Properties

Label 1008.2.ca.e.257.4
Level $1008$
Weight $2$
Character 1008.257
Analytic conductor $8.049$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(257,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.ca (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 257.4
Character \(\chi\) \(=\) 1008.257
Dual form 1008.2.ca.e.353.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38355 - 1.04201i) q^{3} +(-0.537427 - 0.930850i) q^{5} +(1.37797 + 2.25858i) q^{7} +(0.828420 + 2.88335i) q^{9} +(-3.55011 - 2.04966i) q^{11} +(3.69867 + 2.13543i) q^{13} +(-0.226401 + 1.84788i) q^{15} +(-0.717607 - 1.24293i) q^{17} +(-6.41973 - 3.70644i) q^{19} +(0.446987 - 4.56072i) q^{21} +(-5.43530 + 3.13807i) q^{23} +(1.92235 - 3.32960i) q^{25} +(1.85833 - 4.85249i) q^{27} +(-8.09846 + 4.67565i) q^{29} +6.88527i q^{31} +(2.77598 + 6.53506i) q^{33} +(1.36185 - 2.49651i) q^{35} +(-0.453413 + 0.785334i) q^{37} +(-2.89215 - 6.80854i) q^{39} +(-3.88978 + 6.73730i) q^{41} +(6.32181 + 10.9497i) q^{43} +(2.23875 - 2.32073i) q^{45} +8.43528 q^{47} +(-3.20241 + 6.22451i) q^{49} +(-0.302305 + 2.46741i) q^{51} +(-1.50593 + 0.869452i) q^{53} +4.40616i q^{55} +(5.01987 + 11.8175i) q^{57} +6.10146 q^{59} -2.72573i q^{61} +(-5.37076 + 5.84422i) q^{63} -4.59055i q^{65} -12.0391 q^{67} +(10.7899 + 1.32197i) q^{69} +0.783113i q^{71} +(-1.95868 + 1.13085i) q^{73} +(-6.12914 + 2.60356i) q^{75} +(-0.262612 - 10.8426i) q^{77} -1.63543 q^{79} +(-7.62744 + 4.77725i) q^{81} +(4.48646 + 7.77077i) q^{83} +(-0.771322 + 1.33597i) q^{85} +(16.0767 + 1.96971i) q^{87} +(-1.71834 + 2.97625i) q^{89} +(0.273602 + 11.2963i) q^{91} +(7.17454 - 9.52611i) q^{93} +7.96775i q^{95} +(-5.05015 + 2.91570i) q^{97} +(2.96890 - 11.9342i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{9} - 8 q^{15} + 8 q^{21} + 12 q^{23} - 24 q^{25} + 18 q^{27} + 18 q^{29} + 10 q^{39} + 6 q^{41} + 6 q^{43} + 6 q^{45} - 36 q^{47} + 6 q^{49} + 12 q^{51} + 12 q^{53} + 4 q^{57} - 46 q^{63} + 54 q^{75}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.38355 1.04201i −0.798793 0.601606i
\(4\) 0 0
\(5\) −0.537427 0.930850i −0.240345 0.416289i 0.720468 0.693488i \(-0.243927\pi\)
−0.960812 + 0.277199i \(0.910594\pi\)
\(6\) 0 0
\(7\) 1.37797 + 2.25858i 0.520823 + 0.853665i
\(8\) 0 0
\(9\) 0.828420 + 2.88335i 0.276140 + 0.961117i
\(10\) 0 0
\(11\) −3.55011 2.04966i −1.07040 0.617994i −0.142108 0.989851i \(-0.545388\pi\)
−0.928290 + 0.371857i \(0.878721\pi\)
\(12\) 0 0
\(13\) 3.69867 + 2.13543i 1.02583 + 0.592262i 0.915787 0.401665i \(-0.131568\pi\)
0.110041 + 0.993927i \(0.464902\pi\)
\(14\) 0 0
\(15\) −0.226401 + 1.84788i −0.0584565 + 0.477121i
\(16\) 0 0
\(17\) −0.717607 1.24293i −0.174045 0.301455i 0.765785 0.643096i \(-0.222351\pi\)
−0.939830 + 0.341641i \(0.889017\pi\)
\(18\) 0 0
\(19\) −6.41973 3.70644i −1.47279 0.850315i −0.473257 0.880925i \(-0.656922\pi\)
−0.999531 + 0.0306101i \(0.990255\pi\)
\(20\) 0 0
\(21\) 0.446987 4.56072i 0.0975406 0.995232i
\(22\) 0 0
\(23\) −5.43530 + 3.13807i −1.13334 + 0.654334i −0.944773 0.327727i \(-0.893717\pi\)
−0.188567 + 0.982060i \(0.560384\pi\)
\(24\) 0 0
\(25\) 1.92235 3.32960i 0.384469 0.665920i
\(26\) 0 0
\(27\) 1.85833 4.85249i 0.357636 0.933861i
\(28\) 0 0
\(29\) −8.09846 + 4.67565i −1.50385 + 0.868246i −0.503856 + 0.863788i \(0.668086\pi\)
−0.999990 + 0.00445828i \(0.998581\pi\)
\(30\) 0 0
\(31\) 6.88527i 1.23663i 0.785930 + 0.618316i \(0.212185\pi\)
−0.785930 + 0.618316i \(0.787815\pi\)
\(32\) 0 0
\(33\) 2.77598 + 6.53506i 0.483237 + 1.13761i
\(34\) 0 0
\(35\) 1.36185 2.49651i 0.230194 0.421986i
\(36\) 0 0
\(37\) −0.453413 + 0.785334i −0.0745406 + 0.129108i −0.900886 0.434055i \(-0.857082\pi\)
0.826346 + 0.563163i \(0.190416\pi\)
\(38\) 0 0
\(39\) −2.89215 6.80854i −0.463115 1.09024i
\(40\) 0 0
\(41\) −3.88978 + 6.73730i −0.607482 + 1.05219i 0.384172 + 0.923262i \(0.374487\pi\)
−0.991654 + 0.128928i \(0.958846\pi\)
\(42\) 0 0
\(43\) 6.32181 + 10.9497i 0.964067 + 1.66981i 0.712102 + 0.702076i \(0.247743\pi\)
0.251965 + 0.967736i \(0.418923\pi\)
\(44\) 0 0
\(45\) 2.23875 2.32073i 0.333734 0.345953i
\(46\) 0 0
\(47\) 8.43528 1.23041 0.615206 0.788366i \(-0.289073\pi\)
0.615206 + 0.788366i \(0.289073\pi\)
\(48\) 0 0
\(49\) −3.20241 + 6.22451i −0.457487 + 0.889216i
\(50\) 0 0
\(51\) −0.302305 + 2.46741i −0.0423312 + 0.345507i
\(52\) 0 0
\(53\) −1.50593 + 0.869452i −0.206856 + 0.119428i −0.599849 0.800113i \(-0.704773\pi\)
0.392993 + 0.919541i \(0.371440\pi\)
\(54\) 0 0
\(55\) 4.40616i 0.594126i
\(56\) 0 0
\(57\) 5.01987 + 11.8175i 0.664898 + 1.56526i
\(58\) 0 0
\(59\) 6.10146 0.794342 0.397171 0.917745i \(-0.369992\pi\)
0.397171 + 0.917745i \(0.369992\pi\)
\(60\) 0 0
\(61\) 2.72573i 0.348994i −0.984658 0.174497i \(-0.944170\pi\)
0.984658 0.174497i \(-0.0558299\pi\)
\(62\) 0 0
\(63\) −5.37076 + 5.84422i −0.676652 + 0.736303i
\(64\) 0 0
\(65\) 4.59055i 0.569388i
\(66\) 0 0
\(67\) −12.0391 −1.47081 −0.735403 0.677630i \(-0.763007\pi\)
−0.735403 + 0.677630i \(0.763007\pi\)
\(68\) 0 0
\(69\) 10.7899 + 1.32197i 1.29895 + 0.159147i
\(70\) 0 0
\(71\) 0.783113i 0.0929385i 0.998920 + 0.0464692i \(0.0147969\pi\)
−0.998920 + 0.0464692i \(0.985203\pi\)
\(72\) 0 0
\(73\) −1.95868 + 1.13085i −0.229247 + 0.132356i −0.610224 0.792229i \(-0.708921\pi\)
0.380978 + 0.924584i \(0.375587\pi\)
\(74\) 0 0
\(75\) −6.12914 + 2.60356i −0.707733 + 0.300633i
\(76\) 0 0
\(77\) −0.262612 10.8426i −0.0299274 1.23563i
