L(s) = 1 | + (1.24 + 1.20i)3-s + 3.05i·5-s − 3.65i·7-s + (0.0930 + 2.99i)9-s + 1.08i·13-s + (−3.68 + 3.80i)15-s − 1.23·17-s + 5.17i·19-s + (4.40 − 4.53i)21-s + 6.43i·23-s − 4.35·25-s + (−3.49 + 3.84i)27-s − 7.42·29-s + 3.91·31-s + 11.1·35-s + ⋯ |
L(s) = 1 | + (0.717 + 0.696i)3-s + 1.36i·5-s − 1.37i·7-s + (0.0310 + 0.999i)9-s + 0.299i·13-s + (−0.952 + 0.982i)15-s − 0.298·17-s + 1.18i·19-s + (0.960 − 0.990i)21-s + 1.34i·23-s − 0.871·25-s + (−0.673 + 0.739i)27-s − 1.37·29-s + 0.703·31-s + 1.88·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.548 - 0.836i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.548 - 0.836i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.851548458\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.851548458\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.24 - 1.20i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 - 3.05iT - 5T^{2} \) |
| 7 | \( 1 + 3.65iT - 7T^{2} \) |
| 13 | \( 1 - 1.08iT - 13T^{2} \) |
| 17 | \( 1 + 1.23T + 17T^{2} \) |
| 19 | \( 1 - 5.17iT - 19T^{2} \) |
| 23 | \( 1 - 6.43iT - 23T^{2} \) |
| 29 | \( 1 + 7.42T + 29T^{2} \) |
| 31 | \( 1 - 3.91T + 31T^{2} \) |
| 37 | \( 1 - 0.211T + 37T^{2} \) |
| 41 | \( 1 - 6.43T + 41T^{2} \) |
| 43 | \( 1 - 11.6iT - 43T^{2} \) |
| 47 | \( 1 + 3.18iT - 47T^{2} \) |
| 53 | \( 1 + 8.20iT - 53T^{2} \) |
| 59 | \( 1 - 6.23iT - 59T^{2} \) |
| 61 | \( 1 - 6.10iT - 61T^{2} \) |
| 67 | \( 1 + 3.24T + 67T^{2} \) |
| 71 | \( 1 + 0.332iT - 71T^{2} \) |
| 73 | \( 1 + 13.6iT - 73T^{2} \) |
| 79 | \( 1 - 1.32iT - 79T^{2} \) |
| 83 | \( 1 - 7.81T + 83T^{2} \) |
| 89 | \( 1 + 10.3iT - 89T^{2} \) |
| 97 | \( 1 - 6.35T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.890247626063246371814627149773, −9.232817403418016097653624581823, −7.910765089545736880568472707118, −7.54773407071326859713157129099, −6.73439371988802709812612907477, −5.71647320921139344479850785489, −4.39376825489295683966007493128, −3.72077005152524726333739869575, −3.03752155809882850208950075895, −1.76071897253133705624458145859,
0.66388163876740529341851027068, 2.03876991746229687907920456807, 2.78268301234032935699765647586, 4.17026530991707768403839332065, 5.12884875331101106015384906253, 5.90730629568820286460978426245, 6.84589068639110424535294018734, 7.905152422920815705758507553038, 8.597437834968493660632064206898, 9.030568676334477303778834459697