.708921\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 9.52125 5.19386i 1.08505 0.591895i
\(78\) 0 0
\(79\) −0.817713 + 1.41632i −0.0919999 + 0.159348i −0.908353 0.418205i \(-0.862659\pi\)
0.816353 + 0.577554i \(0.195993\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.48646 7.77077i −0.492452 0.852953i 0.507510 0.861646i \(-0.330566\pi\)
−0.999962 + 0.00869330i \(0.997233\pi\)
\(84\) 0 0
\(85\) −0.771322 + 1.33597i −0.0836616 + 0.144906i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.71834 2.97625i −0.182144 0.315482i 0.760467 0.649377i \(-0.224970\pi\)
−0.942610 + 0.333895i \(0.891637\pi\)
\(90\) 0 0
\(91\) −0.273602 + 11.2963i −0.0286813 + 1.18418i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.90027 3.98387i 0.707953 0.408737i
\(96\) 0 0
\(97\) 5.05015 2.91570i 0.512765 0.296045i −0.221205 0.975227i \(-0.570999\pi\)
0.733969 + 0.679182i \(0.237666\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.62440 0.460145 0.230073 0.973173i \(-0.426104\pi\)
0.230073 + 0.973173i \(0.426104\pi\)
\(102\) 0 0
\(103\) 4.25449i 0.419207i 0.977786 + 0.209604i \(0.0672174\pi\)
−0.977786 + 0.209604i \(0.932783\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.73964 5.04583i 0.844893 0.487799i −0.0140314 0.999902i \(-0.504466\pi\)
0.858924 + 0.512102i \(0.171133\pi\)
\(108\) 0 0
\(109\) 0.548395 0.949848i 0.0525267 0.0909790i −0.838567 0.544799i \(-0.816606\pi\)
0.891093 + 0.453820i \(0.149939\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.51839 + 4.91809i 0.801343 + 0.462655i 0.843940 0.536437i \(-0.180230\pi\)
−0.0425979 + 0.999092i \(0.513563\pi\)
\(114\) 0 0
\(115\) 6.74594i 0.629062i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.79611 + 0.0919433i 0.347988 + 0.00842843i
\(120\) 0 0
\(121\) −5.80435 −0.527668
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.50674 −0.850309
\(126\) 0 0
\(127\) 15.2201 1.35056 0.675282 0.737559i \(-0.264022\pi\)
0.675282 + 0.737559i \(0.264022\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.90882 −0.778367 −0.389184 0.921160i \(-0.627243\pi\)
−0.389184 + 0.921160i \(0.627243\pi\)
\(132\) 0 0
\(133\) −16.7426 10.2147i −1.45177 0.885726i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.2738i 0.963185i −0.876395 0.481592i \(-0.840059\pi\)
0.876395 0.481592i \(-0.159941\pi\)
\(138\) 0 0
\(139\) 12.0468 + 6.95522i 1.02180 + 0.589934i 0.914624 0.404306i \(-0.132487\pi\)
0.107172 + 0.994240i \(0.465820\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.75380 15.1620i 0.732029 1.26791i
\(144\) 0 0
\(145\) 8.70466 5.02564i 0.722882 0.417356i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.57384i 0.292781i −0.989227 0.146390i \(-0.953234\pi\)
0.989227 0.146390i \(-0.0467655\pi\)
\(150\) 0 0
\(151\) 6.60359 0.537393 0.268696 0.963225i \(-0.413407\pi\)
0.268696 + 0.963225i \(0.413407\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.40916 3.70033i 0.514796 0.297217i
\(156\) 0 0
\(157\) −7.96356 + 4.59777i −0.635562 + 0.366942i −0.782903 0.622144i \(-0.786262\pi\)
0.147341 + 0.989086i \(0.452928\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −14.5773 + 7.95193i −1.14885 + 0.626700i
\(162\) 0 0
\(163\) 3.64872 + 6.31976i 0.285790 + 0.495002i 0.972800 0.231645i \(-0.0744108\pi\)
−0.687011 + 0.726647i \(0.741077\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.07118 + 12.2476i −0.547184 + 0.947751i 0.451282 + 0.892382i \(0.350967\pi\)
−0.998466 + 0.0553694i \(0.982366\pi\)
\(168\) 0 0
\(169\) 2.62013 + 4.53820i 0.201549 + 0.349092i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.74923 + 11.6900i −0.513134 + 0.888775i 0.486750 + 0.873542i \(0.338182\pi\)
−0.999884 + 0.0152333i \(0.995151\pi\)
\(174\) 0 0
\(175\) 4.87125 + 8.92986i 0.368232 + 0.675034i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.97036 + 2.29229i 0.296759 + 0.171334i 0.640986 0.767553i \(-0.278526\pi\)
−0.344227 + 0.938886i \(0.611859\pi\)
\(180\) 0 0
\(181\) 2.22901i 0.165681i 0.996563 + 0.0828405i \(0.0263992\pi\)
−0.996563 + 0.0828405i \(0.973601\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.487352 0.844118i −0.0358308 0.0620608i
\(186\) 0 0
