Properties

Label 1512.2.bs.a.1097.16
Level $1512$
Weight $2$
Character 1512.1097
Analytic conductor $12.073$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(521,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.bs (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1097.16
Character \(\chi\) \(=\) 1512.1097
Dual form 1512.2.bs.a.521.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.537427 + 0.930850i) q^{5} +(-1.37797 - 2.25858i) q^{7} +(-3.55011 - 2.04966i) q^{11} +(3.69867 + 2.13543i) q^{13} +(0.717607 + 1.24293i) q^{17} +(6.41973 + 3.70644i) q^{19} +(-5.43530 + 3.13807i) q^{23} +(1.92235 - 3.32960i) q^{25} +(8.09846 - 4.67565i) q^{29} -6.88527i q^{31} +(1.36185 - 2.49651i) q^{35} +(-0.453413 + 0.785334i) q^{37} +(3.88978 - 6.73730i) q^{41} +(-6.32181 - 10.9497i) q^{43} +8.43528 q^{47} +(-3.20241 + 6.22451i) q^{49} +(1.50593 - 0.869452i) q^{53} -4.40616i q^{55} +6.10146 q^{59} -2.72573i q^{61} +4.59055i q^{65} +12.0391 q^{67} +0.783113i q^{71} +(-1.95868 + 1.13085i) q^{73} +(0.262612 + 10.8426i) q^{77} +1.63543 q^{79} +(4.48646 + 7.77077i) q^{83} +(-0.771322 + 1.33597i) q^{85} +(1.71834 - 2.97625i) q^{89} +(-0.273602 - 11.2963i) q^{91} +7.96775i q^{95} +(-5.05015 + 2.91570i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 12 q^{23} - 24 q^{25} - 18 q^{29} - 6 q^{41} - 6 q^{43} - 36 q^{47} + 6 q^{49} - 12 q^{53} + 36 q^{77} - 12 q^{79} - 18 q^{89} + 6 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.537427 + 0.930850i 0.240345 + 0.416289i 0.960812 0.277199i \(-0.0894063\pi\)
−0.720468 + 0.693488i \(0.756073\pi\)
\(6\) 0 0
\(7\) −1.37797 2.25858i −0.520823 0.853665i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.55011 2.04966i −1.07040 0.617994i −0.142108 0.989851i \(-0.545388\pi\)
−0.928290 + 0.371857i \(0.878721\pi\)
\(12\) 0 0
\(13\) 3.69867 + 2.13543i 1.02583 + 0.592262i 0.915787 0.401665i \(-0.131568\pi\)
0.110041 + 0.993927i \(0.464902\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.717607 + 1.24293i 0.174045 + 0.301455i 0.939830 0.341641i \(-0.110983\pi\)
−0.765785 + 0.643096i \(0.777649\pi\)
\(18\) 0 0
\(19\) 6.41973 + 3.70644i 1.47279 + 0.850315i 0.999531 0.0306101i \(-0.00974502\pi\)
0.473257 + 0.880925i \(0.343078\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.43530 + 3.13807i −1.13334 + 0.654334i −0.944773 0.327727i \(-0.893717\pi\)
−0.188567 + 0.982060i \(0.560384\pi\)
\(24\) 0 0
\(25\) 1.92235 3.32960i 0.384469 0.665920i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.09846 4.67565i 1.50385 0.868246i 0.503856 0.863788i \(-0.331914\pi\)
0.999990 0.00445828i \(-0.00141912\pi\)
\(30\) 0 0
\(31\) 6.88527i 1.23663i −0.785930 0.618316i \(-0.787815\pi\)
0.785930 0.618316i \(-0.212185\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.36185 2.49651i 0.230194 0.421986i
\(36\) 0 0
\(37\) −0.453413 + 0.785334i −0.0745406 + 0.129108i −0.900886 0.434055i \(-0.857082\pi\)
0.826346 + 0.563163i \(0.190416\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.88978 6.73730i 0.607482 1.05219i −0.384172 0.923262i \(-0.625513\pi\)
0.991654 0.128928i \(-0.0411537\pi\)
\(42\) 0 0
\(43\) −6.32181 10.9497i −0.964067 1.66981i −0.712102 0.702076i \(-0.752257\pi\)
−0.251965 0.967736i \(-0.581077\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.43528 1.23041 0.615206 0.788366i \(-0.289073\pi\)
0.615206 + 0.788366i \(0.289073\pi\)
\(48\) 0 0
\(49\) −3.20241 + 6.22451i −0.457487 + 0.889216i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.50593 0.869452i 0.206856 0.119428i −0.392993 0.919541i \(-0.628560\pi\)
0.599849 + 0.800113i \(0.295227\pi\)
\(54\) 0 0
\(55\) 4.40616i 0.594126i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.10146 0.794342 0.397171 0.917745i \(-0.369992\pi\)
0.397171 + 0.917745i \(0.369992\pi\)
\(60\) 0 0
\(61\) 2.72573i 0.348994i −0.984658 0.174497i \(-0.944170\pi\)
0.984658 0.174497i \(-0.0558299\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.59055i 0.569388i
\(66\) 0 0
\(67\) 12.0391 1.47081 0.735403 0.677630i \(-0.236993\pi\)
0.735403 + 0.677630i \(0.236993\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.783113i 0.0929385i 0.998920 + 0.0464692i \(0.0147969\pi\)
−0.998920 + 0.0464692i \(0.985203\pi\)
\(72\) 0 0
\(73\) −1.95868 + 1.13085i −0.229247 + 0.132356i −0.610224 0.792229i \(-0.708921\pi\)
0.380978 + 0.924584i \(0.375587\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.262612 + 10.8426i 0.0299274 + 1.23563i
\(78\) 0 0
\(79\) 1.63543 0.184000 0.0919999 0.995759i \(-0.470674\pi\)
0.0919999 + 0.995759i \(0.470674\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.48646 + 7.77077i 0.492452 + 0.852953i 0.999962 0.00869330i \(-0.00276720\pi\)
−0.507510 + 0.861646i \(0.669434\pi\)
\(84\) 0 0