\(78\) 0 0
\(79\) −1.63543 −0.184000 −0.0919999 0.995759i \(-0.529326\pi\)
−0.0919999 + 0.995759i \(0.529326\pi\)
\(80\) 0 0
\(81\) −7.62744 + 4.77725i −0.847494 + 0.530806i
\(82\) 0 0
\(83\) 4.48646 + 7.77077i 0.492452 + 0.852953i 0.999962 0.00869330i \(-0.00276720\pi\)
−0.507510 + 0.861646i \(0.669434\pi\)
\(84\) 0 0
\(85\) −0.771322 + 1.33597i −0.0836616 + 0.144906i
\(86\) 0 0
\(87\) 16.0767 + 1.96971i 1.72360 + 0.211175i
\(88\) 0 0
\(89\) −1.71834 + 2.97625i −0.182144 + 0.315482i −0.942610 0.333895i \(-0.891637\pi\)
0.760467 + 0.649377i \(0.224970\pi\)
\(90\) 0 0
\(91\) 0.273602 + 11.2963i 0.0286813 + 1.18418i
\(92\) 0 0
\(93\) 7.17454 9.52611i 0.743965 0.987812i
\(94\) 0 0
\(95\) 7.96775i 0.817474i
\(96\) 0 0
\(97\) −5.05015 + 2.91570i −0.512765 + 0.296045i −0.733969 0.679182i \(-0.762334\pi\)
0.221205 + 0.975227i \(0.429001\pi\)
\(98\) 0 0
\(99\) 2.96890 11.9342i 0.298386 1.19943i
\(100\) 0 0
\(101\) −2.31220 + 4.00485i −0.230073 + 0.398497i −0.957829 0.287338i \(-0.907230\pi\)
0.727757 + 0.685835i \(0.240563\pi\)
\(102\) 0 0
\(103\) 3.68450 2.12724i 0.363044 0.209604i −0.307371 0.951590i \(-0.599449\pi\)
0.670415 + 0.741986i \(0.266116\pi\)
\(104\) 0 0
\(105\) −4.48557 + 2.03498i −0.437747 + 0.198593i
\(106\) 0 0
\(107\) −8.73964 5.04583i −0.844893 0.487799i 0.0140314 0.999902i \(-0.495534\pi\)
−0.858924 + 0.512102i \(0.828867\pi\)
\(108\) 0 0
\(109\) 0.548395 + 0.949848i 0.0525267 + 0.0909790i 0.891093 0.453820i \(-0.149939\pi\)
−0.838567 + 0.544799i \(0.816606\pi\)
\(110\) 0 0
\(111\) 1.44565 0.614086i 0.137215 0.0582865i
\(112\) 0 0
\(113\) −8.51839 4.91809i −0.801343 0.462655i 0.0425979 0.999092i \(-0.486437\pi\)
−0.843940 + 0.536437i \(0.819770\pi\)
\(114\) 0 0
\(115\) 5.84215 + 3.37297i 0.544784 + 0.314531i
\(116\) 0 0
\(117\) −3.09315 + 12.4336i −0.285961 + 1.14949i
\(118\) 0 0
\(119\) 1.81843 3.33350i 0.166695 0.305581i
\(120\) 0 0
\(121\) 2.90217 + 5.02671i 0.263834 + 0.456974i
\(122\) 0 0
\(123\) 12.4021 5.26819i 1.11826 0.475017i
\(124\) 0 0
\(125\) −9.50674 −0.850309
\(126\) 0 0
\(127\) −15.2201 −1.35056 −0.675282 0.737559i \(-0.735978\pi\)
−0.675282 + 0.737559i \(0.735978\pi\)
\(128\) 0 0
\(129\) 2.66318 21.7368i 0.234480 1.91382i
\(130\) 0 0
\(131\) −4.45441 7.71526i −0.389184 0.674086i 0.603156 0.797623i \(-0.293910\pi\)
−0.992340 + 0.123537i \(0.960576\pi\)
\(132\) 0 0
\(133\) −0.474887 19.6069i −0.0411779 1.70013i
\(134\) 0 0
\(135\) −5.51565 + 0.878028i −0.474712 + 0.0755686i
\(136\) 0 0
\(137\) −9.76339 5.63689i −0.834143 0.481592i 0.0211264 0.999777i \(-0.493275\pi\)
−0.855269 + 0.518184i \(0.826608\pi\)
\(138\) 0 0
\(139\) 12.0468 + 6.95522i 1.02180 + 0.589934i 0.914624 0.404306i \(-0.132487\pi\)
0.107172 + 0.994240i \(0.465820\pi\)
\(140\) 0 0
\(141\) −11.6706 8.78967i −0.982845 0.740224i
\(142\) 0 0
\(143\) −8.75380 15.1620i −0.732029 1.26791i
\(144\) 0 0
\(145\) 8.70466 + 5.02564i 0.722882 + 0.417356i
\(146\) 0 0
\(147\) 10.9167 5.27497i 0.900396 0.435072i
\(148\) 0 0
\(149\) 3.09504 1.78692i 0.253555 0.146390i −0.367836 0.929891i \(-0.619901\pi\)
0.621391 + 0.783501i \(0.286568\pi\)
\(150\) 0 0
\(151\) 3.30180 5.71888i 0.268696 0.465396i −0.699829 0.714310i \(-0.746741\pi\)
0.968525 + 0.248915i \(0.0800739\pi\)
\(152\) 0 0
\(153\) 2.98933 3.09878i 0.241673 0.250522i
\(154\) 0 0
\(155\) 6.40916 3.70033i 0.514796 0.297217i
\(156\) 0 0
\(157\) 9.19553i 0.733883i 0.930244 + 0.366942i \(0.119595\pi\)
−0.930244 + 0.366942i \(0.880405\pi\)
\(158\) 0 0
\(159\) 2.98951 + 0.366273i 0.237084 + 0.0290473i
\(160\) 0 0
\(161\) −14.5773 7.95193i −1.14885 0.626700i
\(162\) 0 0
\(163\) −3.64872 + 6.31976i −0.285790 + 0.495002i −0.972800 0.231645i \(-0.925589\pi\)
0.687011 + 0.726647i \(0.258923\pi\)
\(164\) 0 0
\(165\) 4.59127 6.09614i 0.357430 0.474584i
\(166\) 0 0
\(167\) 7.07118 12.2476i 0.547184 0.947751i −0.451282 0.892382i \(-0.649033\pi\)
0.998466 0.0553694i \(-0.0176336\pi\)
\(168\) 0 0
\(169\) 2.62013 + 4.53820i 0.201549 + 0.349092i
\(170\) 0 0
\(171\) 5.36872 21.5808i 0.410557 1.65033i
\(172\) 0 0
\(173\) 13.4985 1.02627 0.513134 0.858308i \(-0.328484\pi\)
0.513134 + 0.858308i \(0.328484\pi\)
\(174\) 0 0
\(175\) 10.1691 0.246300i 0.768713 0.0186186i
\(176\) 0 0
\(177\) −8.44167 6.35780i −0.634515 0.477881i
\(178\) 0 0
\(179\) −3.97036 + 2.29229i −0.296759 + 0.171334i −0.640986 0.767553i \(-0.721474\pi\)
0.344227 + 0.938886i \(0.388141\pi\)
\(180\) 0 0
\(181\) 2.22901i 0.165681i −0.996563 0.0828405i \(-0.973601\pi\)
0.996563 0.0828405i \(-0.0263992\pi\)
\(182\) 0 0
\(183\) −2.84024 + 3.77118i −0.209957 + 0.278774i
\(184\) 0 0
\(185\) 0.974704 0.0716617
\(186\) 0 0
\(187\) 5.88339i 0.430236i
\(188\) 0 0
\(189\) 13.5205 2.48937i 0.983469 0.181075i
\(190\) 0 0
\(191\) 21.0351i 1.52204i 0.648726 + 0.761022i \(0.275302\pi\)
−0.648726 + 0.761022i \(0.724698\pi\)
\(192\) 0 0
\(193\) −11.2043 −0.806500 −0.403250 0.915090i \(-0.632119\pi\)
−0.403250 + 0.915090i \(0.632119\pi\)
\(194\) 0 0
\(195\) −4.78341 + 6.35125i −0.342547 + 0.454823i
\(196\) 0 0
\(197\) 20.8945i 1.48867i −0.667805 0.744336i \(-0.732766\pi\)
0.667805 0.744336i \(-0.267234\pi\)
\(198\) 0 0
\(199\) 15.8521 9.15222i 1.12373 0.648784i 0.181377 0.983414i \(-0.441945\pi\)
0.942350 + 0.334630i \(0.108611\pi\)
\(200\) 0 0
\(201\) 16.6566 + 12.5449i 1.17487 + 0.884846i
\(202\) 0 0
\(203\) −21.7198 11.8482i −1.52443 0.831578i
\(204\) 0 0
\(205\) 8.36189 0.584020
\(206\) 0 0
