Properties

Label 132.2.p.a
Level $132$
Weight $2$
Character orbit 132.p
Analytic conductor $1.054$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [132,2,Mod(17,132)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(132, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("132.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 132 = 2^{2} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 132.p (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.05402530668\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} - 12 x^{13} + 23 x^{12} - 72 x^{11} + 146 x^{10} - 176 x^{9} + 223 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{12} q^{3} - \beta_{15} q^{5} + ( - \beta_{13} - \beta_{12} - \beta_{9} + \cdots + 1) q^{7} + (\beta_{15} + \beta_{13} + \cdots + \beta_{2}) q^{9} + ( - \beta_{13} - \beta_{10} + \beta_{4}) q^{11}+ \cdots + ( - \beta_{15} + \beta_{14} - 2 \beta_{13} + \cdots - 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{3} + 5 q^{9} + 9 q^{15} - 30 q^{19} - 12 q^{25} + q^{27} - 10 q^{31} - 41 q^{33} - 24 q^{37} - 35 q^{39} + 2 q^{45} + 12 q^{49} - 15 q^{51} + 62 q^{55} + 35 q^{57} + 40 q^{61} + 55 q^{63} + 44 q^{67}+ \cdots - 101 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 4 x^{15} + 8 x^{14} - 12 x^{13} + 23 x^{12} - 72 x^{11} + 146 x^{10} - 176 x^{9} + 223 x^{8} + \cdots + 6561 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 520 \nu^{15} + 8455 \nu^{14} - 47858 \nu^{13} + 36585 \nu^{12} - 10430 \nu^{11} + \cdots + 49929210 ) / 5677452 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 671 \nu^{15} + 10466 \nu^{14} - 30367 \nu^{13} + 17631 \nu^{12} - 9997 \nu^{11} + \cdots + 35110098 ) / 2838726 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 2147 \nu^{15} + 13318 \nu^{14} - 48254 \nu^{13} + 32439 \nu^{12} - 47441 \nu^{11} + \cdots + 49898592 ) / 5677452 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 2125 \nu^{15} + 14566 \nu^{14} - 10115 \nu^{13} - 510 \nu^{12} - 38201 \nu^{11} + \cdots - 1137240 ) / 5677452 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 353 \nu^{15} + 1777 \nu^{14} - 5697 \nu^{13} + 3637 \nu^{12} - 5695 \nu^{11} + 30562 \nu^{10} + \cdots + 4406076 ) / 630828 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 3448 \nu^{15} + 10615 \nu^{14} - 11591 \nu^{13} - 9897 \nu^{12} - 46571 \nu^{11} + \cdots + 12109419 ) / 5677452 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 5107 \nu^{15} - 12985 \nu^{14} + 2687 \nu^{13} - 12729 \nu^{12} + 61517 \nu^{11} - 179478 \nu^{10} + \cdots + 6561000 ) / 5677452 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 6044 \nu^{15} - 20999 \nu^{14} + 32359 \nu^{13} - 21255 \nu^{12} + 106279 \nu^{11} + \cdots - 34819227 ) / 5677452 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 2051 \nu^{15} + 14671 \nu^{14} - 11259 \nu^{13} + 6019 \nu^{12} - 58549 \nu^{11} + \cdots + 1469664 ) / 1892484 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 7660 \nu^{15} + 27859 \nu^{14} - 48887 \nu^{13} + 43509 \nu^{12} - 130523 \nu^{11} + \cdots + 29824119 ) / 5677452 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 3615 \nu^{15} + 5434 \nu^{14} - 9502 \nu^{13} + 18449 \nu^{12} - 48651 \nu^{11} + \cdots + 10879596 ) / 1892484 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 12002 \nu^{15} - 39119 \nu^{14} + 42127 \nu^{13} - 72210 \nu^{12} + 234340 \nu^{11} + \cdots - 12859560 ) / 5677452 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 3049 \nu^{15} + 8629 \nu^{14} - 11778 \nu^{13} + 13879 \nu^{12} - 49972 \nu^{11} + \cdots + 11528649 ) / 630828 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 10683 \nu^{15} + 30416 \nu^{14} - 45593 \nu^{13} + 48700 \nu^{12} - 161595 \nu^{11} + \cdots + 38289996 ) / 1892484 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{15} - \beta_{14} + \beta_{13} + \beta_{11} - \beta_{9} - \beta_{8} - \beta_{7} - \beta_{6} + \cdots - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( - \beta_{14} - 3 \beta_{13} - 2 \beta_{12} + \beta_{11} - \beta_{10} - 2 \beta_{9} + 2 \beta_{7} + \cdots + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - \beta_{14} + 2 \beta_{12} + \beta_{11} - 5 \beta_{9} + 6 \beta_{8} - 5 \beta_{7} + \beta_{6} + \cdots + \beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{15} + \beta_{13} + \beta_{12} - 4 \beta_{11} - \beta_{9} + 3 \beta_{8} - 5 \beta_{7} + 6 \beta_{6} + \cdots + 5 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 3 \beta_{15} - 6 \beta_{13} + 2 \beta_{11} - 6 \beta_{10} - 2 \beta_{8} + 6 \beta_{7} + 9 \beta_{5} + \cdots + 15 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 7 \beta_{15} - 7 \beta_{14} + 16 \beta_{13} + 19 \beta_{12} + 3 \beta_{11} + \beta_{10} + 8 \beta_{9} + \cdots - 14 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 20 \beta_{14} - 21 \beta_{13} - 26 \beta_{12} + 20 \beta_{11} - 20 \beta_{10} - 54 \beta_{9} + \cdots - 59 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 20 \beta_{15} - 24 \beta_{14} - 20 \beta_{13} + 16 \beta_{12} + 82 \beta_{11} - 20 \beta_{10} + \cdots + 24 \beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 24 \beta_{15} + 38 \beta_{14} + 36 \beta_{13} + 36 \beta_{12} - 26 \beta_{11} - 8 \beta_{9} + \cdots - 119 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 12 \beta_{15} + 60 \beta_{13} + 80 \beta_{11} - 96 \beta_{10} - 218 \beta_{8} - 60 \beta_{7} + \cdots + 114 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 49 \beta_{15} + 49 \beta_{14} - 13 \beta_{13} + 220 \beta_{12} + 73 \beta_{11} - 68 \beta_{10} + \cdots + 345 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 129 \beta_{14} + 147 \beta_{13} + 2 \beta_{12} + 129 \beta_{11} - 129 \beta_{10} - 494 \beta_{9} + \cdots - 1009 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 74 \beta_{15} - 589 \beta_{14} - 74 \beta_{13} - 276 \beta_{12} + 1211 \beta_{11} - 74 \beta_{10} + \cdots + 589 \beta_1 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 959 \beta_{15} + 548 \beta_{14} - 737 \beta_{13} - 737 \beta_{12} + 1164 \beta_{11} - 747 \beta_{9} + \cdots - 921 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/132\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(67\) \(89\)
\(\chi(n)\) \(1 + \beta_{5} + \beta_{8} + \beta_{9}\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1
−1.53089 + 0.810175i
0.762305 + 1.55528i
−0.982909 1.42615i
1.63346 0.576037i
0.907906 + 1.47503i
1.73062 0.0704449i
0.601787 1.62415i
−1.12228 1.31928i
0.907906 1.47503i
1.73062 + 0.0704449i
0.601787 + 1.62415i
−1.12228 + 1.31928i
−1.53089 0.810175i
0.762305 1.55528i
−0.982909 + 1.42615i
1.63346 + 0.576037i
0 −1.71472 + 0.244388i 0 −2.90910 0.945225i 0 −2.14565 2.95324i 0 2.88055 0.838115i 0
17.2 0 −0.297452 1.70632i 0 2.90910 + 0.945225i 0 −2.14565 2.95324i 0 −2.82304 + 1.01510i 0
17.3 0 0.0430774 + 1.73152i 0 0.393890 + 0.127982i 0 1.02762 + 1.41440i 0 −2.99629 + 0.149178i 0
17.4 0 1.66008 0.494099i 0 −0.393890 0.127982i 0 1.02762 + 1.41440i 0 2.51173 1.64049i 0
29.1 0 −1.68339 0.407661i 0 1.45030 + 1.99617i 0 3.40640 1.10681i 0 2.66763 + 1.37251i 0
29.2 0 −0.467793 1.66768i 0 −2.06847 2.84701i 0 −2.28837 + 0.743535i 0 −2.56234 + 1.56026i 0
29.3 0 1.35869 1.07422i 0 2.06847 + 2.84701i 0 −2.28837 + 0.743535i 0 0.692091 2.91908i 0
29.4 0 1.60151 + 0.659669i 0 −1.45030 1.99617i 0 3.40640 1.10681i 0 2.12967 + 2.11293i 0
