L(s) = 1 | + (0.0430 − 1.73i)3-s + (0.393 − 0.127i)5-s + (1.02 − 1.41i)7-s + (−2.99 − 0.149i)9-s + (2.25 − 2.43i)11-s + (−2.14 − 0.697i)13-s + (−0.204 − 0.687i)15-s + (1.86 + 5.72i)17-s + (2.08 + 2.87i)19-s + (−2.40 − 1.84i)21-s + 1.03i·23-s + (−3.90 + 2.83i)25-s + (−0.387 + 5.18i)27-s + (6.84 + 4.97i)29-s + (0.334 − 1.02i)31-s + ⋯ |
L(s) = 1 | + (0.0248 − 0.999i)3-s + (0.176 − 0.0572i)5-s + (0.388 − 0.534i)7-s + (−0.998 − 0.0497i)9-s + (0.679 − 0.733i)11-s + (−0.595 − 0.193i)13-s + (−0.0528 − 0.177i)15-s + (0.451 + 1.38i)17-s + (0.479 + 0.659i)19-s + (−0.524 − 0.401i)21-s + 0.214i·23-s + (−0.781 + 0.567i)25-s + (−0.0745 + 0.997i)27-s + (1.27 + 0.924i)29-s + (0.0599 − 0.184i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 132 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.446 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.446 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.956180 - 0.591766i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.956180 - 0.591766i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.0430 + 1.73i)T \) |
| 11 | \( 1 + (-2.25 + 2.43i)T \) |
good | 5 | \( 1 + (-0.393 + 0.127i)T + (4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (-1.02 + 1.41i)T + (-2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (2.14 + 0.697i)T + (10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (-1.86 - 5.72i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (-2.08 - 2.87i)T + (-5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 - 1.03iT - 23T^{2} \) |
| 29 | \( 1 + (-6.84 - 4.97i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-0.334 + 1.02i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (6.18 + 4.49i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (2.22 - 1.61i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 - 2.87iT - 43T^{2} \) |
| 47 | \( 1 + (3.87 + 5.32i)T + (-14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (6.60 + 2.14i)T + (42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-6.47 + 8.91i)T + (-18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-10.8 + 3.51i)T + (49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 - 9.86T + 67T^{2} \) |
| 71 | \( 1 + (15.3 - 4.99i)T + (57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-4.22 + 5.81i)T + (-22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (12.1 + 3.95i)T + (63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (3.25 + 10.0i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 - 7.11iT - 89T^{2} \) |
| 97 | \( 1 + (0.874 - 2.69i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.07879186454193594209813698773, −12.17543495870368631544594793014, −11.24049026343626605904430088512, −10.06155562908179679828830016406, −8.607504820528970292580059810814, −7.75565921857315667605564810912, −6.58534436956610243076664175106, −5.45883289776798630045906964623, −3.52778160631281122698797952992, −1.50773120251645068529098843915,
2.67164536186573009857648349192, 4.42468428652300787814338828065, 5.37125402795784368470689983052, 6.91434410651166176608534039188, 8.401911716719017076448243239658, 9.504113582988649553032816021598, 10.10053748273293430390600969012, 11.61438246156756374154760844842, 12.01960485111859963806265210525, 13.79532135220903677107862444005