\(187\) −5.09516 2.94169i −0.372595 0.215118i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.2169 10.5175i −1.31813 0.761022i −0.334701 0.942324i \(-0.608635\pi\)
−0.983427 + 0.181302i \(0.941969\pi\)
\(192\) 0 0
\(193\) 5.60213 + 9.70317i 0.403250 + 0.698449i 0.994116 0.108320i \(-0.0345472\pi\)
−0.590866 + 0.806770i \(0.701214\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 20.8945i 1.48867i 0.667805 + 0.744336i \(0.267234\pi\)
−0.667805 + 0.744336i \(0.732766\pi\)
\(198\) 0 0
\(199\) −15.8521 9.15222i −1.12373 0.648784i −0.181377 0.983414i \(-0.558055\pi\)
−0.942350 + 0.334630i \(0.891389\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −21.1207 12.8858i −1.48238 0.904405i
\(204\) 0 0
\(205\) −4.18095 + 7.24161i −0.292010 + 0.505776i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 15.1938 + 26.3165i 1.05098 + 1.82035i
\(210\) 0 0
\(211\) 5.93845 10.2857i 0.408820 0.708096i −0.585938 0.810356i \(-0.699274\pi\)
0.994758 + 0.102260i \(0.0326072\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.79502 11.7693i −0.463416 0.802660i
\(216\) 0 0
\(217\) −15.5510 9.48768i −1.05567 0.644066i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.30839 3.06480i 0.357081 0.206161i
\(222\) 0 0
\(223\) 4.19957 2.42462i 0.281224 0.162365i −0.352754 0.935716i \(-0.614755\pi\)
0.633977 + 0.773352i \(0.281421\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.87291 −0.190682 −0.0953408 0.995445i \(-0.530394\pi\)
−0.0953408 + 0.995445i \(0.530394\pi\)
\(228\) 0 0
\(229\) 4.32820i 0.286015i −0.989722 0.143008i \(-0.954323\pi\)
0.989722 0.143008i \(-0.0456774\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.9136 6.87834i 0.780488 0.450615i −0.0561154 0.998424i \(-0.517871\pi\)
0.836603 + 0.547809i \(0.184538\pi\)
\(234\) 0 0
\(235\) 4.53335 7.85198i 0.295723 0.512207i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 15.6571 + 9.03963i 1.01277 + 0.584725i 0.912003 0.410184i \(-0.134536\pi\)
0.100771 + 0.994910i \(0.467869\pi\)
\(240\) 0 0
\(241\) 5.97741i 0.385039i −0.981293 0.192520i \(-0.938334\pi\)
0.981293 0.192520i \(-0.0616659\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.07303 + 6.32618i −0.260216 + 0.404165i
\(246\) 0 0
\(247\) −31.6593 −2.01444
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 11.0004 0.694337 0.347169 0.937803i \(-0.387143\pi\)
0.347169 + 0.937803i \(0.387143\pi\)
\(252\) 0 0
\(253\) 25.7279 1.61750
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.48559 −0.591695 −0.295848 0.955235i \(-0.595602\pi\)
−0.295848 + 0.955235i \(0.595602\pi\)
\(258\) 0 0
\(259\) −1.24958 + 2.04814i −0.0776448 + 0.127265i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 18.8494i 1.16230i 0.813795 + 0.581152i \(0.197398\pi\)
−0.813795 + 0.581152i \(0.802602\pi\)
\(264\) 0 0
\(265\) −1.61866 0.934533i −0.0994334 0.0574079i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −10.0233 + 17.3609i −0.611133 + 1.05851i 0.379916 + 0.925021i \(0.375953\pi\)
−0.991050 + 0.133493i \(0.957381\pi\)
\(270\) 0 0
\(271\) 17.3369 10.0095i 1.05314 0.608032i 0.129615 0.991564i \(-0.458626\pi\)
0.923528 + 0.383532i \(0.125292\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 15.7606i 0.950399i
\(276\) 0 0
\(277\) −3.40744 −0.204733 −0.102367 0.994747i \(-0.532642\pi\)
−0.102367 + 0.994747i \(0.532642\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −16.0313 + 9.25568i −0.956347 + 0.552147i −0.895047 0.445972i \(-0.852858\pi\)
−0.0613004 + 0.998119i \(0.519525\pi\)
\(282\) 0 0
\(283\) −21.7473 + 12.5558i −1.29274 + 0.746366i −0.979140 0.203187i \(-0.934870\pi\)
−0.313605 + 0.949554i \(0.601537\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 20.5768 + 0.498378i 1.21461 + 0.0294183i
\(288\) 0 0
\(289\) 7.47008 + 12.9386i 0.439417 + 0.761092i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.11299 + 1.92775i −0.0650214 + 0.112620i −0.896703 0.442632i \(-0.854045\pi\)
0.831682 + 0.555252i \(0.187378\pi\)
\(294\) 0 0
\(295\) 3.27909 + 5.67955i 0.190916 + 0.330676i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −13.4023 + 23.2134i −0.775074 + 1.34247i
\(300\) 0 0
\(301\) −17.4225 + 28.5567i −1.00422 + 1.64598i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.53725 1.46488i −0.145282 0.0838788i