41.1 0 −1.68339 + 0.407661i 0 1.45030 1.99617i 0 3.40640 + 1.10681i 0 2.66763 1.37251i 0
41.2 0 −0.467793 + 1.66768i 0 −2.06847 + 2.84701i 0 −2.28837 0.743535i 0 −2.56234 1.56026i 0
41.3 0 1.35869 + 1.07422i 0 2.06847 2.84701i 0 −2.28837 0.743535i 0 0.692091 + 2.91908i 0
41.4 0 1.60151 0.659669i 0 −1.45030 + 1.99617i 0 3.40640 + 1.10681i 0 2.12967 2.11293i 0
101.1 0 −1.71472 0.244388i 0 −2.90910 + 0.945225i 0 −2.14565 + 2.95324i 0 2.88055 + 0.838115i 0
101.2 0 −0.297452 + 1.70632i 0 2.90910 0.945225i 0 −2.14565 + 2.95324i 0 −2.82304 1.01510i 0
101.3 0 0.0430774 1.73152i 0 0.393890 0.127982i 0 1.02762 1.41440i 0 −2.99629 0.149178i 0
101.4 0 1.66008 + 0.494099i 0 −0.393890 + 0.127982i 0 1.02762 1.41440i 0 2.51173 + 1.64049i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 17.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
11.d odd 10 1 inner
33.f even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 132.2.p.a 16
3.b odd 2 1 inner 132.2.p.a 16
4.b odd 2 1 528.2.bn.d 16
11.c even 5 1 1452.2.b.e 16
11.d odd 10 1 inner 132.2.p.a 16
11.d odd 10 1 1452.2.b.e 16
12.b even 2 1 528.2.bn.d 16
33.f even 10 1 inner 132.2.p.a 16
33.f even 10 1 1452.2.b.e 16
33.h odd 10 1 1452.2.b.e 16
44.g even 10 1 528.2.bn.d 16
132.n odd 10 1 528.2.bn.d 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
132.2.p.a 16 1.a even 1 1 trivial
132.2.p.a 16 3.b odd 2 1 inner
132.2.p.a 16 11.d odd 10 1 inner
132.2.p.a 16 33.f even 10 1 inner
528.2.bn.d 16 4.b odd 2 1
528.2.bn.d 16 12.b even 2 1
528.2.bn.d 16 44.g even 10 1
528.2.bn.d 16 132.n odd 10 1
1452.2.b.e 16 11.c even 5 1
1452.2.b.e 16 11.d odd 10 1
1452.2.b.e 16 33.f even 10 1
1452.2.b.e 16 33.h odd 10 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(132, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( T^{16} - T^{15} + \cdots + 6561 \) Copy content Toggle raw display
$5$ \( T^{16} - 4 T^{14} + \cdots + 14641 \) Copy content Toggle raw display
$7$ \( (T^{8} - 10 T^{6} + \cdots + 3025)^{2} \) Copy content Toggle raw display
$11$ \( T^{16} + \cdots + 214358881 \) Copy content Toggle raw display
$13$ \( (T^{8} + 10 T^{6} + \cdots + 3025)^{2} \) Copy content Toggle raw display
$17$ \( T^{16} + 35 T^{14} + \cdots + 9150625 \) Copy content Toggle raw display
$19$ \( (T^{8} + 15 T^{7} + \cdots + 24025)^{2} \) Copy content Toggle raw display
$23$ \( (T^{8} + 94 T^{6} + \cdots + 1936)^{2} \) Copy content Toggle raw display
$29$ \( T^{16} + \cdots + 2342560000 \) Copy content Toggle raw display
$31$ \( (T^{8} + 5 T^{7} + 18 T^{6} + \cdots + 1)^{2} \) Copy content Toggle raw display
$37$ \( (T^{8} + 12 T^{7} + 56 T^{6} + \cdots + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 133974300625 \) Copy content Toggle raw display
$43$ \( (T^{8} + 170 T^{6} + \cdots + 48400)^{2} \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 177410282401 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 918609150481 \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 7611645084241 \) Copy content Toggle raw display
$61$ \( (T^{8} - 20 T^{7} + \cdots + 93025)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 11 T^{3} + \cdots + 1024)^{4} \) Copy content Toggle raw display
$71$ \( T^{16} - 416 T^{14} + \cdots + 14641 \) Copy content Toggle raw display
$73$ \( (T^{8} - 5 T^{7} + \cdots + 36966400)^{2} \) Copy content Toggle raw display
$79$ \( (T^{8} - 10 T^{7} + \cdots + 9579025)^{2} \) Copy content Toggle raw display
$83$ \( T^{16} + 270 T^{14} + \cdots + 9150625 \) Copy content Toggle raw display
$89$ \( (T^{8} + 558 T^{6} + \cdots + 203233536)^{2} \) Copy content Toggle raw display
$97$ \( (T^{8} + 18 T^{7} + \cdots + 271441)^{2} \) Copy content Toggle raw display
show more
show less