\(85\) −0.771322 + 1.33597i −0.0836616 + 0.144906i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.71834 2.97625i 0.182144 0.315482i −0.760467 0.649377i \(-0.775030\pi\)
0.942610 + 0.333895i \(0.108363\pi\)
\(90\) 0 0
\(91\) −0.273602 11.2963i −0.0286813 1.18418i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 7.96775i 0.817474i
\(96\) 0 0
\(97\) −5.05015 + 2.91570i −0.512765 + 0.296045i −0.733969 0.679182i \(-0.762334\pi\)
0.221205 + 0.975227i \(0.429001\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.31220 4.00485i 0.230073 0.398497i −0.727757 0.685835i \(-0.759437\pi\)
0.957829 + 0.287338i \(0.0927703\pi\)
\(102\) 0 0
\(103\) −3.68450 + 2.12724i −0.363044 + 0.209604i −0.670415 0.741986i \(-0.733884\pi\)
0.307371 + 0.951590i \(0.400551\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.73964 5.04583i −0.844893 0.487799i 0.0140314 0.999902i \(-0.495534\pi\)
−0.858924 + 0.512102i \(0.828867\pi\)
\(108\) 0 0
\(109\) 0.548395 + 0.949848i 0.0525267 + 0.0909790i 0.891093 0.453820i \(-0.149939\pi\)
−0.838567 + 0.544799i \(0.816606\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.51839 + 4.91809i 0.801343 + 0.462655i 0.843940 0.536437i \(-0.180230\pi\)
−0.0425979 + 0.999092i \(0.513563\pi\)
\(114\) 0 0
\(115\) −5.84215 3.37297i −0.544784 0.314531i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.81843 3.33350i 0.166695 0.305581i
\(120\) 0 0
\(121\) 2.90217 + 5.02671i 0.263834 + 0.456974i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.50674 0.850309
\(126\) 0 0
\(127\) 15.2201 1.35056 0.675282 0.737559i \(-0.264022\pi\)
0.675282 + 0.737559i \(0.264022\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −4.45441 7.71526i −0.389184 0.674086i 0.603156 0.797623i \(-0.293910\pi\)
−0.992340 + 0.123537i \(0.960576\pi\)
\(132\) 0 0
\(133\) −0.474887 19.6069i −0.0411779 1.70013i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.76339 + 5.63689i 0.834143 + 0.481592i 0.855269 0.518184i \(-0.173392\pi\)
−0.0211264 + 0.999777i \(0.506725\pi\)
\(138\) 0 0
\(139\) −12.0468 6.95522i −1.02180 0.589934i −0.107172 0.994240i \(-0.534180\pi\)
−0.914624 + 0.404306i \(0.867513\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.75380 15.1620i −0.732029 1.26791i
\(144\) 0 0
\(145\) 8.70466 + 5.02564i 0.722882 + 0.417356i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.09504 + 1.78692i −0.253555 + 0.146390i −0.621391 0.783501i \(-0.713432\pi\)
0.367836 + 0.929891i \(0.380099\pi\)
\(150\) 0 0
\(151\) −3.30180 + 5.71888i −0.268696 + 0.465396i −0.968525 0.248915i \(-0.919926\pi\)
0.699829 + 0.714310i \(0.253259\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.40916 3.70033i 0.514796 0.297217i
\(156\) 0 0
\(157\) 9.19553i 0.733883i 0.930244 + 0.366942i \(0.119595\pi\)
−0.930244 + 0.366942i \(0.880405\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 14.5773 + 7.95193i 1.14885 + 0.626700i
\(162\) 0 0
\(163\) 3.64872 6.31976i 0.285790 0.495002i −0.687011 0.726647i \(-0.741077\pi\)
0.972800 + 0.231645i \(0.0744108\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.07118 12.2476i 0.547184 0.947751i −0.451282 0.892382i \(-0.649033\pi\)
0.998466 0.0553694i \(-0.0176336\pi\)
\(168\) 0 0
\(169\) 2.62013 + 4.53820i 0.201549 + 0.349092i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −13.4985 −1.02627 −0.513134 0.858308i \(-0.671516\pi\)
−0.513134 + 0.858308i \(0.671516\pi\)
\(174\) 0 0
\(175\) −10.1691 + 0.246300i −0.768713 + 0.0186186i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3.97036 + 2.29229i −0.296759 + 0.171334i −0.640986 0.767553i \(-0.721474\pi\)
0.344227 + 0.938886i \(0.388141\pi\)
\(180\) 0 0
\(181\) 2.22901i 0.165681i −0.996563 0.0828405i \(-0.973601\pi\)
0.996563 0.0828405i \(-0.0263992\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.974704 −0.0716617
\(186\) 0 0
\(187\) 5.88339i 0.430236i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.0351i 1.52204i 0.648726 + 0.761022i \(0.275302\pi\)
−0.648726 + 0.761022i \(0.724698\pi\)
\(192\) 0 0
\(193\) −11.2043 −0.806500 −0.403250 0.915090i \(-0.632119\pi\)
−0.403250 + 0.915090i \(0.632119\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 20.8945i 1.48867i 0.667805 + 0.744336i \(0.267234\pi\)
−0.667805 + 0.744336i \(0.732766\pi\)
\(198\) 0 0
\(199\) −15.8521 + 9.15222i −1.12373 + 0.648784i −0.942350 0.334630i \(-0.891389\pi\)
−0.181377 + 0.983414i \(0.558055\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −21.7198 11.8482i −1.52443 0.831578i
\(204\) 0 0
\(205\) 8.36189 0.584020
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −15.1938 26.3165i −1.05098 1.82035i
\(210\) 0 0
\(211\) 5.93845 10.2857i 0.408820 0.708096i −0.585938 0.810356i \(-0.699274\pi\)