\(306\) 0 0
\(307\) 24.2535i 1.38422i 0.721791 + 0.692111i \(0.243319\pi\)
−0.721791 + 0.692111i \(0.756681\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.81502 + 17.0001i 0.556559 + 0.963988i 0.997780 + 0.0665901i \(0.0212120\pi\)
−0.441221 + 0.897398i \(0.645455\pi\)
\(312\) 0 0
\(313\) 14.8564 + 8.57737i 0.839736 + 0.484822i 0.857174 0.515026i \(-0.172218\pi\)
−0.0174387 + 0.999848i \(0.505551\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.7826 + 6.22534i 0.605611 + 0.349650i 0.771246 0.636537i \(-0.219634\pi\)
−0.165635 + 0.986187i \(0.552967\pi\)
\(318\) 0 0
\(319\) 19.1669 + 33.1981i 1.07314 + 1.85874i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 10.6391i 0.591973i
\(324\) 0 0
\(325\) 14.2203 + 8.21007i 0.788798 + 0.455413i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −22.3111 0.540385i −1.23005 0.0297924i
\(330\) 0 0
\(331\) 15.4588 26.7754i 0.849691 1.47171i −0.0317938 0.999494i \(-0.510122\pi\)
0.881484 0.472213i \(-0.156545\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.47011 11.2066i −0.353500 0.612280i
\(336\) 0 0
\(337\) −1.06492 + 1.84450i −0.0580099 + 0.100476i −0.893572 0.448920i \(-0.851809\pi\)
0.835562 + 0.549396i \(0.185142\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 14.1124 + 24.4434i 0.764231 + 1.32369i
\(342\) 0 0
\(343\) 18.4714 + 1.34426i 0.997362 + 0.0725832i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −19.9209 + 11.5013i −1.06941 + 0.617423i −0.928020 0.372531i \(-0.878490\pi\)
−0.141388 + 0.989954i \(0.545157\pi\)
\(348\) 0 0
\(349\) 21.3306 12.3152i 1.14180 0.659219i 0.194925 0.980818i \(-0.437554\pi\)
0.946876 + 0.321599i \(0.104220\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3.24379 −0.172650 −0.0863248 0.996267i \(-0.527512\pi\)
−0.0863248 + 0.996267i \(0.527512\pi\)
\(354\) 0 0
\(355\) 0.841732i 0.0446745i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.88399 2.81977i 0.257767 0.148822i −0.365548 0.930792i \(-0.619119\pi\)
0.623316 + 0.781970i \(0.285785\pi\)
\(360\) 0 0
\(361\) 17.9753 31.1342i 0.946070 1.63864i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.10530 1.21549i −0.110196 0.0636219i
\(366\) 0 0
\(367\) 12.5479i 0.654996i 0.944852 + 0.327498i \(0.106205\pi\)
−0.944852 + 0.327498i \(0.893795\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.111398 + 4.59936i −0.00578352 + 0.238787i
\(372\) 0 0
\(373\) −13.1754 −0.682196 −0.341098 0.940028i \(-0.610799\pi\)
−0.341098 + 0.940028i \(0.610799\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −39.9381 −2.05692
\(378\) 0 0
\(379\) −6.80285 −0.349439 −0.174720 0.984618i \(-0.555902\pi\)
−0.174720 + 0.984618i \(0.555902\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 19.6596 1.00456 0.502280 0.864705i \(-0.332495\pi\)
0.502280 + 0.864705i \(0.332495\pi\)
\(384\) 0 0
\(385\) 10.2340 5.58264i 0.521570 0.284518i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.2599i 0.925813i −0.886407 0.462907i \(-0.846806\pi\)
0.886407 0.462907i \(-0.153194\pi\)
\(390\) 0 0
\(391\) 7.80082 + 4.50381i 0.394504 + 0.227767i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.878921 + 1.52234i −0.0442233 + 0.0765970i
\(396\) 0 0
\(397\) −31.8395 + 18.3825i −1.59798 + 0.922593i −0.606101 + 0.795387i \(0.707267\pi\)
−0.991876 + 0.127206i \(0.959399\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 15.9551i 0.796757i −0.917221 0.398379i \(-0.869573\pi\)
0.917221 0.398379i \(-0.130427\pi\)
\(402\) 0 0
\(403\) −29.4060 −1.46482
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.21933 1.85868i 0.159576 0.0921313i
\(408\) 0 0
\(409\) 8.52864 4.92401i 0.421714 0.243477i −0.274096 0.961702i \(-0.588379\pi\)
0.695810 + 0.718225i \(0.255045\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.40761 13.7807i 0.413712 0.678102i
\(414\) 0 0
\(415\) −4.82228 8.35244i −0.236716 0.410005i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −19.4482 + 33.6853i −0.950106 + 1.64563i −0.204917 + 0.978779i \(0.565692\pi\)
−0.745189 + 0.666853i \(0.767641\pi\)
\(420\) 0 0
\(421\) −8.99598 15.5815i −0.438437 0.759396i 0.559132 0.829079i \(-0.311135\pi\)
