Properties

Label 1452.2.b.e
Level $1452$
Weight $2$
Character orbit 1452.b
Analytic conductor $11.594$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,2,Mod(725,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.725"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,6,0,0,0,0,0,-10,0,0,0,0,0,-16,0,0,0,0,0,0,0,0,0,-32,0,6, 0,0,0,40,0,0,0,0,0,36,0,0,0,0,0,0,0,2,0,0,0,-28,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,44,0,16,0,0,0,0,0,-84,0,0,0,0,0,-58,0,0,0,0,0,0,0,0,0,-80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5942783735\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} - 12 x^{13} + 23 x^{12} - 72 x^{11} + 146 x^{10} - 176 x^{9} + 223 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{3} + \beta_{15} q^{5} + (\beta_{14} + \beta_{2} + \beta_1) q^{7} + ( - \beta_{11} + \beta_{10} + \beta_{4}) q^{9} + (\beta_{14} - \beta_{12} + \cdots + \beta_1) q^{13} + (\beta_{15} + \beta_{11} + 2 \beta_{8} + \cdots - 2) q^{15}+ \cdots + (\beta_{11} - 2 \beta_{6} + 2 \beta_{4} + 2) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{3} - 10 q^{9} - 16 q^{15} - 32 q^{25} + 6 q^{27} + 40 q^{31} + 36 q^{37} + 2 q^{45} - 28 q^{49} + 44 q^{67} + 16 q^{69} - 84 q^{75} - 58 q^{81} - 80 q^{91} + 12 q^{93} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 4 x^{15} + 8 x^{14} - 12 x^{13} + 23 x^{12} - 72 x^{11} + 146 x^{10} - 176 x^{9} + 223 x^{8} + \cdots + 6561 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 937 \nu^{15} - 8014 \nu^{14} + 29672 \nu^{13} - 8526 \nu^{12} + 44762 \nu^{11} - 204435 \nu^{10} + \cdots - 41380227 ) / 5677452 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 153 \nu^{15} - 5006 \nu^{14} + 8285 \nu^{13} - 7402 \nu^{12} + 18621 \nu^{11} - 66493 \nu^{10} + \cdots - 5272128 ) / 630828 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 692 \nu^{15} - 643 \nu^{14} - 9030 \nu^{13} + 1811 \nu^{12} + 16426 \nu^{11} - 11623 \nu^{10} + \cdots + 9073134 ) / 1892484 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 1000 \nu^{15} - 9107 \nu^{14} + 20985 \nu^{13} - 14687 \nu^{12} + 35729 \nu^{11} - 133517 \nu^{10} + \cdots - 14465547 ) / 1892484 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 3116 \nu^{15} - 18839 \nu^{14} + 68626 \nu^{13} - 67737 \nu^{12} + 70138 \nu^{11} + \cdots - 72639018 ) / 5677452 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 353 \nu^{15} - 1777 \nu^{14} + 5697 \nu^{13} - 3637 \nu^{12} + 5695 \nu^{11} - 30562 \nu^{10} + \cdots - 4406076 ) / 630828 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 4919 \nu^{15} + 43211 \nu^{14} - 6295 \nu^{13} - 44319 \nu^{12} - 146995 \nu^{11} + \cdots - 14438574 ) / 5677452 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 615 \nu^{15} + 1477 \nu^{14} - 4308 \nu^{13} + 4891 \nu^{12} - 10258 \nu^{11} + 33866 \nu^{10} + \cdots + 3440151 ) / 630828 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 6901 \nu^{15} - 4852 \nu^{14} + 14816 \nu^{13} - 35004 \nu^{12} + 91394 \nu^{11} - 216117 \nu^{10} + \cdots - 24855255 ) / 5677452 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 2893 \nu^{15} - 9485 \nu^{14} + 19758 \nu^{13} - 17447 \nu^{12} + 46784 \nu^{11} - 216176 \nu^{10} + \cdots - 25811703 ) / 1892484 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 21 \nu^{15} + 64 \nu^{14} - 66 \nu^{13} + 64 \nu^{12} - 316 \nu^{11} + 1061 \nu^{10} + \cdots + 53217 ) / 10692 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 618 \nu^{15} - 1751 \nu^{14} + 2734 \nu^{13} - 2889 \nu^{12} + 9634 \nu^{11} - 32155 \nu^{10} + \cdots - 2193318 ) / 210276 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 107 \nu^{15} - 324 \nu^{14} + 374 \nu^{13} - 368 \nu^{12} + 1432 \nu^{11} - 5339 \nu^{10} + \cdots - 287955 ) / 32076 