0.994758 + 0.102260i \(0.0326072\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.79502 11.7693i 0.463416 0.802660i
\(216\) 0 0
\(217\) −15.5510 + 9.48768i −1.05567 + 0.644066i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.12960i 0.412321i
\(222\) 0 0
\(223\) −4.19957 + 2.42462i −0.281224 + 0.162365i −0.633977 0.773352i \(-0.718579\pi\)
0.352754 + 0.935716i \(0.385245\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.43645 + 2.48801i −0.0953408 + 0.165135i −0.909751 0.415155i \(-0.863727\pi\)
0.814410 + 0.580290i \(0.197061\pi\)
\(228\) 0 0
\(229\) 3.74833 2.16410i 0.247697 0.143008i −0.371013 0.928628i \(-0.620989\pi\)
0.618709 + 0.785620i \(0.287656\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.9136 6.87834i −0.780488 0.450615i 0.0561154 0.998424i \(-0.482129\pi\)
−0.836603 + 0.547809i \(0.815462\pi\)
\(234\) 0 0
\(235\) 4.53335 + 7.85198i 0.295723 + 0.512207i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 15.6571 + 9.03963i 1.01277 + 0.584725i 0.912003 0.410184i \(-0.134536\pi\)
0.100771 + 0.994910i \(0.467869\pi\)
\(240\) 0 0
\(241\) −5.17659 2.98871i −0.333454 0.192520i 0.323920 0.946085i \(-0.394999\pi\)
−0.657373 + 0.753565i \(0.728333\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −7.51515 + 0.364254i −0.480125 + 0.0232713i
\(246\) 0 0
\(247\) 15.8297 + 27.4178i 1.00722 + 1.74455i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −11.0004 −0.694337 −0.347169 0.937803i \(-0.612857\pi\)
−0.347169 + 0.937803i \(0.612857\pi\)
\(252\) 0 0
\(253\) 25.7279 1.61750
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.74280 8.21477i −0.295848 0.512423i 0.679334 0.733829i \(-0.262269\pi\)
−0.975182 + 0.221406i \(0.928935\pi\)
\(258\) 0 0
\(259\) 2.39853 0.0580935i 0.149037 0.00360975i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −16.3241 9.42470i −1.00658 0.581152i −0.0963945 0.995343i \(-0.530731\pi\)
−0.910190 + 0.414192i \(0.864064\pi\)
\(264\) 0 0
\(265\) 1.61866 + 0.934533i 0.0994334 + 0.0574079i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.0233 + 17.3609i 0.611133 + 1.05851i 0.991050 + 0.133493i \(0.0426194\pi\)
−0.379916 + 0.925021i \(0.624047\pi\)
\(270\) 0 0
\(271\) 17.3369 + 10.0095i 1.05314 + 0.608032i 0.923528 0.383532i \(-0.125292\pi\)
0.129615 + 0.991564i \(0.458626\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −13.6491 + 7.88029i −0.823069 + 0.475199i
\(276\) 0 0
\(277\) 1.70372 2.95093i 0.102367 0.177304i −0.810293 0.586026i \(-0.800692\pi\)
0.912659 + 0.408721i \(0.134025\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −16.0313 + 9.25568i −0.956347 + 0.552147i −0.895047 0.445972i \(-0.852858\pi\)
−0.0613004 + 0.998119i \(0.519525\pi\)
\(282\) 0 0
\(283\) 25.1116i 1.49273i 0.665535 + 0.746366i \(0.268203\pi\)
−0.665535 + 0.746366i \(0.731797\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −20.5768 + 0.498378i −1.21461 + 0.0294183i
\(288\) 0 0
\(289\) 7.47008 12.9386i 0.439417 0.761092i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.11299 1.92775i 0.0650214 0.112620i −0.831682 0.555252i \(-0.812622\pi\)
0.896703 + 0.442632i \(0.145955\pi\)
\(294\) 0 0
\(295\) 3.27909 + 5.67955i 0.190916 + 0.330676i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −26.8046 −1.55015
\(300\) 0 0
\(301\) −16.0196 + 29.3667i −0.923352 + 1.69267i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.53725 1.46488i 0.145282 0.0838788i
\(306\) 0 0
\(307\) 24.2535i 1.38422i −0.721791 0.692111i \(-0.756681\pi\)
0.721791 0.692111i \(-0.243319\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 19.6300 1.11312 0.556559 0.830808i \(-0.312121\pi\)
0.556559 + 0.830808i \(0.312121\pi\)
\(312\) 0 0
\(313\) 17.1547i 0.969643i 0.874613 + 0.484822i \(0.161115\pi\)
−0.874613 + 0.484822i \(0.838885\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.4507i 0.699300i −0.936880 0.349650i \(-0.886301\pi\)
0.936880 0.349650i \(-0.113699\pi\)
\(318\) 0 0
\(319\) −38.3339 −2.14628
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 10.6391i 0.591973i
\(324\) 0 0
\(325\) 14.2203 8.21007i 0.788798 0.455413i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −11.6235 19.0518i −0.640827 1.05036i
\(330\) 0 0
\(331\) −30.9175 −1.69938 −0.849691 0.527281i \(-0.823211\pi\)
−0.849691 + 0.527281i \(0.823211\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.47011 + 11.2066i 0.353500 + 0.612280i
\(336\) 0 0
\(337\) −1.06492 + 1.84450i −0.0580099 + 0.100476i −0.893572 0.448920i \(-0.851809\pi\)
0.835562 + 0.549396i \(0.185142\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −14.1124 + 24.4434i −0.764231 + 1.32369i
\(342\) 0 0
\(343\) 18.4714 1.34426i 0.997362 0.0725832i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 23.0026i 1.23485i −0.786631 0.617423i \(-0.788177\pi\)