−0.997569 + 0.0696829i \(0.977801\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.75898 4.77869i 0.133830 0.231800i
\(426\) 0 0
\(427\) −0.174617 + 7.20949i −0.00845031 + 0.348892i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.23236 + 3.59826i 0.300202 + 0.173322i 0.642534 0.766257i \(-0.277883\pi\)
−0.342331 + 0.939579i \(0.611217\pi\)
\(432\) 0 0
\(433\) 26.5567i 1.27623i 0.769939 + 0.638117i \(0.220286\pi\)
−0.769939 + 0.638117i \(0.779714\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −23.2621 40.2912i −1.11278 1.92739i
\(438\) 0 0
\(439\) 23.1077 + 13.3413i 1.10287 + 0.636744i 0.936974 0.349399i \(-0.113614\pi\)
0.165898 + 0.986143i \(0.446948\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −33.0102 19.0584i −1.56836 0.905494i −0.996360 0.0852408i \(-0.972834\pi\)
−0.572001 0.820253i \(-0.693833\pi\)
\(444\) 0 0
\(445\) −1.84696 3.19903i −0.0875544 0.151649i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 21.5864i 1.01872i −0.860552 0.509362i \(-0.829881\pi\)
0.860552 0.509362i \(-0.170119\pi\)
\(450\) 0 0
\(451\) −27.6183 15.9454i −1.30049 0.750841i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.294082 + 12.1419i −0.0137868 + 0.569221i
\(456\) 0 0
\(457\) −1.42761 + 2.47270i −0.0667809 + 0.115668i −0.897483 0.441050i \(-0.854606\pi\)
0.830702 + 0.556718i \(0.187940\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 13.3315 + 23.0909i 0.620911 + 1.07545i 0.989316 + 0.145784i \(0.0465706\pi\)
−0.368405 + 0.929665i \(0.620096\pi\)
\(462\) 0 0
\(463\) −3.63687 + 6.29925i −0.169020 + 0.292751i −0.938076 0.346431i \(-0.887394\pi\)
0.769056 + 0.639182i \(0.220727\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.37755 + 4.11804i 0.110020 + 0.190560i 0.915778 0.401685i \(-0.131575\pi\)
−0.805758 + 0.592245i \(0.798242\pi\)
\(468\) 0 0
\(469\) −16.5894 + 27.1912i −0.766029 + 1.25557i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 44.8862 25.9151i 2.06387 1.19158i
\(474\) 0 0
\(475\) −24.6819 + 14.2501i −1.13248 + 0.653839i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −19.8019 −0.904774 −0.452387 0.891822i \(-0.649427\pi\)
−0.452387 + 0.891822i \(0.649427\pi\)
\(480\) 0 0
\(481\) 3.87292i 0.176590i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5.42817 3.13395i 0.246480 0.142306i
\(486\) 0 0
\(487\) 17.0806 29.5845i 0.773996 1.34060i −0.161362 0.986895i \(-0.551589\pi\)
0.935357 0.353704i \(-0.115078\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.91208 + 5.72274i 0.447326 + 0.258264i 0.706700 0.707513i \(-0.250183\pi\)
−0.259374 + 0.965777i \(0.583516\pi\)
\(492\) 0 0
\(493\) 13.4211i 0.604456i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.81890 0.992211i 0.0815886 0.0445067i
\(498\) 0 0
\(499\) 7.76302 0.347521 0.173760 0.984788i \(-0.444408\pi\)
0.173760 + 0.984788i \(0.444408\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.92995 0.130640 0.0653200 0.997864i \(-0.479193\pi\)
0.0653200 + 0.997864i \(0.479193\pi\)
\(504\) 0 0
\(505\) 4.97055 0.221187
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −11.6268 −0.515347 −0.257673 0.966232i \(-0.582956\pi\)
−0.257673 + 0.966232i \(0.582956\pi\)
\(510\) 0 0
\(511\) −0.144890 + 5.98213i −0.00640954 + 0.264634i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.57295i 0.201508i
\(516\) 0 0
\(517\) 29.9462 + 17.2894i 1.31703 + 0.760388i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12.7515 22.0863i 0.558655 0.967619i −0.438954 0.898509i \(-0.644651\pi\)
0.997609 0.0691093i \(-0.0220157\pi\)
\(522\) 0 0
\(523\) 0.781452 0.451172i 0.0341705 0.0197284i −0.482817 0.875721i \(-0.660387\pi\)
0.516988 + 0.855993i \(0.327053\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.88183i 0.430459i
\(528\) 0 0
\(529\) −16.3900 −0.712610
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 28.7741 16.6127i 1.24634 0.719577i
\(534\) 0 0
\(535\) 9.39383 5.42353i 0.406131 0.234480i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −24.1270 15.5339i −1.03922 0.669090i
\(540\) 0 0
\(541\) −17.2460 29.8710i −0.741464 1.28425i −0.951829 0.306630i \(-0.900799\pi\)
0.210365 0.977623i \(-0.432535\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.589444 1.02095i 0.0252490 0.0437326i