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 19865 \nu^{15} + 57002 \nu^{14} - 78061 \nu^{13} + 114318 \nu^{12} - 356977 \nu^{11} + \cdots + 56599560 ) / 5677452 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 9409 \nu^{15} + 17150 \nu^{14} - 20316 \nu^{13} + 34454 \nu^{12} - 122678 \nu^{11} + \cdots + 17060787 ) / 1892484 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{12} + \beta_{11} + \beta_{8} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{15} - \beta_{14} - \beta_{13} + \beta_{12} - \beta_{11} + \beta_{10} - \beta_{9} - \beta_{2} - \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - \beta_{15} - 2 \beta_{13} + \beta_{12} + \beta_{8} - \beta_{7} + \beta_{6} + \beta_{5} - 3 \beta_{4} + \cdots + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - \beta_{15} + 2 \beta_{14} - \beta_{13} - \beta_{11} + \beta_{10} + 5 \beta_{9} + 2 \beta_{8} + \cdots - 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{15} - 3\beta_{11} - 4\beta_{8} - 6\beta_{6} - 4\beta_{3} + 5 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 3 \beta_{15} + 3 \beta_{13} + 7 \beta_{12} + 18 \beta_{11} + 3 \beta_{10} + 9 \beta_{9} + 3 \beta_{8} + \cdots + 18 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 7 \beta_{15} + 4 \beta_{14} - 6 \beta_{13} + 20 \beta_{12} - \beta_{11} + 8 \beta_{10} - 14 \beta_{9} + \cdots - 9 ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 3 \beta_{15} - 25 \beta_{14} - 23 \beta_{13} + 24 \beta_{12} + 42 \beta_{11} + 17 \beta_{10} + \cdots - 41 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 44 \beta_{15} + 16 \beta_{14} - 24 \beta_{13} - 38 \beta_{12} + 26 \beta_{11} + 24 \beta_{10} + \cdots - 46 ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( -24\beta_{15} - 2\beta_{11} - 38\beta_{10} + 12\beta_{8} - 96\beta_{6} + 60\beta_{4} - 86\beta_{3} - 157 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 84 \beta_{15} - 156 \beta_{14} + 12 \beta_{13} - 49 \beta_{12} + 187 \beta_{11} + 12 \beta_{10} + \cdots + 126 ) / 2 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 49 \beta_{15} + 165 \beta_{14} - 19 \beta_{13} + 129 \beta_{12} + 13 \beta_{11} - 117 \beta_{10} + \cdots + 337 ) / 2 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 73 \beta_{15} - 274 \beta_{14} - 202 \beta_{13} + 589 \beta_{12} + 1008 \beta_{11} + 56 \beta_{10} + \cdots - 991 ) / 2 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 663 \beta_{15} - 276 \beta_{14} - 589 \beta_{13} - 548 \beta_{12} + 739 \beta_{11} + 589 \beta_{10} + \cdots + 1460 ) / 2 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 959 \beta_{15} + 487 \beta_{11} - 548 \beta_{10} + 1712 \beta_{8} + 132 \beta_{6} + 222 \beta_{4} + \cdots - 1469 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
725.1
−0.982909 1.42615i
1.63346 + 0.576037i
1.63346 0.576037i
−0.982909 + 1.42615i
0.907906 + 1.47503i
−1.12228 + 1.31928i
−1.12228 1.31928i
0.907906 1.47503i
0.762305 1.55528i
−1.53089 + 0.810175i
−1.53089 0.810175i
0.762305 + 1.55528i
0.601787 + 1.62415i
1.73062 0.0704449i
1.73062 + 0.0704449i
0.601787 1.62415i
0 −1.05261 1.37550i 0 0.414160i 0 1.74829i 0 −0.784027 + 2.89574i 0
725.2 0 −1.05261 1.37550i 0 0.414160i 0 1.74829i 0 −0.784027 + 2.89574i 0
725.3 0 −1.05261 + 1.37550i 0 0.414160i 0 1.74829i 0 −0.784027 2.89574i 0
725.4 0 −1.05261 + 1.37550i 0 0.414160i 0 1.74829i 0 −0.784027 2.89574i 0
725.5 0 −0.132489 1.72698i 0 2.46740i 0 3.58170i 0 −2.96489 + 0.457609i 0
725.6 0 −0.132489 1.72698i 0 2.46740i 0 3.58170i 0 −2.96489 + 0.457609i 0
725.7 0 −0.132489 + 1.72698i 0 2.46740i 0 3.58170i 0 −2.96489 0.457609i 0
725.8 0 −0.132489 + 1.72698i 0 2.46740i 0 3.58170i 0 −2.96489 0.457609i 0
725.9 0 1.24359 1.20560i 0 3.05881i 0 3.65040i 0 0.0930440 2.99856i 0