0.786631 0.617423i \(-0.211823\pi\)
\(348\) 0 0
\(349\) −21.3306 + 12.3152i −1.14180 + 0.659219i −0.946876 0.321599i \(-0.895780\pi\)
−0.194925 + 0.980818i \(0.562446\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.62190 + 2.80921i −0.0863248 + 0.149519i −0.905955 0.423374i \(-0.860846\pi\)
0.819630 + 0.572893i \(0.194179\pi\)
\(354\) 0 0
\(355\) −0.728961 + 0.420866i −0.0386892 + 0.0223372i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.88399 2.81977i −0.257767 0.148822i 0.365548 0.930792i \(-0.380881\pi\)
−0.623316 + 0.781970i \(0.714215\pi\)
\(360\) 0 0
\(361\) 17.9753 + 31.1342i 0.946070 + 1.63864i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.10530 1.21549i −0.110196 0.0636219i
\(366\) 0 0
\(367\) 10.8668 + 6.27396i 0.567243 + 0.327498i 0.756048 0.654517i \(-0.227128\pi\)
−0.188804 + 0.982015i \(0.560461\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.03886 2.20320i −0.209687 0.114385i
\(372\) 0 0
\(373\) 6.58770 + 11.4102i 0.341098 + 0.590799i 0.984637 0.174614i \(-0.0558678\pi\)
−0.643539 + 0.765414i \(0.722534\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 39.9381 2.05692
\(378\) 0 0
\(379\) −6.80285 −0.349439 −0.174720 0.984618i \(-0.555902\pi\)
−0.174720 + 0.984618i \(0.555902\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9.82982 + 17.0257i 0.502280 + 0.869975i 0.999997 + 0.00263511i \(0.000838781\pi\)
−0.497716 + 0.867340i \(0.665828\pi\)
\(384\) 0 0
\(385\) −9.95168 + 6.07154i −0.507185 + 0.309434i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 15.8135 + 9.12995i 0.801778 + 0.462907i 0.844092 0.536198i \(-0.180140\pi\)
−0.0423145 + 0.999104i \(0.513473\pi\)
\(390\) 0 0
\(391\) −7.80082 4.50381i −0.394504 0.227767i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.878921 + 1.52234i 0.0442233 + 0.0765970i
\(396\) 0 0
\(397\) −31.8395 18.3825i −1.59798 0.922593i −0.991876 0.127206i \(-0.959399\pi\)
−0.606101 0.795387i \(-0.707267\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13.8175 + 7.97753i −0.690012 + 0.398379i −0.803617 0.595147i \(-0.797094\pi\)
0.113604 + 0.993526i \(0.463760\pi\)
\(402\) 0 0
\(403\) 14.7030 25.4664i 0.732410 1.26857i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.21933 1.85868i 0.159576 0.0921313i
\(408\) 0 0
\(409\) 9.84803i 0.486954i −0.969907 0.243477i \(-0.921712\pi\)
0.969907 0.243477i \(-0.0782880\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.40761 13.7807i −0.413712 0.678102i
\(414\) 0 0
\(415\) −4.82228 + 8.35244i −0.236716 + 0.410005i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 19.4482 33.6853i 0.950106 1.64563i 0.204917 0.978779i \(-0.434308\pi\)
0.745189 0.666853i \(-0.232359\pi\)
\(420\) 0 0
\(421\) −8.99598 15.5815i −0.438437 0.759396i 0.559132 0.829079i \(-0.311135\pi\)
−0.997569 + 0.0696829i \(0.977801\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.51795 0.267660
\(426\) 0 0
\(427\) −6.15629 + 3.75597i −0.297924 + 0.181764i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6.23236 + 3.59826i −0.300202 + 0.173322i −0.642534 0.766257i \(-0.722117\pi\)
0.342331 + 0.939579i \(0.388783\pi\)
\(432\) 0 0
\(433\) 26.5567i 1.27623i −0.769939 0.638117i \(-0.779714\pi\)
0.769939 0.638117i \(-0.220286\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −46.5243 −2.22556
\(438\) 0 0
\(439\) 26.6825i 1.27349i 0.771076 + 0.636744i \(0.219719\pi\)
−0.771076 + 0.636744i \(0.780281\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 38.1169i 1.81099i 0.424359 + 0.905494i \(0.360499\pi\)
−0.424359 + 0.905494i \(0.639501\pi\)
\(444\) 0 0
\(445\) 3.69392 0.175109
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 21.5864i 1.01872i −0.860552 0.509362i \(-0.829881\pi\)
0.860552 0.509362i \(-0.170119\pi\)
\(450\) 0 0
\(451\) −27.6183 + 15.9454i −1.30049 + 0.750841i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 10.3681 6.32563i 0.486066 0.296550i
\(456\) 0 0
\(457\) 2.85522 0.133562 0.0667809 0.997768i \(-0.478727\pi\)
0.0667809 + 0.997768i \(0.478727\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −13.3315 23.0909i −0.620911 1.07545i −0.989316 0.145784i \(-0.953429\pi\)
0.368405 0.929665i \(-0.379904\pi\)
\(462\) 0 0
\(463\) −3.63687 + 6.29925i −0.169020 + 0.292751i −0.938076 0.346431i \(-0.887394\pi\)
0.769056 + 0.639182i \(0.220727\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.37755 + 4.11804i −0.110020 + 0.190560i −0.915778 0.401685i \(-0.868425\pi\)
0.805758 + 0.592245i \(0.201758\pi\)
\(468\) 0 0
\(469\) −16.5894 27.1912i −0.766029 1.25557i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 51.8301i 2.38315i
\(474\) 0 0
\(475\) 24.6819 14.2501i 1.13248 0.653839i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.90097 + 17.1490i −0.452387 + 0.783557i −0.998534 0.0541324i \(-0.982761\pi\)