\(207\) −13.5509 13.0723i −0.941852 0.908584i
\(208\) 0 0
\(209\) 15.1938 + 26.3165i 1.05098 + 1.82035i
\(210\) 0 0
\(211\) −5.93845 + 10.2857i −0.408820 + 0.708096i −0.994758 0.102260i \(-0.967393\pi\)
0.585938 + 0.810356i \(0.300726\pi\)
\(212\) 0 0
\(213\) 0.816014 1.08348i 0.0559124 0.0742386i
\(214\) 0 0
\(215\) 6.79502 11.7693i 0.463416 0.802660i
\(216\) 0 0
\(217\) −15.5510 + 9.48768i −1.05567 + 0.644066i
\(218\) 0 0
\(219\) 3.88829 + 0.476391i 0.262747 + 0.0321915i
\(220\) 0 0
\(221\) 6.12960i 0.412321i
\(222\) 0 0
\(223\) 4.19957 2.42462i 0.281224 0.162365i −0.352754 0.935716i \(-0.614755\pi\)
0.633977 + 0.773352i \(0.281421\pi\)
\(224\) 0 0
\(225\) 11.1929 + 2.78449i 0.746194 + 0.185633i
\(226\) 0 0
\(227\) −1.43645 + 2.48801i −0.0953408 + 0.165135i −0.909751 0.415155i \(-0.863727\pi\)
0.814410 + 0.580290i \(0.197061\pi\)
\(228\) 0 0
\(229\) 3.74833 2.16410i 0.247697 0.143008i −0.371013 0.928628i \(-0.620989\pi\)
0.618709 + 0.785620i \(0.287656\pi\)
\(230\) 0 0
\(231\) −10.9348 + 15.2749i −0.719455 + 1.00501i
\(232\) 0 0
\(233\) 11.9136 + 6.87834i 0.780488 + 0.450615i 0.836603 0.547809i \(-0.184538\pi\)
−0.0561154 + 0.998424i \(0.517871\pi\)
\(234\) 0 0
\(235\) −4.53335 7.85198i −0.295723 0.512207i
\(236\) 0 0
\(237\) 2.26269 + 1.70413i 0.146978 + 0.110695i
\(238\) 0 0
\(239\) 15.6571 + 9.03963i 1.01277 + 0.584725i 0.912003 0.410184i \(-0.134536\pi\)
0.100771 + 0.994910i \(0.467869\pi\)
\(240\) 0 0
\(241\) −5.17659 2.98871i −0.333454 0.192520i 0.323920 0.946085i \(-0.394999\pi\)
−0.657373 + 0.753565i \(0.728333\pi\)
\(242\) 0 0
\(243\) 15.5309 + 1.33833i 0.996308 + 0.0858536i
\(244\) 0 0
\(245\) 7.51515 0.364254i 0.480125 0.0232713i
\(246\) 0 0
\(247\) −15.8297 27.4178i −1.00722 1.74455i
\(248\) 0 0
\(249\) 1.89000 15.4262i 0.119774 0.977595i
\(250\) 0 0
\(251\) −11.0004 −0.694337 −0.347169 0.937803i \(-0.612857\pi\)
−0.347169 + 0.937803i \(0.612857\pi\)
\(252\) 0 0
\(253\) 25.7279 1.61750
\(254\) 0 0
\(255\) 2.45926 1.04465i 0.154005 0.0654187i
\(256\) 0 0
\(257\) 4.74280 + 8.21477i 0.295848 + 0.512423i 0.975182 0.221406i \(-0.0710646\pi\)
−0.679334 + 0.733829i \(0.737731\pi\)
\(258\) 0 0
\(259\) −2.39853 + 0.0580935i −0.149037 + 0.00360975i
\(260\) 0 0
\(261\) −20.1905 19.4773i −1.24976 1.20562i
\(262\) 0 0
\(263\) −16.3241 9.42470i −1.00658 0.581152i −0.0963945 0.995343i \(-0.530731\pi\)
−0.910190 + 0.414192i \(0.864064\pi\)
\(264\) 0 0
\(265\) 1.61866 + 0.934533i 0.0994334 + 0.0574079i
\(266\) 0 0
\(267\) 5.47870 2.32726i 0.335291 0.142426i
\(268\) 0 0
\(269\) −10.0233 17.3609i −0.611133 1.05851i −0.991050 0.133493i \(-0.957381\pi\)
0.379916 0.925021i \(-0.375953\pi\)
\(270\) 0 0
\(271\) −17.3369 10.0095i −1.05314 0.608032i −0.129615 0.991564i \(-0.541374\pi\)
−0.923528 + 0.383532i \(0.874708\pi\)
\(272\) 0 0
\(273\) 11.3924 15.9141i 0.689498 0.963167i
\(274\) 0 0
\(275\) −13.6491 + 7.88029i −0.823069 + 0.475199i
\(276\) 0 0
\(277\) 1.70372 2.95093i 0.102367 0.177304i −0.810293 0.586026i \(-0.800692\pi\)
0.912659 + 0.408721i \(0.134025\pi\)
\(278\) 0 0
\(279\) −19.8527 + 5.70389i −1.18855 + 0.341483i
\(280\) 0 0
\(281\) 16.0313 9.25568i 0.956347 0.552147i 0.0613004 0.998119i \(-0.480475\pi\)
0.895047 + 0.445972i \(0.147142\pi\)
\(282\) 0 0
\(283\) 25.1116i 1.49273i −0.665535 0.746366i \(-0.731797\pi\)
0.665535 0.746366i \(-0.268203\pi\)
\(284\) 0 0
\(285\) 8.30249 11.0238i 0.491797 0.652992i
\(286\) 0 0
\(287\) −20.5768 + 0.498378i −1.21461 + 0.0294183i
\(288\) 0 0
\(289\) 7.47008 12.9386i 0.439417 0.761092i
\(290\) 0 0
\(291\) 10.0253 + 1.22830i 0.587695 + 0.0720040i
\(292\) 0 0
\(293\) −1.11299 + 1.92775i −0.0650214 + 0.112620i −0.896703 0.442632i \(-0.854045\pi\)
0.831682 + 0.555252i \(0.187378\pi\)
\(294\) 0 0
\(295\) −3.27909 5.67955i −0.190916 0.330676i
\(296\) 0 0
\(297\) −16.5432 + 13.4179i −0.959933 + 0.778586i
\(298\) 0 0
\(299\) −26.8046 −1.55015
\(300\) 0 0
\(301\) −16.0196 + 29.3667i −0.923352 + 1.69267i
\(302\) 0 0
\(303\) 7.37215 3.13156i 0.423519 0.179904i
\(304\) 0 0
\(305\) −2.53725 + 1.46488i −0.145282 + 0.0838788i
\(306\) 0 0
\(307\) 24.2535i 1.38422i 0.721791 + 0.692111i \(0.243319\pi\)
−0.721791 + 0.692111i \(0.756681\pi\)
\(308\) 0 0
\(309\) −7.31430 0.896142i −0.416096 0.0509798i
\(310\) 0 0
\(311\) 19.6300 1.11312 0.556559 0.830808i \(-0.312121\pi\)
0.556559 + 0.830808i \(0.312121\pi\)
\(312\) 0 0
\(313\) 17.1547i 0.969643i 0.874613 + 0.484822i \(0.161115\pi\)
−0.874613 + 0.484822i \(0.838885\pi\)
\(314\) 0 0
\(315\) 8.32649 + 1.85853i 0.469144 + 0.104716i
\(316\) 0 0
\(317\) 12.4507i 0.699300i 0.936880 + 0.349650i \(0.113699\pi\)
−0.936880 + 0.349650i \(0.886301\pi\)
\(318\) 0 0
\(319\) 38.3339 2.14628
\(320\) 0 0
\(321\) 6.83391 + 16.0880i 0.381431 + 0.897943i
\(322\) 0 0
\(323\) 10.6391i 0.591973i
\(324\) 0 0
\(325\) 14.2203 8.21007i 0.788798 0.455413i
\(326\) 0 0
\(327\) 0.231022 1.88560i 0.0127755 0.104274i
\(328\) 0 0
\(329\) 11.6235 + 19.0518i 0.640827 + 1.05036i
\(330\) 0 0
\(331\) 30.9175 1.69938 0.849691 0.527281i \(-0.176789\pi\)
0.849691 + 0.527281i \(0.176789\pi\)
\(332\) 0 0
\(333\) −2.64001 0.656762i −0.144672 0.0359904i
\(334\) 0 0
\(335\) 6.47011 + 11.2066i 0.353500 + 0.612280i
\(336\) 0 0
\(337\) −1.06492 + 1.84450i −0.0580099 + 0.100476i −0.893572 0.448920i \(-0.851809\pi\)
0.835562 + 0.549396i \(0.185142\pi\)
\(338\) 0 0
\(339\) 6.66090 + 15.6807i 0.361770 + 0.851658i
\(340\) 0 0
\(341\) 14.1124 24.4434i 0.764231 1.32369i
