L(s) = 1 | + 1.07·5-s + (−1.26 − 2.32i)7-s + 4.09i·11-s + (−3.69 − 2.13i)13-s + (−0.717 + 1.24i)17-s + (6.41 − 3.70i)19-s − 6.27i·23-s − 3.84·25-s + (8.09 − 4.67i)29-s + (5.96 − 3.44i)31-s + (−1.36 − 2.49i)35-s + (−0.453 − 0.785i)37-s + (−3.88 + 6.73i)41-s + (−6.32 − 10.9i)43-s + (4.21 − 7.30i)47-s + ⋯ |
L(s) = 1 | + 0.480·5-s + (−0.478 − 0.877i)7-s + 1.23i·11-s + (−1.02 − 0.592i)13-s + (−0.174 + 0.301i)17-s + (1.47 − 0.850i)19-s − 1.30i·23-s − 0.768·25-s + (1.50 − 0.868i)29-s + (1.07 − 0.618i)31-s + (−0.230 − 0.421i)35-s + (−0.0745 − 0.129i)37-s + (−0.607 + 1.05i)41-s + (−0.964 − 1.66i)43-s + (0.615 − 1.06i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.154 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.154 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.418719414\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.418719414\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.26 + 2.32i)T \) |
good | 5 | \( 1 - 1.07T + 5T^{2} \) |
| 11 | \( 1 - 4.09iT - 11T^{2} \) |
| 13 | \( 1 + (3.69 + 2.13i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.717 - 1.24i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-6.41 + 3.70i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 6.27iT - 23T^{2} \) |
| 29 | \( 1 + (-8.09 + 4.67i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-5.96 + 3.44i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.453 + 0.785i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.88 - 6.73i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (6.32 + 10.9i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.21 + 7.30i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.50 + 0.869i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.05 - 5.28i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.36 + 1.36i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.01 + 10.4i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 0.783iT - 71T^{2} \) |
| 73 | \( 1 + (1.95 + 1.13i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.817 - 1.41i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (4.48 + 7.77i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (1.71 + 2.97i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.05 + 2.91i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.639477961121280674793965544472, −8.464473036520071818155848982037, −7.51474328655087368015507886610, −6.96543031618962749428015121359, −6.14162708219610087439342260014, −4.94571897272316560022952562874, −4.40755027745453154220424485968, −3.08759180026251797643990117677, −2.15573108919275088837847091035, −0.57604210846505136524252004903,
1.38713596987743279435965663551, 2.74602685621426193818593139022, 3.38757652680892850650893091574, 4.85945282804478524341377613026, 5.59988504229820511498875330030, 6.26746193549291267536668636208, 7.19810108809250246855999967343, 8.159269332729660843354765581752, 8.941564325876503192347244478598, 9.702526858195804002914262962716