\(546\) 0 0
\(547\) 3.68664 + 6.38545i 0.157629 + 0.273022i 0.934013 0.357238i \(-0.116282\pi\)
−0.776384 + 0.630260i \(0.782948\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 34.6600 60.0328i 1.47656 2.55748i
\(552\) 0 0
\(553\) 4.32566 + 0.104769i 0.183946 + 0.00445525i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −18.6335 10.7581i −0.789528 0.455834i 0.0502687 0.998736i \(-0.483992\pi\)
−0.839796 + 0.542902i \(0.817326\pi\)
\(558\) 0 0
\(559\) 53.9991i 2.28392i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −15.7775 27.3274i −0.664942 1.15171i −0.979301 0.202409i \(-0.935123\pi\)
0.314360 0.949304i \(-0.398210\pi\)
\(564\) 0 0
\(565\) 9.15602 + 5.28623i 0.385197 + 0.222393i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 20.4138 + 11.7859i 0.855792 + 0.494092i 0.862601 0.505885i \(-0.168834\pi\)
−0.00680861 + 0.999977i \(0.502167\pi\)
\(570\) 0 0
\(571\) −7.83445 13.5697i −0.327861 0.567873i 0.654226 0.756299i \(-0.272995\pi\)
−0.982087 + 0.188427i \(0.939661\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 24.1298i 1.00628i
\(576\) 0 0
\(577\) 0.137448 + 0.0793554i 0.00572202 + 0.00330361i 0.502858 0.864369i \(-0.332282\pi\)
−0.497136 + 0.867672i \(0.665615\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −12.3644 + 20.2661i −0.512961 + 0.840779i
\(582\) 0 0
\(583\) 3.56415 6.17329i 0.147612 0.255672i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.9041 + 27.5467i 0.656432 + 1.13697i 0.981533 + 0.191294i \(0.0612683\pi\)
−0.325101 + 0.945679i \(0.605398\pi\)
\(588\) 0 0
\(589\) 25.5198 44.2016i 1.05153 1.82130i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.8934 + 27.5283i 0.652666 + 1.13045i 0.982474 + 0.186402i \(0.0596827\pi\)
−0.329808 + 0.944048i \(0.606984\pi\)
\(594\) 0 0
\(595\) 4.08026 + 0.0988256i 0.167274 + 0.00405145i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.5520 6.09222i 0.431144 0.248921i −0.268690 0.963227i \(-0.586591\pi\)
0.699834 + 0.714306i \(0.253257\pi\)
\(600\) 0 0
\(601\) −13.6048 + 7.85473i −0.554951 + 0.320401i −0.751117 0.660170i \(-0.770484\pi\)
0.196165 + 0.980571i \(0.437151\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.23882 −0.253644
\(606\) 0 0
\(607\) 12.6280i 0.512553i −0.966604 0.256277i \(-0.917504\pi\)
0.966604 0.256277i \(-0.0824958\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −31.1994 + 18.0130i −1.26219 + 0.728727i
\(612\) 0 0
\(613\) 11.3476 19.6546i 0.458325 0.793842i −0.540547 0.841314i \(-0.681783\pi\)
0.998873 + 0.0474711i \(0.0151162\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.6259 + 18.8366i 1.31347 + 0.758333i 0.982669 0.185368i \(-0.0593476\pi\)
0.330801 + 0.943700i \(0.392681\pi\)
\(618\) 0 0
\(619\) 5.20651i 0.209267i 0.994511 + 0.104634i \(0.0333670\pi\)
−0.994511 + 0.104634i \(0.966633\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.73563 + 7.76203i −0.189729 + 0.310979i
\(624\) 0 0
\(625\) 9.00510 0.360204
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.30149 0.0518937
\(630\) 0 0
\(631\) −5.73635 −0.228361 −0.114180 0.993460i \(-0.536424\pi\)
−0.114180 + 0.993460i \(0.536424\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 16.3594 0.649202
\(636\) 0 0
\(637\) 26.5840 13.6771i 1.05330 0.541905i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 26.5960i 1.05048i 0.850954 + 0.525240i \(0.176024\pi\)
−0.850954 + 0.525240i \(0.823976\pi\)
\(642\) 0 0
\(643\) −22.7885 13.1569i −0.898689 0.518858i −0.0219144 0.999760i \(-0.506976\pi\)
−0.876775 + 0.480901i \(0.840309\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −23.8420 + 41.2955i −0.937324 + 1.62349i −0.166888 + 0.985976i \(0.553372\pi\)
−0.770436 + 0.637517i \(0.779961\pi\)
\(648\) 0 0
\(649\) −21.6608 + 12.5059i −0.850262 + 0.490899i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 32.7208i 1.28046i −0.768182 0.640231i \(-0.778838\pi\)
0.768182 0.640231i \(-0.221162\pi\)
\(654\) 0 0
\(655\) −9.57568 −0.374153
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −26.5499 + 15.3286i −1.03424 + 0.597118i −0.918196 0.396126i \(-0.870354\pi\)
−0.116043 + 0.993244i \(0.537021\pi\)
\(660\) 0 0
\(661\) 9.35521 5.40123i 0.363875 0.210084i −0.306904 0.951740i \(-0.599293\pi\)