\(342\) 0 0
\(343\) −18.4714 + 1.34426i −0.997362 + 0.0725832i
\(344\) 0 0
\(345\) −4.56823 10.7543i −0.245945 0.578990i
\(346\) 0 0
\(347\) 23.0026i 1.23485i −0.786631 0.617423i \(-0.788177\pi\)
0.786631 0.617423i \(-0.211823\pi\)
\(348\) 0 0
\(349\) −21.3306 + 12.3152i −1.14180 + 0.659219i −0.946876 0.321599i \(-0.895780\pi\)
−0.194925 + 0.980818i \(0.562446\pi\)
\(350\) 0 0
\(351\) 17.2355 13.9794i 0.919963 0.746167i
\(352\) 0 0
\(353\) 1.62190 2.80921i 0.0863248 0.149519i −0.819630 0.572893i \(-0.805821\pi\)
0.905955 + 0.423374i \(0.139154\pi\)
\(354\) 0 0
\(355\) 0.728961 0.420866i 0.0386892 0.0223372i
\(356\) 0 0
\(357\) −5.98943 + 2.71723i −0.316994 + 0.143811i
\(358\) 0 0
\(359\) −4.88399 2.81977i −0.257767 0.148822i 0.365548 0.930792i \(-0.380881\pi\)
−0.623316 + 0.781970i \(0.714215\pi\)
\(360\) 0 0
\(361\) 17.9753 + 31.1342i 0.946070 + 1.63864i
\(362\) 0 0
\(363\) 1.22260 9.97881i 0.0641697 0.523752i
\(364\) 0 0
\(365\) 2.10530 + 1.21549i 0.110196 + 0.0636219i
\(366\) 0 0
\(367\) −10.8668 6.27396i −0.567243 0.327498i 0.188804 0.982015i \(-0.439539\pi\)
−0.756048 + 0.654517i \(0.772872\pi\)
\(368\) 0 0
\(369\) −22.6484 5.63430i −1.17903 0.293310i
\(370\) 0 0
\(371\) −4.03886 2.20320i −0.209687 0.114385i
\(372\) 0 0
\(373\) 6.58770 + 11.4102i 0.341098 + 0.590799i 0.984637 0.174614i \(-0.0558678\pi\)
−0.643539 + 0.765414i \(0.722534\pi\)
\(374\) 0 0
\(375\) 13.1531 + 9.90615i 0.679221 + 0.511551i
\(376\) 0 0
\(377\) −39.9381 −2.05692
\(378\) 0 0
\(379\) 6.80285 0.349439 0.174720 0.984618i \(-0.444098\pi\)
0.174720 + 0.984618i \(0.444098\pi\)
\(380\) 0 0
\(381\) 21.0578 + 15.8595i 1.07882 + 0.812508i
\(382\) 0 0
\(383\) 9.82982 + 17.0257i 0.502280 + 0.869975i 0.999997 + 0.00263511i \(0.000838781\pi\)
−0.497716 + 0.867340i \(0.665828\pi\)
\(384\) 0 0
\(385\) −9.95168 + 6.07154i −0.507185 + 0.309434i
\(386\) 0 0
\(387\) −26.3347 + 27.2989i −1.33867 + 1.38768i
\(388\) 0 0
\(389\) −15.8135 9.12995i −0.801778 0.462907i 0.0423145 0.999104i \(-0.486527\pi\)
−0.844092 + 0.536198i \(0.819860\pi\)
\(390\) 0 0
\(391\) 7.80082 + 4.50381i 0.394504 + 0.227767i
\(392\) 0 0
\(393\) −1.87650 + 15.3160i −0.0946572 + 0.772590i
\(394\) 0 0
\(395\) 0.878921 + 1.52234i 0.0442233 + 0.0765970i
\(396\) 0 0
\(397\) −31.8395 18.3825i −1.59798 0.922593i −0.991876 0.127206i \(-0.959399\pi\)
−0.606101 0.795387i \(-0.707267\pi\)
\(398\) 0 0
\(399\) −19.7736 + 27.6219i −0.989916 + 1.38282i
\(400\) 0 0
\(401\) 13.8175 7.97753i 0.690012 0.398379i −0.113604 0.993526i \(-0.536240\pi\)
0.803617 + 0.595147i \(0.202906\pi\)
\(402\) 0 0
\(403\) −14.7030 + 25.4664i −0.732410 + 1.26857i
\(404\) 0 0
\(405\) 8.54610 + 4.53258i 0.424659 + 0.225226i
\(406\) 0 0
\(407\) 3.21933 1.85868i 0.159576 0.0921313i
\(408\) 0 0
\(409\) 9.84803i 0.486954i −0.969907 0.243477i \(-0.921712\pi\)
0.969907 0.243477i \(-0.0782880\pi\)
\(410\) 0 0
\(411\) 7.63442 + 17.9725i 0.376578 + 0.886518i
\(412\) 0 0
\(413\) 8.40761 + 13.7807i 0.413712 + 0.678102i
\(414\) 0 0
\(415\) 4.82228 8.35244i 0.236716 0.410005i
\(416\) 0 0
\(417\) −9.41992 22.1758i −0.461295 1.08595i
\(418\) 0 0
\(419\) 19.4482 33.6853i 0.950106 1.64563i 0.204917 0.978779i \(-0.434308\pi\)
0.745189 0.666853i \(-0.232359\pi\)
\(420\) 0 0
\(421\) −8.99598 15.5815i −0.438437 0.759396i 0.559132 0.829079i \(-0.311135\pi\)
−0.997569 + 0.0696829i \(0.977801\pi\)
\(422\) 0 0
\(423\) 6.98795 + 24.3219i 0.339766 + 1.18257i
\(424\) 0 0
\(425\) −5.51795 −0.267660
\(426\) 0 0
\(427\) 6.15629 3.75597i 0.297924 0.181764i
\(428\) 0 0
\(429\) −3.68770 + 30.0990i −0.178044 + 1.45319i
\(430\) 0 0
\(431\) −6.23236 + 3.59826i −0.300202 + 0.173322i −0.642534 0.766257i \(-0.722117\pi\)
0.342331 + 0.939579i \(0.388783\pi\)
\(432\) 0 0
\(433\) 26.5567i 1.27623i −0.769939 0.638117i \(-0.779714\pi\)
0.769939 0.638117i \(-0.220286\pi\)
\(434\) 0 0
\(435\) −6.80655 16.0236i −0.326349 0.768272i
\(436\) 0 0
\(437\) 46.5243 2.22556
\(438\) 0 0
\(439\) 26.6825i 1.27349i −0.771076 0.636744i \(-0.780281\pi\)
0.771076 0.636744i \(-0.219719\pi\)
\(440\) 0 0
\(441\) −20.6004 4.07717i −0.980972 0.194151i
\(442\) 0 0
\(443\) 38.1169i 1.81099i 0.424359 + 0.905494i \(0.360499\pi\)
−0.424359 + 0.905494i \(0.639501\pi\)
\(444\) 0 0
\(445\) 3.69392 0.175109
\(446\) 0 0
\(447\) −6.14413 0.752774i −0.290607 0.0356050i
\(448\) 0 0
\(449\) 21.5864i 1.01872i 0.860552 + 0.509362i \(0.170119\pi\)
−0.860552 + 0.509362i \(0.829881\pi\)
\(450\) 0 0
\(451\) 27.6183 15.9454i 1.30049 0.750841i
\(452\) 0 0
\(453\) −10.5273 + 4.47184i −0.494618 + 0.210105i
\(454\) 0 0
\(455\) 10.3681 6.32563i 0.486066 0.296550i
\(456\) 0 0
\(457\) 2.85522 0.133562 0.0667809 0.997768i \(-0.478727\pi\)
0.0667809 + 0.997768i \(0.478727\pi\)
\(458\) 0 0
\(459\) −7.36486 + 1.17240i −0.343762 + 0.0547229i
\(460\) 0 0
\(461\) 13.3315 + 23.0909i 0.620911 + 1.07545i 0.989316 + 0.145784i \(0.0465706\pi\)
−0.368405 + 0.929665i \(0.620096\pi\)
\(462\) 0 0
\(463\) 3.63687 6.29925i 0.169020 0.292751i −0.769056 0.639182i \(-0.779273\pi\)
0.938076 + 0.346431i \(0.112606\pi\)
\(464\) 0 0
\(465\) −12.7232 1.55883i −0.590023 0.0722892i
\(466\) 0 0
\(467\) −2.37755 + 4.11804i −0.110020 + 0.190560i −0.915778 0.401685i \(-0.868425\pi\)
0.805758 + 0.592245i \(0.201758\pi\)
\(468\) 0 0
\(469\) −16.5894 27.1912i −0.766029 1.25557i
\(470\) 0 0
\(471\) 9.58186 12.7225i 0.441509 0.586221i
\(472\) 0 0
\(473\) 51.8301i 2.38315i