725.10 0 1.24359 1.20560i 0 3.05881i 0 3.65040i 0 0.0930440 2.99856i 0
725.11 0 1.24359 + 1.20560i 0 3.05881i 0 3.65040i 0 0.0930440 + 2.99856i 0
725.12 0 1.24359 + 1.20560i 0 3.05881i 0 3.65040i 0 0.0930440 + 2.99856i 0
725.13 0 1.44151 0.960240i 0 3.51910i 0 2.40613i 0 1.15588 2.76838i 0
725.14 0 1.44151 0.960240i 0 3.51910i 0 2.40613i 0 1.15588 2.76838i 0
725.15 0 1.44151 + 0.960240i 0 3.51910i 0 2.40613i 0 1.15588 + 2.76838i 0
725.16 0 1.44151 + 0.960240i 0 3.51910i 0 2.40613i 0 1.15588 + 2.76838i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 725.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
11.b odd 2 1 inner
33.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1452.2.b.e 16
3.b odd 2 1 inner 1452.2.b.e 16
11.b odd 2 1 inner 1452.2.b.e 16
11.c even 5 1 132.2.p.a 16
11.d odd 10 1 132.2.p.a 16
33.d even 2 1 inner 1452.2.b.e 16
33.f even 10 1 132.2.p.a 16
33.h odd 10 1 132.2.p.a 16
44.g even 10 1 528.2.bn.d 16
44.h odd 10 1 528.2.bn.d 16
132.n odd 10 1 528.2.bn.d 16
132.o even 10 1 528.2.bn.d 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
132.2.p.a 16 11.c even 5 1
132.2.p.a 16 11.d odd 10 1
132.2.p.a 16 33.f even 10 1
132.2.p.a 16 33.h odd 10 1
528.2.bn.d 16 44.g even 10 1
528.2.bn.d 16 44.h odd 10 1
528.2.bn.d 16 132.n odd 10 1
528.2.bn.d 16 132.o even 10 1
1452.2.b.e 16 1.a even 1 1 trivial
1452.2.b.e 16 3.b odd 2 1 inner
1452.2.b.e 16 11.b odd 2 1 inner
1452.2.b.e 16 33.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1452, [\chi])\):

\( T_{5}^{8} + 28T_{5}^{6} + 253T_{5}^{4} + 748T_{5}^{2} + 121 \) Copy content Toggle raw display
\( T_{7}^{8} + 35T_{7}^{6} + 420T_{7}^{4} + 1975T_{7}^{2} + 3025 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( (T^{8} - 3 T^{7} + 7 T^{6} + \cdots + 81)^{2} \) Copy content Toggle raw display
$5$ \( (T^{8} + 28 T^{6} + \cdots + 121)^{2} \) Copy content Toggle raw display
$7$ \( (T^{8} + 35 T^{6} + \cdots + 3025)^{2} \) Copy content Toggle raw display
$11$ \( T^{16} \) Copy content Toggle raw display
$13$ \( (T^{8} + 55 T^{6} + \cdots + 3025)^{2} \) Copy content Toggle raw display
$17$ \( (T^{8} - 80 T^{6} + \cdots + 3025)^{2} \) Copy content Toggle raw display
$19$ \( (T^{8} + 70 T^{6} + \cdots + 24025)^{2} \) Copy content Toggle raw display
$23$ \( (T^{8} + 94 T^{6} + \cdots + 1936)^{2} \) Copy content Toggle raw display
$29$ \( (T^{8} - 135 T^{6} + \cdots + 48400)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 10 T^{3} + 29 T^{2} + \cdots - 1)^{4} \) Copy content Toggle raw display
$37$ \( (T^{4} - 9 T^{3} + 10 T^{2} + \cdots - 1)^{4} \) Copy content Toggle raw display
$41$ \( (T^{8} - 185 T^{6} + \cdots + 366025)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} + 170 T^{6} + \cdots + 48400)^{2} \) Copy content Toggle raw display
$47$ \( (T^{8} + 116 T^{6} + \cdots + 421201)^{2} \) Copy content Toggle raw display
$53$ \( (T^{8} + 164 T^{6} + \cdots + 958441)^{2} \) Copy content Toggle raw display
$59$ \( (T^{8} + 316 T^{6} + \cdots + 2758921)^{2} \) Copy content Toggle raw display
$61$ \( (T^{8} + 230 T^{6} + \cdots + 93025)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 11 T^{3} + \cdots + 1024)^{4} \) Copy content Toggle raw display
$71$ \( (T^{8} + 272 T^{6} + \cdots + 121)^{2} \) Copy content Toggle raw display
$73$ \( (T^{8} + 405 T^{6} + \cdots + 36966400)^{2} \) Copy content Toggle raw display
$79$ \( (T^{8} + 535 T^{6} + \cdots + 9579025)^{2} \) Copy content Toggle raw display
$83$ \( (T^{8} - 185 T^{6} + \cdots + 3025)^{2} \) Copy content Toggle raw display
$89$ \( (T^{8} + 558 T^{6} + \cdots + 203233536)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} - 16 T^{3} + \cdots - 521)^{4} \) Copy content Toggle raw display
show more
show less