0.546147 + 0.837689i \(0.316094\pi\)
\(480\) 0 0
\(481\) −3.35405 + 1.93646i −0.152932 + 0.0882951i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.42817 3.13395i −0.246480 0.142306i
\(486\) 0 0
\(487\) 17.0806 + 29.5845i 0.773996 + 1.34060i 0.935357 + 0.353704i \(0.115078\pi\)
−0.161362 + 0.986895i \(0.551589\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.91208 + 5.72274i 0.447326 + 0.258264i 0.706700 0.707513i \(-0.250183\pi\)
−0.259374 + 0.965777i \(0.583516\pi\)
\(492\) 0 0
\(493\) 11.6230 + 6.71055i 0.523474 + 0.302228i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.76873 1.07910i 0.0793383 0.0484045i
\(498\) 0 0
\(499\) −3.88151 6.72298i −0.173760 0.300962i 0.765971 0.642875i \(-0.222258\pi\)
−0.939732 + 0.341913i \(0.888925\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.92995 −0.130640 −0.0653200 0.997864i \(-0.520807\pi\)
−0.0653200 + 0.997864i \(0.520807\pi\)
\(504\) 0 0
\(505\) 4.97055 0.221187
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −5.81338 10.0691i −0.257673 0.446303i 0.707945 0.706268i \(-0.249623\pi\)
−0.965618 + 0.259964i \(0.916289\pi\)
\(510\) 0 0
\(511\) 5.25312 + 2.86558i 0.232384 + 0.126766i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.96029 2.28648i −0.174511 0.100754i
\(516\) 0 0
\(517\) −29.9462 17.2894i −1.31703 0.760388i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −12.7515 22.0863i −0.558655 0.967619i −0.997609 0.0691093i \(-0.977984\pi\)
0.438954 0.898509i \(-0.355349\pi\)
\(522\) 0 0
\(523\) 0.781452 + 0.451172i 0.0341705 + 0.0197284i 0.516988 0.855993i \(-0.327053\pi\)
−0.482817 + 0.875721i \(0.660387\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.55792 4.94092i 0.372789 0.215230i
\(528\) 0 0
\(529\) 8.19501 14.1942i 0.356305 0.617138i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 28.7741 16.6127i 1.24634 0.719577i
\(534\) 0 0
\(535\) 10.8471i 0.468959i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 24.1270 15.5339i 1.03922 0.669090i
\(540\) 0 0
\(541\) −17.2460 + 29.8710i −0.741464 + 1.28425i 0.210365 + 0.977623i \(0.432535\pi\)
−0.951829 + 0.306630i \(0.900799\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.589444 + 1.02095i −0.0252490 + 0.0437326i
\(546\) 0 0
\(547\) 3.68664 + 6.38545i 0.157629 + 0.273022i 0.934013 0.357238i \(-0.116282\pi\)
−0.776384 + 0.630260i \(0.782948\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 69.3199 2.95313
\(552\) 0 0
\(553\) −2.25356 3.69375i −0.0958312 0.157074i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.6335 10.7581i 0.789528 0.455834i −0.0502687 0.998736i \(-0.516008\pi\)
0.839796 + 0.542902i \(0.182674\pi\)
\(558\) 0 0
\(559\) 53.9991i 2.28392i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −31.5550 −1.32988 −0.664942 0.746895i \(-0.731544\pi\)
−0.664942 + 0.746895i \(0.731544\pi\)
\(564\) 0 0
\(565\) 10.5725i 0.444787i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 23.5719i 0.988184i −0.869410 0.494092i \(-0.835501\pi\)
0.869410 0.494092i \(-0.164499\pi\)
\(570\) 0 0
\(571\) 15.6689 0.655723 0.327861 0.944726i \(-0.393672\pi\)
0.327861 + 0.944726i \(0.393672\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 24.1298i 1.00628i
\(576\) 0 0
\(577\) 0.137448 0.0793554i 0.00572202 0.00330361i −0.497136 0.867672i \(-0.665615\pi\)
0.502858 + 0.864369i \(0.332282\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 11.3688 20.8409i 0.471655 0.864627i
\(582\) 0 0
\(583\) −7.12831 −0.295224
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15.9041 27.5467i −0.656432 1.13697i −0.981533 0.191294i \(-0.938732\pi\)
0.325101 0.945679i \(-0.394602\pi\)
\(588\) 0 0
\(589\) 25.5198 44.2016i 1.05153 1.82130i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −15.8934 + 27.5283i −0.652666 + 1.13045i 0.329808 + 0.944048i \(0.393016\pi\)
−0.982474 + 0.186402i \(0.940317\pi\)
\(594\) 0 0
\(595\) 4.08026 0.0988256i 0.167274 0.00405145i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12.1844i 0.497842i 0.968524 + 0.248921i \(0.0800760\pi\)
−0.968524 + 0.248921i \(0.919924\pi\)
\(600\) 0 0
\(601\) 13.6048 7.85473i 0.554951 0.320401i −0.196165 0.980571i \(-0.562849\pi\)
0.751117 + 0.660170i \(0.229516\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.11941 + 5.40298i −0.126822 + 0.219662i
\(606\) 0 0
\(607\) 10.9361 6.31398i 0.443884 0.256277i −0.261360 0.965241i \(-0.584171\pi\)
0.705244 + 0.708965i \(0.250838\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 31.1994 + 18.0130i 1.26219 + 0.728727i
\(612\) 0 0
\(613\) 11.3476 + 19.6546i 0.458325 + 0.793842i 0.998873 0.0474711i \(-0.0151162\pi\)
−0.540547 + 0.841314i \(0.681783\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.6259 + 18.8366i 1.31347 + 0.758333i 0.982669 0.185368i \(-0.0593476\pi\)