\(474\) 0 0
\(475\) −24.6819 + 14.2501i −1.13248 + 0.653839i
\(476\) 0 0
\(477\) −3.75448 3.62187i −0.171906 0.165834i
\(478\) 0 0
\(479\) −9.90097 + 17.1490i −0.452387 + 0.783557i −0.998534 0.0541324i \(-0.982761\pi\)
0.546147 + 0.837689i \(0.316094\pi\)
\(480\) 0 0
\(481\) −3.35405 + 1.93646i −0.152932 + 0.0882951i
\(482\) 0 0
\(483\) 11.8824 + 26.1916i 0.540667 + 1.19176i
\(484\) 0 0
\(485\) 5.42817 + 3.13395i 0.246480 + 0.142306i
\(486\) 0 0
\(487\) −17.0806 29.5845i −0.773996 1.34060i −0.935357 0.353704i \(-0.884922\pi\)
0.161362 0.986895i \(-0.448411\pi\)
\(488\) 0 0
\(489\) 11.6335 4.94170i 0.526083 0.223471i
\(490\) 0 0
\(491\) 9.91208 + 5.72274i 0.447326 + 0.258264i 0.706700 0.707513i \(-0.250183\pi\)
−0.259374 + 0.965777i \(0.583516\pi\)
\(492\) 0 0
\(493\) 11.6230 + 6.71055i 0.523474 + 0.302228i
\(494\) 0 0
\(495\) −12.7045 + 3.65015i −0.571025 + 0.164062i
\(496\) 0 0
\(497\) −1.76873 + 1.07910i −0.0793383 + 0.0484045i
\(498\) 0 0
\(499\) 3.88151 + 6.72298i 0.173760 + 0.300962i 0.939732 0.341913i \(-0.111075\pi\)
−0.765971 + 0.642875i \(0.777742\pi\)
\(500\) 0 0
\(501\) −22.5455 + 9.57696i −1.00726 + 0.427867i
\(502\) 0 0
\(503\) −2.92995 −0.130640 −0.0653200 0.997864i \(-0.520807\pi\)
−0.0653200 + 0.997864i \(0.520807\pi\)
\(504\) 0 0
\(505\) 4.97055 0.221187
\(506\) 0 0
\(507\) 1.10378 9.00903i 0.0490206 0.400105i
\(508\) 0 0
\(509\) 5.81338 + 10.0691i 0.257673 + 0.446303i 0.965618 0.259964i \(-0.0837108\pi\)
−0.707945 + 0.706268i \(0.750377\pi\)
\(510\) 0 0
\(511\) −5.25312 2.86558i −0.232384 0.126766i
\(512\) 0 0
\(513\) −29.9154 + 24.2639i −1.32080 + 1.07128i
\(514\) 0 0
\(515\) −3.96029 2.28648i −0.174511 0.100754i
\(516\) 0 0
\(517\) −29.9462 17.2894i −1.31703 0.760388i
\(518\) 0 0
\(519\) −18.6758 14.0656i −0.819776 0.617410i
\(520\) 0 0
\(521\) 12.7515 + 22.0863i 0.558655 + 0.967619i 0.997609 + 0.0691093i \(0.0220157\pi\)
−0.438954 + 0.898509i \(0.644651\pi\)
\(522\) 0 0
\(523\) −0.781452 0.451172i −0.0341705 0.0197284i 0.482817 0.875721i \(-0.339613\pi\)
−0.516988 + 0.855993i \(0.672947\pi\)
\(524\) 0 0
\(525\) −14.3261 10.2556i −0.625243 0.447590i
\(526\) 0 0
\(527\) 8.55792 4.94092i 0.372789 0.215230i
\(528\) 0 0
\(529\) 8.19501 14.1942i 0.356305 0.617138i
\(530\) 0 0
\(531\) 5.05457 + 17.5927i 0.219350 + 0.763456i
\(532\) 0 0
\(533\) −28.7741 + 16.6127i −1.24634 + 0.719577i
\(534\) 0 0
\(535\) 10.8471i 0.468959i
\(536\) 0 0
\(537\) 7.88178 + 0.965670i 0.340124 + 0.0416717i
\(538\) 0 0
\(539\) 24.1270 15.5339i 1.03922 0.669090i
\(540\) 0 0
\(541\) −17.2460 + 29.8710i −0.741464 + 1.28425i 0.210365 + 0.977623i \(0.432535\pi\)
−0.951829 + 0.306630i \(0.900799\pi\)
\(542\) 0 0
\(543\) −2.32266 + 3.08395i −0.0996747 + 0.132345i
\(544\) 0 0
\(545\) 0.589444 1.02095i 0.0252490 0.0437326i
\(546\) 0 0
\(547\) −3.68664 6.38545i −0.157629 0.273022i 0.776384 0.630260i \(-0.217052\pi\)
−0.934013 + 0.357238i \(0.883718\pi\)
\(548\) 0 0
\(549\) 7.85924 2.25805i 0.335424 0.0963711i
\(550\) 0 0
\(551\) 69.3199 2.95313
\(552\) 0 0
\(553\) −2.25356 3.69375i −0.0958312 0.157074i
\(554\) 0 0
\(555\) −1.34855 1.01565i −0.0572428 0.0431121i
\(556\) 0 0
\(557\) −18.6335 + 10.7581i −0.789528 + 0.455834i −0.839796 0.542902i \(-0.817326\pi\)
0.0502687 + 0.998736i \(0.483992\pi\)
\(558\) 0 0
\(559\) 53.9991i 2.28392i
\(560\) 0 0
\(561\) 6.13056 8.13996i 0.258833 0.343669i
\(562\) 0 0
\(563\) −31.5550 −1.32988 −0.664942 0.746895i \(-0.731544\pi\)
−0.664942 + 0.746895i \(0.731544\pi\)
\(564\) 0 0
\(565\) 10.5725i 0.444787i
\(566\) 0 0
\(567\) −21.3002 10.6443i −0.894524 0.447020i
\(568\) 0 0
\(569\) 23.5719i 0.988184i 0.869410 + 0.494092i \(0.164499\pi\)
−0.869410 + 0.494092i \(0.835501\pi\)
\(570\) 0 0
\(571\) −15.6689 −0.655723 −0.327861 0.944726i \(-0.606328\pi\)
−0.327861 + 0.944726i \(0.606328\pi\)
\(572\) 0 0
\(573\) 21.9188 29.1031i 0.915671 1.21580i
\(574\) 0 0
\(575\) 24.1298i 1.00628i
\(576\) 0 0
\(577\) 0.137448 0.0793554i 0.00572202 0.00330361i −0.497136 0.867672i \(-0.665615\pi\)
0.502858 + 0.864369i \(0.332282\pi\)
\(578\) 0 0
\(579\) 15.5016 + 11.6750i 0.644226 + 0.485195i
\(580\) 0 0
\(581\) −11.3688 + 20.8409i −0.471655 + 0.864627i
\(582\) 0 0
\(583\) 7.12831 0.295224
\(584\) 0 0
\(585\) 13.2362 3.80290i 0.547248 0.157231i
\(586\) 0 0
\(587\) −15.9041 27.5467i −0.656432 1.13697i −0.981533 0.191294i \(-0.938732\pi\)
0.325101 0.945679i \(-0.394602\pi\)
\(588\) 0 0
\(589\) 25.5198 44.2016i 1.05153 1.82130i
\(590\) 0 0
\(591\) −21.7723 + 28.9086i −0.895595 + 1.18914i
\(592\) 0 0
\(593\) 15.8934 27.5283i 0.652666 1.13045i −0.329808 0.944048i \(-0.606984\pi\)
0.982474 0.186402i \(-0.0596827\pi\)
\(594\) 0 0
\(595\) −4.08026 + 0.0988256i −0.167274 + 0.00405145i
\(596\) 0 0
\(597\) −31.4689 3.85555i −1.28794 0.157797i
\(598\) 0 0
\(599\) 12.1844i 0.497842i 0.968524 + 0.248921i \(0.0800760\pi\)
−0.968524 + 0.248921i \(0.919924\pi\)
\(600\) 0 0
\(601\) 13.6048 7.85473i 0.554951 0.320401i −0.196165 0.980571i \(-0.562849\pi\)
0.751117 + 0.660170i \(0.229516\pi\)
\(602\) 0 0
\(603\) −9.97339 34.7129i −0.406148 1.41362i
\(604\) 0 0
\(605\) 3.11941 5.40298i 0.126822 0.219662i
\(606\) 0 0
\(607\) −10.9361 + 6.31398i −0.443884 + 0.256277i −0.705244 0.708965i \(-0.749162\pi\)
0.261360 + 0.965241i \(0.415829\pi\)
\(608\) 0 0
\(609\) 17.7044 + 39.0248i 0.717420 + 1.58136i
\(610\) 0 0
\(611\) 31.1994 + 18.0130i 1.26219 + 0.728727i
\(612\) 0 0