0.670779 + 0.741657i \(0.265960\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −17.9958 10.9793i −0.697849 0.425759i
\(666\) 0 0
\(667\) −29.3451 50.8271i −1.13624 1.96803i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.58681 9.67663i 0.215676 0.373562i
\(672\) 0 0
\(673\) 19.4199 + 33.6363i 0.748583 + 1.29658i 0.948502 + 0.316771i \(0.102599\pi\)
−0.199919 + 0.979812i \(0.564068\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.43192 16.3366i 0.362498 0.627865i −0.625873 0.779925i \(-0.715257\pi\)
0.988371 + 0.152060i \(0.0485906\pi\)
\(678\) 0 0
\(679\) −13.1707 8.03549i −0.505446 0.308374i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 29.7510 + 17.1768i 1.13839 + 0.657251i 0.946032 0.324074i \(-0.105053\pi\)
0.192360 + 0.981325i \(0.438386\pi\)
\(684\) 0 0
\(685\) 12.1177i 0.462992i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.71331 + 6.43164i 0.141466 + 0.245026i
\(690\) 0 0
\(691\) −22.1391 12.7820i −0.842212 0.486251i 0.0158037 0.999875i \(-0.494969\pi\)
−0.858015 + 0.513624i \(0.828303\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 12.9485 + 7.47584i 0.491166 + 0.283575i
\(696\) 0 0
\(697\) −5.58267 9.66947i −0.211459 0.366257i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 32.3485i 1.22178i −0.791714 0.610892i \(-0.790811\pi\)
0.791714 0.610892i \(-0.209189\pi\)
\(702\) 0 0
\(703\) −5.82158 3.36109i −0.219565 0.126766i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.85915 10.7409i −0.220356 0.403951i
\(708\) 0 0
\(709\) −1.30119 + 2.25373i −0.0488672 + 0.0846405i −0.889424 0.457082i \(-0.848894\pi\)
0.840557 + 0.541723i \(0.182228\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −21.6065 37.4235i −0.809169 1.40152i
\(714\) 0 0
\(715\) 9.40905 16.2969i 0.351878 0.609471i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −8.42868 14.5989i −0.314337 0.544447i 0.664960 0.746879i \(-0.268449\pi\)
−0.979296 + 0.202432i \(0.935115\pi\)
\(720\) 0 0
\(721\) 9.88168 5.39047i 0.368013 0.200752i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −31.1361 + 17.9764i −1.15636 + 0.667627i
\(726\) 0 0
\(727\) 36.1005 20.8426i 1.33889 0.773009i 0.352249 0.935906i \(-0.385417\pi\)
0.986643 + 0.162897i \(0.0520838\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 18.1463 0.671165
\(732\) 0 0
\(733\) 36.0421i 1.33125i −0.746288 0.665623i \(-0.768166\pi\)
0.746288 0.665623i \(-0.231834\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 42.7400 24.6759i 1.57435 0.908949i
\(738\) 0 0
\(739\) −14.1322 + 24.4777i −0.519861 + 0.900426i 0.479872 + 0.877339i \(0.340683\pi\)
−0.999733 + 0.0230879i \(0.992650\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 28.7161 + 16.5793i 1.05349 + 0.608234i 0.923625 0.383298i \(-0.125212\pi\)
0.129867 + 0.991531i \(0.458545\pi\)
\(744\) 0 0
\(745\) 3.84136i 0.140736i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −22.7929 13.9060i −0.832834 0.508114i
\(750\) 0 0
\(751\) −43.2310 −1.57752 −0.788761 0.614700i \(-0.789277\pi\)
−0.788761 + 0.614700i \(0.789277\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 7.09789 0.258319
\(756\) 0 0
\(757\) 33.2085 1.20698 0.603492 0.797369i \(-0.293776\pi\)
0.603492 + 0.797369i \(0.293776\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.31938 0.156577 0.0782887 0.996931i \(-0.475054\pi\)
0.0782887 + 0.996931i \(0.475054\pi\)
\(762\) 0 0
\(763\) −2.90098 0.0702631i −0.105023 0.00254369i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 26.0585i 0.940918i
\(768\) 0 0
\(769\) −16.1845 9.34412i −0.583628 0.336958i 0.178946 0.983859i \(-0.442731\pi\)
−0.762574 + 0.646901i \(0.776065\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 4.91482 8.51272i 0.176774 0.306181i −0.764000 0.645216i \(-0.776767\pi\)
0.940774 + 0.339035i \(0.110101\pi\)
\(774\) 0 0
\(775\) −22.9252 + 13.2359i −0.823497 + 0.475446i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 57.6689i 2.06620i
\(780\) 0 0
\(781\) −3.21023 −0.114871
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −8.55966 + 4.94192i −0.305507 + 0.176385i
\(786\) 0 0
\(787\) 39.3412 22.7136i 1.40236 0.809654i 0.407727 0.913104i \(-0.366321\pi\)