0.330801 + 0.943700i \(0.392681\pi\)
\(618\) 0 0
\(619\) 4.50897 + 2.60326i 0.181231 + 0.104634i 0.587871 0.808955i \(-0.299966\pi\)
−0.406640 + 0.913588i \(0.633300\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −9.08993 + 0.220162i −0.364180 + 0.00882061i
\(624\) 0 0
\(625\) −4.50255 7.79864i −0.180102 0.311946i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.30149 −0.0518937
\(630\) 0 0
\(631\) −5.73635 −0.228361 −0.114180 0.993460i \(-0.536424\pi\)
−0.114180 + 0.993460i \(0.536424\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.17968 + 14.1676i 0.324601 + 0.562225i
\(636\) 0 0
\(637\) −25.1367 + 16.1839i −0.995952 + 0.641230i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −23.0328 13.2980i −0.909743 0.525240i −0.0293943 0.999568i \(-0.509358\pi\)
−0.880348 + 0.474328i \(0.842691\pi\)
\(642\) 0 0
\(643\) 22.7885 + 13.1569i 0.898689 + 0.518858i 0.876775 0.480901i \(-0.159691\pi\)
0.0219144 + 0.999760i \(0.493024\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23.8420 + 41.2955i 0.937324 + 1.62349i 0.770436 + 0.637517i \(0.220039\pi\)
0.166888 + 0.985976i \(0.446628\pi\)
\(648\) 0 0
\(649\) −21.6608 12.5059i −0.850262 0.490899i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −28.3370 + 16.3604i −1.10891 + 0.640231i −0.938548 0.345149i \(-0.887828\pi\)
−0.170366 + 0.985381i \(0.554495\pi\)
\(654\) 0 0
\(655\) 4.78784 8.29278i 0.187076 0.324026i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −26.5499 + 15.3286i −1.03424 + 0.597118i −0.918196 0.396126i \(-0.870354\pi\)
−0.116043 + 0.993244i \(0.537021\pi\)
\(660\) 0 0
\(661\) 10.8025i 0.420167i −0.977683 0.210084i \(-0.932626\pi\)
0.977683 0.210084i \(-0.0673736\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 17.9958 10.9793i 0.697849 0.425759i
\(666\) 0 0
\(667\) −29.3451 + 50.8271i −1.13624 + 1.96803i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5.58681 + 9.67663i −0.215676 + 0.373562i
\(672\) 0 0
\(673\) 19.4199 + 33.6363i 0.748583 + 1.29658i 0.948502 + 0.316771i \(0.102599\pi\)
−0.199919 + 0.979812i \(0.564068\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18.8638 0.724996 0.362498 0.931984i \(-0.381924\pi\)
0.362498 + 0.931984i \(0.381924\pi\)
\(678\) 0 0
\(679\) 13.5443 + 7.38844i 0.519783 + 0.283542i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −29.7510 + 17.1768i −1.13839 + 0.657251i −0.946032 0.324074i \(-0.894947\pi\)
−0.192360 + 0.981325i \(0.561614\pi\)
\(684\) 0 0
\(685\) 12.1177i 0.462992i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.42662 0.282932
\(690\) 0 0
\(691\) 25.5640i 0.972502i −0.873819 0.486251i \(-0.838364\pi\)
0.873819 0.486251i \(-0.161636\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14.9517i 0.567150i
\(696\) 0 0
\(697\) 11.1653 0.422917
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 32.3485i 1.22178i −0.791714 0.610892i \(-0.790811\pi\)
0.791714 0.610892i \(-0.209189\pi\)
\(702\) 0 0
\(703\) −5.82158 + 3.36109i −0.219565 + 0.126766i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −12.2314 + 0.296250i −0.460010 + 0.0111416i
\(708\) 0 0
\(709\) 2.60238 0.0977344 0.0488672 0.998805i \(-0.484439\pi\)
0.0488672 + 0.998805i \(0.484439\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 21.6065 + 37.4235i 0.809169 + 1.40152i
\(714\) 0 0
\(715\) 9.40905 16.2969i 0.351878 0.609471i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 8.42868 14.5989i 0.314337 0.544447i −0.664960 0.746879i \(-0.731551\pi\)
0.979296 + 0.202432i \(0.0648846\pi\)
\(720\) 0 0
\(721\) 9.88168 + 5.39047i 0.368013 + 0.200752i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 35.9528i 1.33525i
\(726\) 0 0
\(727\) −36.1005 + 20.8426i −1.33889 + 0.773009i −0.986643 0.162897i \(-0.947916\pi\)
−0.352249 + 0.935906i \(0.614583\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 9.07314 15.7151i 0.335582 0.581246i
\(732\) 0 0
\(733\) 31.2134 18.0211i 1.15289 0.665623i 0.203303 0.979116i \(-0.434832\pi\)
0.949591 + 0.313492i \(0.101499\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −42.7400 24.6759i −1.57435 0.908949i
\(738\) 0 0
\(739\) −14.1322 24.4777i −0.519861 0.900426i −0.999733 0.0230879i \(-0.992650\pi\)
0.479872 0.877339i \(-0.340683\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 28.7161 + 16.5793i 1.05349 + 0.608234i 0.923625 0.383298i \(-0.125212\pi\)
0.129867 + 0.991531i \(0.458545\pi\)
\(744\) 0 0
\(745\) −3.32671 1.92068i −0.121881 0.0703682i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.646497 + 26.6922i 0.0236225 + 0.975312i
\(750\) 0 0
\(751\) 21.6155 + 37.4391i 0.788761 + 1.36617i 0.926726 + 0.375737i \(0.122610\pi\)
−0.137965 + 0.990437i \(0.544056\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −7.09789 −0.258319