\(613\) 11.3476 + 19.6546i 0.458325 + 0.793842i 0.998873 0.0474711i \(-0.0151162\pi\)
−0.540547 + 0.841314i \(0.681783\pi\)
\(614\) 0 0
\(615\) −11.5691 8.71320i −0.466511 0.351350i
\(616\) 0 0
\(617\) −32.6259 18.8366i −1.31347 0.758333i −0.330801 0.943700i \(-0.607319\pi\)
−0.982669 + 0.185368i \(0.940652\pi\)
\(618\) 0 0
\(619\) −4.50897 2.60326i −0.181231 0.104634i 0.406640 0.913588i \(-0.366700\pi\)
−0.587871 + 0.808955i \(0.700034\pi\)
\(620\) 0 0
\(621\) 5.12687 + 32.2063i 0.205734 + 1.29239i
\(622\) 0 0
\(623\) −9.08993 + 0.220162i −0.364180 + 0.00882061i
\(624\) 0 0
\(625\) −4.50255 7.79864i −0.180102 0.311946i
\(626\) 0 0
\(627\) 6.40069 52.2423i 0.255619 2.08636i
\(628\) 0 0
\(629\) 1.30149 0.0518937
\(630\) 0 0
\(631\) 5.73635 0.228361 0.114180 0.993460i \(-0.463576\pi\)
0.114180 + 0.993460i \(0.463576\pi\)
\(632\) 0 0
\(633\) 18.9340 8.04283i 0.752557 0.319674i
\(634\) 0 0
\(635\) 8.17968 + 14.1676i 0.324601 + 0.562225i
\(636\) 0 0
\(637\) −25.1367 + 16.1839i −0.995952 + 0.641230i
\(638\) 0 0
\(639\) −2.25799 + 0.648746i −0.0893248 + 0.0256640i
\(640\) 0 0
\(641\) 23.0328 + 13.2980i 0.909743 + 0.525240i 0.880348 0.474328i \(-0.157309\pi\)
0.0293943 + 0.999568i \(0.490642\pi\)
\(642\) 0 0
\(643\) −22.7885 13.1569i −0.898689 0.518858i −0.0219144 0.999760i \(-0.506976\pi\)
−0.876775 + 0.480901i \(0.840309\pi\)
\(644\) 0 0
\(645\) −21.6650 + 9.20294i −0.853059 + 0.362365i
\(646\) 0 0
\(647\) 23.8420 + 41.2955i 0.937324 + 1.62349i 0.770436 + 0.637517i \(0.220039\pi\)
0.166888 + 0.985976i \(0.446628\pi\)
\(648\) 0 0
\(649\) −21.6608 12.5059i −0.850262 0.490899i
\(650\) 0 0
\(651\) 31.4018 + 3.07763i 1.23073 + 0.120622i
\(652\) 0 0
\(653\) 28.3370 16.3604i 1.10891 0.640231i 0.170366 0.985381i \(-0.445505\pi\)
0.938548 + 0.345149i \(0.112172\pi\)
\(654\) 0 0
\(655\) −4.78784 + 8.29278i −0.187076 + 0.324026i
\(656\) 0 0
\(657\) −4.88324 4.71076i −0.190513 0.183784i
\(658\) 0 0
\(659\) −26.5499 + 15.3286i −1.03424 + 0.597118i −0.918196 0.396126i \(-0.870354\pi\)
−0.116043 + 0.993244i \(0.537021\pi\)
\(660\) 0 0
\(661\) 10.8025i 0.420167i −0.977683 0.210084i \(-0.932626\pi\)
0.977683 0.210084i \(-0.0673736\pi\)
\(662\) 0 0
\(663\) −6.38712 + 8.48061i −0.248055 + 0.329359i
\(664\) 0 0
\(665\) −17.9958 + 10.9793i −0.697849 + 0.425759i
\(666\) 0 0
\(667\) 29.3451 50.8271i 1.13624 1.96803i
\(668\) 0 0
\(669\) −8.33679 1.02142i −0.322319 0.0394903i
\(670\) 0 0
\(671\) −5.58681 + 9.67663i −0.215676 + 0.373562i
\(672\) 0 0
\(673\) 19.4199 + 33.6363i 0.748583 + 1.29658i 0.948502 + 0.316771i \(0.102599\pi\)
−0.199919 + 0.979812i \(0.564068\pi\)
\(674\) 0 0
\(675\) −12.5845 15.5156i −0.484377 0.597197i
\(676\) 0 0
\(677\) −18.8638 −0.724996 −0.362498 0.931984i \(-0.618076\pi\)
−0.362498 + 0.931984i \(0.618076\pi\)
\(678\) 0 0
\(679\) −13.5443 7.38844i −0.519783 0.283542i
\(680\) 0 0
\(681\) 4.57995 1.94548i 0.175504 0.0745511i
\(682\) 0 0
\(683\) −29.7510 + 17.1768i −1.13839 + 0.657251i −0.946032 0.324074i \(-0.894947\pi\)
−0.192360 + 0.981325i \(0.561614\pi\)
\(684\) 0 0
\(685\) 12.1177i 0.462992i
\(686\) 0 0
\(687\) −7.44102 0.911668i −0.283892 0.0347823i
\(688\) 0 0
\(689\) −7.42662 −0.282932
\(690\) 0 0
\(691\) 25.5640i 0.972502i 0.873819 + 0.486251i \(0.161636\pi\)
−0.873819 + 0.486251i \(0.838364\pi\)
\(692\) 0 0
\(693\) 31.0454 9.73941i 1.17932 0.369969i
\(694\) 0 0
\(695\) 14.9517i 0.567150i
\(696\) 0 0
\(697\) 11.1653 0.422917
\(698\) 0 0
\(699\) −9.31578 21.9307i −0.352355 0.829494i
\(700\) 0 0
\(701\) 32.3485i 1.22178i 0.791714 + 0.610892i \(0.209189\pi\)
−0.791714 + 0.610892i \(0.790811\pi\)
\(702\) 0 0
\(703\) 5.82158 3.36109i 0.219565 0.126766i
\(704\) 0 0
\(705\) −1.90976 + 15.5874i −0.0719256 + 0.587056i
\(706\) 0 0
\(707\) −12.2314 + 0.296250i −0.460010 + 0.0111416i
\(708\) 0 0
\(709\) 2.60238 0.0977344 0.0488672 0.998805i \(-0.484439\pi\)
0.0488672 + 0.998805i \(0.484439\pi\)
\(710\) 0 0
\(711\) −1.35482 4.71551i −0.0508097 0.176845i
\(712\) 0 0
\(713\) −21.6065 37.4235i −0.809169 1.40152i
\(714\) 0 0
\(715\) −9.40905 + 16.2969i −0.351878 + 0.609471i
\(716\) 0 0
\(717\) −12.2430 28.8217i −0.457222 1.07637i
\(718\) 0 0
\(719\) 8.42868 14.5989i 0.314337 0.544447i −0.664960 0.746879i \(-0.731551\pi\)
0.979296 + 0.202432i \(0.0648846\pi\)
\(720\) 0 0
\(721\) 9.88168 + 5.39047i 0.368013 + 0.200752i
\(722\) 0 0
\(723\) 4.04780 + 9.52910i 0.150539 + 0.354391i
\(724\) 0 0
\(725\) 35.9528i 1.33525i
\(726\) 0 0
\(727\) 36.1005 20.8426i 1.33889 0.773009i 0.352249 0.935906i \(-0.385417\pi\)
0.986643 + 0.162897i \(0.0520838\pi\)
\(728\) 0 0
\(729\) −20.0932 18.0350i −0.744193 0.667964i
\(730\) 0 0
\(731\) 9.07314 15.7151i 0.335582 0.581246i
\(732\) 0 0
\(733\) 31.2134 18.0211i 1.15289 0.665623i 0.203303 0.979116i \(-0.434832\pi\)
0.949591 + 0.313492i \(0.101499\pi\)
\(734\) 0 0
\(735\) −10.7771 7.32692i −0.397521 0.270257i
\(736\) 0 0
\(737\) 42.7400 + 24.6759i 1.57435 + 0.908949i
\(738\) 0 0
\(739\) 14.1322 + 24.4777i 0.519861 + 0.900426i 0.999733 + 0.0230879i \(0.00734977\pi\)
−0.479872 + 0.877339i \(0.659317\pi\)
\(740\) 0 0
\(741\) −6.66855 + 54.4286i −0.244975 + 1.99948i
\(742\) 0 0
\(743\) 28.7161 + 16.5793i 1.05349 + 0.608234i 0.923625 0.383298i \(-0.125212\pi\)
0.129867 + 0.991531i \(0.458545\pi\)
\(744\) 0 0
\(745\) −3.32671 1.92068i −0.121881 0.0703682i
\(746\) 0 0
\(747\) −18.6892 + 19.3735i −0.683802 + 0.708839i
\(748\) 0 0
\(749\) −0.646497 26.6922i −0.0236225 0.975312i