0.994635 + 0.103450i \(0.0329881\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.630130 26.0165i 0.0224049 0.925039i
\(792\) 0 0
\(793\) 5.82061 + 10.0816i 0.206696 + 0.358008i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 7.67140 13.2872i 0.271735 0.470658i −0.697571 0.716515i \(-0.745736\pi\)
0.969306 + 0.245857i \(0.0790693\pi\)
\(798\) 0 0
\(799\) 6.05322 + 10.4845i 0.214147 + 0.370914i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.63569 8.02926i 0.163590 0.283346i
\(804\) 0 0
\(805\) −15.6684 + 8.54716i −0.552240 + 0.301248i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.785783 + 0.453672i 0.0276267 + 0.0159503i 0.513750 0.857940i \(-0.328256\pi\)
−0.486123 + 0.873890i \(0.661589\pi\)
\(810\) 0 0
\(811\) 7.95121i 0.279205i −0.990208 0.139602i \(-0.955418\pi\)
0.990208 0.139602i \(-0.0445824\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.92184 + 6.79282i 0.137376 + 0.237942i
\(816\) 0 0
\(817\) −81.1686 46.8627i −2.83973 1.63952i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 40.5906 + 23.4350i 1.41662 + 0.817886i 0.996000 0.0893510i \(-0.0284793\pi\)
0.420620 + 0.907237i \(0.361813\pi\)
\(822\) 0 0
\(823\) −10.4949 18.1778i −0.365831 0.633637i 0.623078 0.782159i \(-0.285882\pi\)
−0.988909 + 0.148522i \(0.952548\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.6370i 0.439430i −0.975564 0.219715i \(-0.929487\pi\)
0.975564 0.219715i \(-0.0705127\pi\)
\(828\) 0 0
\(829\) 3.12273 + 1.80291i 0.108457 + 0.0626177i 0.553247 0.833017i \(-0.313388\pi\)
−0.444790 + 0.895635i \(0.646722\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.59614 8.93351i −0.159247 0.309528i
\(834\) 0 0
\(835\) −7.60048 + 13.1644i −0.263025 + 0.455573i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −0.287256 0.497541i −0.00991716 0.0171770i 0.861024 0.508564i \(-0.169823\pi\)
−0.870941 + 0.491387i \(0.836490\pi\)
\(840\) 0 0
\(841\) 29.2234 50.6163i 1.00770 1.74539i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.81626 + 4.87790i 0.0968822 + 0.167805i
\(846\) 0 0
\(847\) 7.35416 + 13.4815i 0.252692 + 0.463228i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.92887 + 2.84568i −0.168959 + 0.0975488i
\(852\) 0 0
\(853\) −5.62283 + 3.24634i −0.192522 + 0.111153i −0.593163 0.805083i \(-0.702121\pi\)
0.400641 + 0.916235i \(0.368788\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.31537 0.0790915 0.0395457 0.999218i \(-0.487409\pi\)
0.0395457 + 0.999218i \(0.487409\pi\)
\(858\) 0 0
\(859\) 55.6555i 1.89894i −0.313855 0.949471i \(-0.601621\pi\)
0.313855 0.949471i \(-0.398379\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7.50527 4.33317i 0.255482 0.147503i −0.366790 0.930304i \(-0.619543\pi\)
0.622272 + 0.782801i \(0.286210\pi\)
\(864\) 0 0
\(865\) −7.25443 + 12.5650i −0.246658 + 0.427224i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −5.80593 3.35206i −0.196953 0.113711i
\(870\) 0 0
\(871\) 51.4172i 1.74220i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 12.0451 + 22.0808i 0.407199 + 0.746468i
\(876\) 0 0
\(877\) 35.6629 1.20425 0.602126 0.798401i \(-0.294321\pi\)
0.602126 + 0.798401i \(0.294321\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −7.57740 −0.255289 −0.127644 0.991820i \(-0.540742\pi\)
−0.127644 + 0.991820i \(0.540742\pi\)
\(882\) 0 0
\(883\) −5.35854 −0.180329 −0.0901646 0.995927i \(-0.528739\pi\)
−0.0901646 + 0.995927i \(0.528739\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 23.5904 0.792090 0.396045 0.918231i \(-0.370382\pi\)
0.396045 + 0.918231i \(0.370382\pi\)
\(888\) 0 0
\(889\) −19.2840 35.3509i −0.646764 1.18563i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 62.5297i 2.09248i
\(894\) 0 0
\(895\) 4.26755 + 2.46387i 0.142649 + 0.0823582i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 32.1931 55.7601i 1.07370 1.85970i
\(900\) 0 0
\(901\) 2.16134 1.24785i 0.0720046 0.0415719i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.39586i 0.0796410i
\(906\) 0 0
\(907\) −14.2703 −0.473838 −0.236919 0.971529i \(-0.576138\pi\)
−0.236919 + 0.971529i \(0.576138\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 40.0156 23.1030i 1.32578 0.765437i 0.341133 0.940015i \(-0.389189\pi\)