\(756\) 0 0
\(757\) 33.2085 1.20698 0.603492 0.797369i \(-0.293776\pi\)
0.603492 + 0.797369i \(0.293776\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.15969 + 3.74069i 0.0782887 + 0.135600i 0.902512 0.430665i \(-0.141721\pi\)
−0.824223 + 0.566265i \(0.808388\pi\)
\(762\) 0 0
\(763\) 1.38964 2.54746i 0.0503084 0.0922241i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 22.5673 + 13.0292i 0.814859 + 0.470459i
\(768\) 0 0
\(769\) 16.1845 + 9.34412i 0.583628 + 0.336958i 0.762574 0.646901i \(-0.223935\pi\)
−0.178946 + 0.983859i \(0.557269\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −4.91482 8.51272i −0.176774 0.306181i 0.764000 0.645216i \(-0.223233\pi\)
−0.940774 + 0.339035i \(0.889899\pi\)
\(774\) 0 0
\(775\) −22.9252 13.2359i −0.823497 0.475446i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 49.9427 28.8345i 1.78938 1.03310i
\(780\) 0 0
\(781\) 1.60511 2.78014i 0.0574354 0.0994811i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −8.55966 + 4.94192i −0.305507 + 0.176385i
\(786\) 0 0
\(787\) 45.4273i 1.61931i −0.586908 0.809654i \(-0.699655\pi\)
0.586908 0.809654i \(-0.300345\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.630130 26.0165i −0.0224049 0.925039i
\(792\) 0 0
\(793\) 5.82061 10.0816i 0.206696 0.358008i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7.67140 + 13.2872i −0.271735 + 0.470658i −0.969306 0.245857i \(-0.920931\pi\)
0.697571 + 0.716515i \(0.254264\pi\)
\(798\) 0 0
\(799\) 6.05322 + 10.4845i 0.214147 + 0.370914i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9.27139 0.327180
\(804\) 0 0
\(805\) 0.432161 + 17.8428i 0.0152317 + 0.628878i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −0.785783 + 0.453672i −0.0276267 + 0.0159503i −0.513750 0.857940i \(-0.671744\pi\)
0.486123 + 0.873890i \(0.338411\pi\)
\(810\) 0 0
\(811\) 7.95121i 0.279205i 0.990208 + 0.139602i \(0.0445824\pi\)
−0.990208 + 0.139602i \(0.955418\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7.84367 0.274752
\(816\) 0 0
\(817\) 93.7255i 3.27904i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 46.8699i 1.63577i −0.575380 0.817886i \(-0.695146\pi\)
0.575380 0.817886i \(-0.304854\pi\)
\(822\) 0 0
\(823\) 20.9899 0.731661 0.365831 0.930681i \(-0.380785\pi\)
0.365831 + 0.930681i \(0.380785\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.6370i 0.439430i −0.975564 0.219715i \(-0.929487\pi\)
0.975564 0.219715i \(-0.0705127\pi\)
\(828\) 0 0
\(829\) 3.12273 1.80291i 0.108457 0.0626177i −0.444790 0.895635i \(-0.646722\pi\)
0.553247 + 0.833017i \(0.313388\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −10.0347 + 0.486376i −0.347682 + 0.0168519i
\(834\) 0 0
\(835\) 15.2010 0.526051
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0.287256 + 0.497541i 0.00991716 + 0.0171770i 0.870941 0.491387i \(-0.163510\pi\)
−0.861024 + 0.508564i \(0.830177\pi\)
\(840\) 0 0
\(841\) 29.2234 50.6163i 1.00770 1.74539i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.81626 + 4.87790i −0.0968822 + 0.167805i
\(846\) 0 0
\(847\) 7.35416 13.4815i 0.252692 0.463228i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.69137i 0.195098i
\(852\) 0 0
\(853\) 5.62283 3.24634i 0.192522 0.111153i −0.400641 0.916235i \(-0.631212\pi\)
0.593163 + 0.805083i \(0.297879\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.15768 2.00517i 0.0395457 0.0684952i −0.845575 0.533857i \(-0.820742\pi\)
0.885121 + 0.465361i \(0.154076\pi\)
\(858\) 0 0
\(859\) 48.1991 27.8278i 1.64453 0.949471i 0.665338 0.746542i \(-0.268287\pi\)
0.979194 0.202929i \(-0.0650459\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −7.50527 4.33317i −0.255482 0.147503i 0.366790 0.930304i \(-0.380457\pi\)
−0.622272 + 0.782801i \(0.713790\pi\)
\(864\) 0 0
\(865\) −7.25443 12.5650i −0.246658 0.427224i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −5.80593 3.35206i −0.196953 0.113711i
\(870\) 0 0
\(871\) 44.5286 + 25.7086i 1.50879 + 0.871102i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −13.1000 21.4718i −0.442860 0.725879i
\(876\) 0 0
\(877\) −17.8315 30.8850i −0.602126 1.04291i −0.992499 0.122255i \(-0.960987\pi\)
0.390373 0.920657i \(-0.372346\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.57740 0.255289 0.127644 0.991820i \(-0.459258\pi\)
0.127644 + 0.991820i \(0.459258\pi\)
\(882\) 0 0
\(883\) −5.35854 −0.180329 −0.0901646 0.995927i \(-0.528739\pi\)
−0.0901646 + 0.995927i \(0.528739\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.7952 + 20.4299i 0.396045 + 0.685970i 0.993234 0.116131i \(-0.0370492\pi\)
−0.597189 + 0.802100i \(0.703716\pi\)
\(888\) 0 0
\(889\) −20.9728 34.3759i −0.703405 1.15293i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 54.1523 + 31.2648i 1.81214 + 1.04624i