\(750\) 0 0
\(751\) −21.6155 37.4391i −0.788761 1.36617i −0.926726 0.375737i \(-0.877390\pi\)
0.137965 0.990437i \(-0.455944\pi\)
\(752\) 0 0
\(753\) 15.2196 + 11.4625i 0.554632 + 0.417718i
\(754\) 0 0
\(755\) −7.09789 −0.258319
\(756\) 0 0
\(757\) 33.2085 1.20698 0.603492 0.797369i \(-0.293776\pi\)
0.603492 + 0.797369i \(0.293776\pi\)
\(758\) 0 0
\(759\) −35.5958 26.8088i −1.29205 0.973097i
\(760\) 0 0
\(761\) −2.15969 3.74069i −0.0782887 0.135600i 0.824223 0.566265i \(-0.191612\pi\)
−0.902512 + 0.430665i \(0.858279\pi\)
\(762\) 0 0
\(763\) −1.38964 + 2.54746i −0.0503084 + 0.0922241i
\(764\) 0 0
\(765\) −4.49105 1.11725i −0.162374 0.0403943i
\(766\) 0 0
\(767\) 22.5673 + 13.0292i 0.814859 + 0.470459i
\(768\) 0 0
\(769\) 16.1845 + 9.34412i 0.583628 + 0.336958i 0.762574 0.646901i \(-0.223935\pi\)
−0.178946 + 0.983859i \(0.557269\pi\)
\(770\) 0 0
\(771\) 1.99799 16.3076i 0.0719560 0.587303i
\(772\) 0 0
\(773\) 4.91482 + 8.51272i 0.176774 + 0.306181i 0.940774 0.339035i \(-0.110101\pi\)
−0.764000 + 0.645216i \(0.776767\pi\)
\(774\) 0 0
\(775\) 22.9252 + 13.2359i 0.823497 + 0.475446i
\(776\) 0 0
\(777\) 3.37902 + 2.41892i 0.121222 + 0.0867784i
\(778\) 0 0
\(779\) 49.9427 28.8345i 1.78938 1.03310i
\(780\) 0 0
\(781\) 1.60511 2.78014i 0.0574354 0.0994811i
\(782\) 0 0
\(783\) 7.63890 + 47.9865i 0.272992 + 1.71490i
\(784\) 0 0
\(785\) 8.55966 4.94192i 0.305507 0.176385i
\(786\) 0 0
\(787\) 45.4273i 1.61931i 0.586908 + 0.809654i \(0.300345\pi\)
−0.586908 + 0.809654i \(0.699655\pi\)
\(788\) 0 0
\(789\) 12.7645 + 30.0494i 0.454428 + 1.06979i
\(790\) 0 0
\(791\) −0.630130 26.0165i −0.0224049 0.925039i
\(792\) 0 0
\(793\) 5.82061 10.0816i 0.206696 0.358008i
\(794\) 0 0
\(795\) −1.26570 2.97964i −0.0448897 0.105677i
\(796\) 0 0
\(797\) 7.67140 13.2872i 0.271735 0.470658i −0.697571 0.716515i \(-0.745736\pi\)
0.969306 + 0.245857i \(0.0790693\pi\)
\(798\) 0 0
\(799\) −6.05322 10.4845i −0.214147 0.370914i
\(800\) 0 0
\(801\) −10.0051 2.48899i −0.353512 0.0879442i
\(802\) 0 0
\(803\) 9.27139 0.327180
\(804\) 0 0
\(805\) 0.432161 + 17.8428i 0.0152317 + 0.628878i
\(806\) 0 0
\(807\) −4.22252 + 34.4641i −0.148640 + 1.21319i
\(808\) 0 0
\(809\) 0.785783 0.453672i 0.0276267 0.0159503i −0.486123 0.873890i \(-0.661589\pi\)
0.513750 + 0.857940i \(0.328256\pi\)
\(810\) 0 0
\(811\) 7.95121i 0.279205i −0.990208 0.139602i \(-0.955418\pi\)
0.990208 0.139602i \(-0.0445824\pi\)
\(812\) 0 0
\(813\) 13.5565 + 31.9139i 0.475447 + 1.11927i
\(814\) 0 0
\(815\) 7.84367 0.274752
\(816\) 0 0
\(817\) 93.7255i 3.27904i
\(818\) 0 0
\(819\) −32.3446 + 10.1470i −1.13021 + 0.354564i
\(820\) 0 0
\(821\) 46.8699i 1.63577i 0.575380 + 0.817886i \(0.304854\pi\)
−0.575380 + 0.817886i \(0.695146\pi\)
\(822\) 0 0
\(823\) −20.9899 −0.731661 −0.365831 0.930681i \(-0.619215\pi\)
−0.365831 + 0.930681i \(0.619215\pi\)
\(824\) 0 0
\(825\) 27.0955 + 3.31972i 0.943345 + 0.115578i
\(826\) 0 0
\(827\) 12.6370i 0.439430i −0.975564 0.219715i \(-0.929487\pi\)
0.975564 0.219715i \(-0.0705127\pi\)
\(828\) 0 0
\(829\) 3.12273 1.80291i 0.108457 0.0626177i −0.444790 0.895635i \(-0.646722\pi\)
0.553247 + 0.833017i \(0.313388\pi\)
\(830\) 0 0
\(831\) −5.43209 + 2.30746i −0.188437 + 0.0800450i
\(832\) 0 0
\(833\) 10.0347 0.486376i 0.347682 0.0168519i
\(834\) 0 0
\(835\) −15.2010 −0.526051
\(836\) 0 0
\(837\) 33.4107 + 12.7951i 1.15484 + 0.442263i
\(838\) 0 0
\(839\) 0.287256 + 0.497541i 0.00991716 + 0.0171770i 0.870941 0.491387i \(-0.163510\pi\)
−0.861024 + 0.508564i \(0.830177\pi\)
\(840\) 0 0
\(841\) 29.2234 50.6163i 1.00770 1.74539i
\(842\) 0 0
\(843\) −31.8246 3.89913i −1.09610 0.134293i
\(844\) 0 0
\(845\) 2.81626 4.87790i 0.0968822 0.167805i
\(846\) 0 0
\(847\) −7.35416 + 13.4815i −0.252692 + 0.463228i
\(848\) 0 0
\(849\) −26.1667 + 34.7432i −0.898037 + 1.19238i
\(850\) 0 0
\(851\) 5.69137i 0.195098i
\(852\) 0 0
\(853\) 5.62283 3.24634i 0.192522 0.111153i −0.400641 0.916235i \(-0.631212\pi\)
0.593163 + 0.805083i \(0.297879\pi\)
\(854\) 0 0
\(855\) −22.9738 + 6.60064i −0.785688 + 0.225737i
\(856\) 0 0
\(857\) −1.15768 + 2.00517i −0.0395457 + 0.0684952i −0.885121 0.465361i \(-0.845924\pi\)
0.845575 + 0.533857i \(0.179258\pi\)
\(858\) 0 0
\(859\) −48.1991 + 27.8278i −1.64453 + 0.949471i −0.665338 + 0.746542i \(0.731713\pi\)
−0.979194 + 0.202929i \(0.934954\pi\)
\(860\) 0 0
\(861\) 28.9883 + 20.7517i 0.987918 + 0.707217i
\(862\) 0 0
\(863\) −7.50527 4.33317i −0.255482 0.147503i 0.366790 0.930304i \(-0.380457\pi\)
−0.622272 + 0.782801i \(0.713790\pi\)
\(864\) 0 0
\(865\) −7.25443 12.5650i −0.246658 0.427224i
\(866\) 0 0
\(867\) −23.8174 + 10.1172i −0.808880 + 0.343599i
\(868\) 0 0
\(869\) 5.80593 + 3.35206i 0.196953 + 0.113711i
\(870\) 0 0
\(871\) −44.5286 25.7086i −1.50879 0.871102i
\(872\) 0 0
\(873\) −12.5906 12.1459i −0.426129 0.411077i
\(874\) 0 0
\(875\) −13.1000 21.4718i −0.442860 0.725879i
\(876\) 0 0
\(877\) −17.8315 30.8850i −0.602126 1.04291i −0.992499 0.122255i \(-0.960987\pi\)
0.390373 0.920657i \(-0.372346\pi\)
\(878\) 0 0
\(879\) 3.54861 1.50739i 0.119692 0.0508431i
\(880\) 0 0
\(881\) −7.57740 −0.255289 −0.127644 0.991820i \(-0.540742\pi\)
−0.127644 + 0.991820i \(0.540742\pi\)
\(882\) 0 0
\(883\) 5.35854 0.180329 0.0901646 0.995927i \(-0.471261\pi\)
0.0901646 + 0.995927i \(0.471261\pi\)
\(884\) 0 0
\(885\) −1.38138 + 11.2748i −0.0464345 + 0.378998i
\(886\) 0 0
\(887\) 11.7952 + 20.4299i 0.396045 + 0.685970i 0.993234 0.116131i \(-0.0370492\pi\)