0.984643 + 0.174578i \(0.0558560\pi\)
\(912\) 0 0
\(913\) 31.8548 18.3914i 1.05424 0.608666i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 11.2875 + 20.6920i 0.372748 + 0.683312i
\(918\) 0 0
\(919\) −16.8957 29.2643i −0.557339 0.965339i −0.997717 0.0675269i \(-0.978489\pi\)
0.440379 0.897812i \(-0.354844\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.67228 2.89648i 0.0550439 0.0953389i
\(924\) 0 0
\(925\) 1.74323 + 3.01936i 0.0573171 + 0.0992761i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −17.4684 + 30.2562i −0.573121 + 0.992674i 0.423123 + 0.906072i \(0.360934\pi\)
−0.996243 + 0.0866014i \(0.972399\pi\)
\(930\) 0 0
\(931\) −2.51213 + 51.8292i −0.0823317 + 1.69863i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.47655 3.16189i −0.179102 0.103405i
\(936\) 0 0
\(937\) 11.6175i 0.379528i 0.981830 + 0.189764i \(0.0607723\pi\)
−0.981830 + 0.189764i \(0.939228\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.77515 + 8.27080i 0.155665 + 0.269620i 0.933301 0.359095i \(-0.116914\pi\)
−0.777636 + 0.628715i \(0.783581\pi\)
\(942\) 0 0
\(943\) 42.2843 + 24.4129i 1.37697 + 0.794992i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −31.7721 18.3436i −1.03245 0.596088i −0.114768 0.993392i \(-0.536612\pi\)
−0.917687 + 0.397305i \(0.869946\pi\)
\(948\) 0 0
\(949\) 4.82969 + 8.36527i 0.156778 + 0.271548i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 17.1813i 0.556556i 0.960501 + 0.278278i \(0.0897636\pi\)
−0.960501 + 0.278278i \(0.910236\pi\)
\(954\) 0 0
\(955\) −19.5805 11.3048i −0.633610 0.365815i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −26.1850 + 14.2840i −0.845559 + 0.461254i
\(960\) 0 0
\(961\) 8.20347 14.2088i 0.264628 0.458349i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6.02146 + 10.4295i 0.193838 + 0.335737i
\(966\) 0 0
\(967\) −2.43550 + 4.21841i −0.0783204 + 0.135655i −0.902525 0.430637i \(-0.858289\pi\)
0.824205 + 0.566292i \(0.191622\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −14.0544 24.3429i −0.451026 0.781200i 0.547424 0.836855i \(-0.315608\pi\)
−0.998450 + 0.0556556i \(0.982275\pi\)
\(972\) 0 0
\(973\) 0.891137 36.7928i 0.0285686 1.17952i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 26.4642 15.2791i 0.846664 0.488822i −0.0128600 0.999917i \(-0.504094\pi\)
0.859524 + 0.511096i \(0.170760\pi\)
\(978\) 0 0
\(979\) 12.2006 7.04401i 0.389932 0.225127i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −11.9711 −0.381820 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(984\) 0 0
\(985\) 22.4585i 0.715588i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −68.7219 + 39.6766i −2.18523 + 1.26164i
\(990\) 0 0
\(991\) −3.32513 + 5.75929i −0.105626 + 0.182950i −0.913994 0.405728i \(-0.867018\pi\)
0.808368 + 0.588678i \(0.200351\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −17.0387 9.83730i −0.540163 0.311863i
\(996\) 0 0
\(997\) 55.0505i 1.74347i 0.489982 + 0.871733i \(0.337003\pi\)
−0.489982 + 0.871733i \(0.662997\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.cx.a.17.16 48
3.2 odd 2 504.2.cx.a.185.12 yes 48
4.3 odd 2 3024.2.df.e.17.16 48
7.5 odd 6 1512.2.bs.a.1097.16 48
9.2 odd 6 1512.2.bs.a.521.16 48
9.7 even 3 504.2.bs.a.353.21 yes 48
12.11 even 2 1008.2.df.e.689.13 48
21.5 even 6 504.2.bs.a.257.21 48
28.19 even 6 3024.2.ca.e.2609.16 48
36.7 odd 6 1008.2.ca.e.353.4 48
36.11 even 6 3024.2.ca.e.2033.16 48
63.47 even 6 inner 1512.2.cx.a.89.16 48
63.61 odd 6 504.2.cx.a.425.12 yes 48
84.47 odd 6 1008.2.ca.e.257.4 48
252.47 odd 6 3024.2.df.e.1601.16 48
252.187 even 6 1008.2.df.e.929.13 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.21 48 21.5 even 6
504.2.bs.a.353.21 yes 48 9.7 even 3
504.2.cx.a.185.12 yes 48 3.2 odd 2
504.2.cx.a.425.12 yes 48 63.61 odd 6
1008.2.ca.e.257.4 48 84.47 odd 6
1008.2.ca.e.353.4 48 36.7 odd 6
1008.2.df.e.689.13 48 12.11 even 2
1008.2.df.e.929.13 48 252.187 even 6
1512.2.bs.a.521.16 48 9.2 odd 6
1512.2.bs.a.1097.16 48 7.5 odd 6
1512.2.cx.a.17.16 48 1.1 even 1 trivial
1512.2.cx.a.89.16 48 63.47 even 6 inner
3024.2.ca.e.2033.16 48 36.11 even 6
3024.2.ca.e.2609.16 48 28.19 even 6
3024.2.df.e.17.16 48 4.3 odd 2
3024.2.df.e.1601.16 48 252.47 odd 6