\(894\) 0 0
\(895\) −4.26755 2.46387i −0.142649 0.0823582i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −32.1931 55.7601i −1.07370 1.85970i
\(900\) 0 0
\(901\) 2.16134 + 1.24785i 0.0720046 + 0.0415719i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.07487 1.19793i 0.0689711 0.0398205i
\(906\) 0 0
\(907\) 7.13516 12.3585i 0.236919 0.410356i −0.722910 0.690943i \(-0.757196\pi\)
0.959829 + 0.280587i \(0.0905291\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 40.0156 23.1030i 1.32578 0.765437i 0.341133 0.940015i \(-0.389189\pi\)
0.984643 + 0.174578i \(0.0558560\pi\)
\(912\) 0 0
\(913\) 36.7828i 1.21733i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −11.2875 + 20.6920i −0.372748 + 0.683312i
\(918\) 0 0
\(919\) −16.8957 + 29.2643i −0.557339 + 0.965339i 0.440379 + 0.897812i \(0.354844\pi\)
−0.997717 + 0.0675269i \(0.978489\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.67228 + 2.89648i −0.0550439 + 0.0953389i
\(924\) 0 0
\(925\) 1.74323 + 3.01936i 0.0573171 + 0.0992761i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −34.9369 −1.14624 −0.573121 0.819471i \(-0.694267\pi\)
−0.573121 + 0.819471i \(0.694267\pi\)
\(930\) 0 0
\(931\) −43.6294 + 28.0902i −1.42990 + 0.920619i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.47655 3.16189i 0.179102 0.103405i
\(936\) 0 0
\(937\) 11.6175i 0.379528i −0.981830 0.189764i \(-0.939228\pi\)
0.981830 0.189764i \(-0.0607723\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9.55030 0.311331 0.155665 0.987810i \(-0.450248\pi\)
0.155665 + 0.987810i \(0.450248\pi\)
\(942\) 0 0
\(943\) 48.8257i 1.58998i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 36.6873i 1.19218i 0.802919 + 0.596088i \(0.203279\pi\)
−0.802919 + 0.596088i \(0.796721\pi\)
\(948\) 0 0
\(949\) −9.65938 −0.313557
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 17.1813i 0.556556i 0.960501 + 0.278278i \(0.0897636\pi\)
−0.960501 + 0.278278i \(0.910236\pi\)
\(954\) 0 0
\(955\) −19.5805 + 11.3048i −0.633610 + 0.365815i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.722227 29.8189i −0.0233219 0.962902i
\(960\) 0 0
\(961\) −16.4069 −0.529256
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −6.02146 10.4295i −0.193838 0.335737i
\(966\) 0 0
\(967\) −2.43550 + 4.21841i −0.0783204 + 0.135655i −0.902525 0.430637i \(-0.858289\pi\)
0.824205 + 0.566292i \(0.191622\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 14.0544 24.3429i 0.451026 0.781200i −0.547424 0.836855i \(-0.684392\pi\)
0.998450 + 0.0556556i \(0.0177249\pi\)
\(972\) 0 0
\(973\) 0.891137 + 36.7928i 0.0285686 + 1.17952i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 30.5582i 0.977643i 0.872384 + 0.488822i \(0.162573\pi\)
−0.872384 + 0.488822i \(0.837427\pi\)
\(978\) 0 0
\(979\) −12.2006 + 7.04401i −0.389932 + 0.225127i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −5.98556 + 10.3673i −0.190910 + 0.330665i −0.945552 0.325471i \(-0.894477\pi\)
0.754642 + 0.656137i \(0.227810\pi\)
\(984\) 0 0
\(985\) −19.4497 + 11.2293i −0.619718 + 0.357794i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 68.7219 + 39.6766i 2.18523 + 1.26164i
\(990\) 0 0
\(991\) −3.32513 5.75929i −0.105626 0.182950i 0.808368 0.588678i \(-0.200351\pi\)
−0.913994 + 0.405728i \(0.867018\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −17.0387 9.83730i −0.540163 0.311863i
\(996\) 0 0
\(997\) 47.6751 + 27.5252i 1.50989 + 0.871733i 0.999934 + 0.0115298i \(0.00367014\pi\)
0.509952 + 0.860203i \(0.329663\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.bs.a.1097.16 48
3.2 odd 2 504.2.bs.a.257.21 48
4.3 odd 2 3024.2.ca.e.2609.16 48
7.3 odd 6 1512.2.cx.a.17.16 48
9.2 odd 6 1512.2.cx.a.89.16 48
9.7 even 3 504.2.cx.a.425.12 yes 48
12.11 even 2 1008.2.ca.e.257.4 48
21.17 even 6 504.2.cx.a.185.12 yes 48
28.3 even 6 3024.2.df.e.17.16 48
36.7 odd 6 1008.2.df.e.929.13 48
36.11 even 6 3024.2.df.e.1601.16 48
63.38 even 6 inner 1512.2.bs.a.521.16 48
63.52 odd 6 504.2.bs.a.353.21 yes 48
84.59 odd 6 1008.2.df.e.689.13 48
252.115 even 6 1008.2.ca.e.353.4 48
252.227 odd 6 3024.2.ca.e.2033.16 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.21 48 3.2 odd 2
504.2.bs.a.353.21 yes 48 63.52 odd 6
504.2.cx.a.185.12 yes 48 21.17 even 6
504.2.cx.a.425.12 yes 48 9.7 even 3
1008.2.ca.e.257.4 48 12.11 even 2
1008.2.ca.e.353.4 48 252.115 even 6
1008.2.df.e.689.13 48 84.59 odd 6
1008.2.df.e.929.13 48 36.7 odd 6
1512.2.bs.a.521.16 48 63.38 even 6 inner
1512.2.bs.a.1097.16 48 1.1 even 1 trivial
1512.2.cx.a.17.16 48 7.3 odd 6
1512.2.cx.a.89.16 48 9.2 odd 6
3024.2.ca.e.2033.16 48 252.227 odd 6
3024.2.ca.e.2609.16 48 4.3 odd 2
3024.2.df.e.17.16 48 28.3 even 6
3024.2.df.e.1601.16 48 36.11 even 6