−0.597189 + 0.802100i \(0.703716\pi\)
\(888\) 0 0
\(889\) −20.9728 34.3759i −0.703405 1.15293i
\(890\) 0 0
\(891\) 36.8700 1.32613i 1.23519 0.0444269i
\(892\) 0 0
\(893\) −54.1523 31.2648i −1.81214 1.04624i
\(894\) 0 0
\(895\) 4.26755 + 2.46387i 0.142649 + 0.0823582i
\(896\) 0 0
\(897\) 37.0854 + 27.9307i 1.23825 + 0.932579i
\(898\) 0 0
\(899\) −32.1931 55.7601i −1.07370 1.85970i
\(900\) 0 0
\(901\) 2.16134 + 1.24785i 0.0720046 + 0.0415719i
\(902\) 0 0
\(903\) 52.7643 23.9376i 1.75589 0.796595i
\(904\) 0 0
\(905\) −2.07487 + 1.19793i −0.0689711 + 0.0398205i
\(906\) 0 0
\(907\) −7.13516 + 12.3585i −0.236919 + 0.410356i −0.959829 0.280587i \(-0.909471\pi\)
0.722910 + 0.690943i \(0.242804\pi\)
\(908\) 0 0
\(909\) −13.4629 3.34919i −0.446535 0.111086i
\(910\) 0 0
\(911\) 40.0156 23.1030i 1.32578 0.765437i 0.341133 0.940015i \(-0.389189\pi\)
0.984643 + 0.174578i \(0.0558560\pi\)
\(912\) 0 0
\(913\) 36.7828i 1.21733i
\(914\) 0 0
\(915\) 5.03683 + 0.617108i 0.166512 + 0.0204010i
\(916\) 0 0
\(917\) 11.2875 20.6920i 0.372748 0.683312i
\(918\) 0 0
\(919\) 16.8957 29.2643i 0.557339 0.965339i −0.440379 0.897812i \(-0.645156\pi\)
0.997717 0.0675269i \(-0.0215109\pi\)
\(920\) 0 0
\(921\) 25.2725 33.5560i 0.832757 1.10571i
\(922\) 0 0
\(923\) −1.67228 + 2.89648i −0.0550439 + 0.0953389i
\(924\) 0 0
\(925\) 1.74323 + 3.01936i 0.0573171 + 0.0992761i
\(926\) 0 0
\(927\) 9.18591 + 8.86145i 0.301705 + 0.291048i
\(928\) 0 0
\(929\) 34.9369 1.14624 0.573121 0.819471i \(-0.305733\pi\)
0.573121 + 0.819471i \(0.305733\pi\)
\(930\) 0 0
\(931\) 43.6294 28.0902i 1.42990 0.920619i
\(932\) 0 0
\(933\) −27.1591 20.4548i −0.889151 0.669659i
\(934\) 0 0
\(935\) 5.47655 3.16189i 0.179102 0.103405i
\(936\) 0 0
\(937\) 11.6175i 0.379528i −0.981830 0.189764i \(-0.939228\pi\)
0.981830 0.189764i \(-0.0607723\pi\)
\(938\) 0 0
\(939\) 17.8755 23.7344i 0.583343 0.774544i
\(940\) 0 0
\(941\) −9.55030 −0.311331 −0.155665 0.987810i \(-0.549752\pi\)
−0.155665 + 0.987810i \(0.549752\pi\)
\(942\) 0 0
\(943\) 48.8257i 1.58998i
\(944\) 0 0
\(945\) −9.58349 11.2477i −0.311751 0.365887i
\(946\) 0 0
\(947\) 36.6873i 1.19218i 0.802919 + 0.596088i \(0.203279\pi\)
−0.802919 + 0.596088i \(0.796721\pi\)
\(948\) 0 0
\(949\) −9.65938 −0.313557
\(950\) 0 0
\(951\) 12.9738 17.2261i 0.420703 0.558596i
\(952\) 0 0
\(953\) 17.1813i 0.556556i −0.960501 0.278278i \(-0.910236\pi\)
0.960501 0.278278i \(-0.0897636\pi\)
\(954\) 0 0
\(955\) 19.5805 11.3048i 0.633610 0.365815i
\(956\) 0 0
\(957\) −53.0368 39.9444i −1.71444 1.29122i
\(958\) 0 0
\(959\) −0.722227 29.8189i −0.0233219 0.962902i
\(960\) 0 0
\(961\) −16.4069 −0.529256
\(962\) 0 0
\(963\) 7.30883 29.3795i 0.235524 0.946742i
\(964\) 0 0
\(965\) 6.02146 + 10.4295i 0.193838 + 0.335737i
\(966\) 0 0
\(967\) 2.43550 4.21841i 0.0783204 0.135655i −0.824205 0.566292i \(-0.808378\pi\)
0.902525 + 0.430637i \(0.141711\pi\)
\(968\) 0 0
\(969\) 11.0860 14.7197i 0.356134 0.472864i
\(970\) 0 0
\(971\) 14.0544 24.3429i 0.451026 0.781200i −0.547424 0.836855i \(-0.684392\pi\)
0.998450 + 0.0556556i \(0.0177249\pi\)
\(972\) 0 0
\(973\) 0.891137 + 36.7928i 0.0285686 + 1.17952i
\(974\) 0 0
\(975\) −28.2294 3.45865i −0.904065 0.110765i
\(976\) 0 0
\(977\) 30.5582i 0.977643i −0.872384 0.488822i \(-0.837427\pi\)
0.872384 0.488822i \(-0.162573\pi\)
\(978\) 0 0
\(979\) 12.2006 7.04401i 0.389932 0.225127i
\(980\) 0 0
\(981\) −2.28445 + 2.36809i −0.0729367 + 0.0756073i
\(982\) 0 0
\(983\) −5.98556 + 10.3673i −0.190910 + 0.330665i −0.945552 0.325471i \(-0.894477\pi\)
0.754642 + 0.656137i \(0.227810\pi\)
\(984\) 0 0
\(985\) −19.4497 + 11.2293i −0.619718 + 0.357794i
\(986\) 0 0
\(987\) 3.77046 38.4710i 0.120015 1.22455i
\(988\) 0 0
\(989\) −68.7219 39.6766i −2.18523 1.26164i
\(990\) 0 0
\(991\) 3.32513 + 5.75929i 0.105626 + 0.182950i 0.913994 0.405728i \(-0.132982\pi\)
−0.808368 + 0.588678i \(0.799649\pi\)
\(992\) 0 0
\(993\) −42.7759 32.2165i −1.35745 1.02236i
\(994\) 0 0
\(995\) −17.0387 9.83730i −0.540163 0.311863i
\(996\) 0 0
\(997\) 47.6751 + 27.5252i 1.50989 + 0.871733i 0.999934 + 0.0115298i \(0.00367014\pi\)
0.509952 + 0.860203i \(0.329663\pi\)
\(998\) 0 0
\(999\) 2.96823 + 3.65959i 0.0939106 + 0.115784i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.ca.e.257.4 48
3.2 odd 2 3024.2.ca.e.2609.16 48
4.3 odd 2 504.2.bs.a.257.21 48
7.3 odd 6 1008.2.df.e.689.13 48
9.2 odd 6 1008.2.df.e.929.13 48
9.7 even 3 3024.2.df.e.1601.16 48
12.11 even 2 1512.2.bs.a.1097.16 48
21.17 even 6 3024.2.df.e.17.16 48
28.3 even 6 504.2.cx.a.185.12 yes 48
36.7 odd 6 1512.2.cx.a.89.16 48
36.11 even 6 504.2.cx.a.425.12 yes 48
63.38 even 6 inner 1008.2.ca.e.353.4 48
63.52 odd 6 3024.2.ca.e.2033.16 48
84.59 odd 6 1512.2.cx.a.17.16 48
252.115 even 6 1512.2.bs.a.521.16 48
252.227 odd 6 504.2.bs.a.353.21 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.21 48 4.3 odd 2
504.2.bs.a.353.21 yes 48 252.227 odd 6
504.2.cx.a.185.12 yes 48 28.3 even 6
504.2.cx.a.425.12 yes 48 36.11 even 6
1008.2.ca.e.257.4 48 1.1 even 1 trivial
1008.2.ca.e.353.4 48 63.38 even 6 inner
1008.2.df.e.689.13 48 7.3 odd 6
1008.2.df.e.929.13 48 9.2 odd 6
1512.2.bs.a.521.16 48 252.115 even 6
1512.2.bs.a.1097.16 48 12.11 even 2
1512.2.cx.a.17.16 48 84.59 odd 6
1512.2.cx.a.89.16 48 36.7 odd 6
3024.2.ca.e.2033.16 48 63.52 odd 6
3024.2.ca.e.2609.16 48 3.2 odd 2
3024.2.df.e.17.16 48 21.17 even 6
3024.2.df.e.1601.16 48 9.7 even 3