Properties

Label 132.2.p.a.101.3
Level $132$
Weight $2$
Character 132.101
Analytic conductor $1.054$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [132,2,Mod(17,132)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(132, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("132.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 132 = 2^{2} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 132.p (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.05402530668\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} - 12 x^{13} + 23 x^{12} - 72 x^{11} + 146 x^{10} - 176 x^{9} + 223 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 101.3
Root \(-0.982909 + 1.42615i\) of defining polynomial
Character \(\chi\) \(=\) 132.101
Dual form 132.2.p.a.17.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0430774 - 1.73152i) q^{3} +(0.393890 - 0.127982i) q^{5} +(1.02762 - 1.41440i) q^{7} +(-2.99629 - 0.149178i) q^{9} +(2.25433 - 2.43269i) q^{11} +(-2.14565 - 0.697165i) q^{13} +(-0.204636 - 0.687539i) q^{15} +(1.86044 + 5.72585i) q^{17} +(2.08977 + 2.87633i) q^{19} +(-2.40478 - 1.84027i) q^{21} +1.03009i q^{23} +(-3.90632 + 2.83810i) q^{25} +(-0.387377 + 5.18169i) q^{27} +(6.84973 + 4.97662i) q^{29} +(0.334007 - 1.02797i) q^{31} +(-4.11513 - 4.00820i) q^{33} +(0.223751 - 0.688633i) q^{35} +(-6.18282 - 4.49208i) q^{37} +(-1.29958 + 3.68520i) q^{39} +(-2.22248 + 1.61472i) q^{41} +2.87755i q^{43} +(-1.19930 + 0.324713i) q^{45} +(-3.87133 - 5.32843i) q^{47} +(1.21860 + 3.75047i) q^{49} +(9.99453 - 2.97473i) q^{51} +(-6.60630 - 2.14652i) q^{53} +(0.576615 - 1.24673i) q^{55} +(5.07043 - 3.49457i) q^{57} +(6.47553 - 8.91280i) q^{59} +(10.8077 - 3.51165i) q^{61} +(-3.29004 + 4.08464i) q^{63} -0.934375 q^{65} +9.86261 q^{67} +(1.78362 + 0.0443737i) q^{69} +(-15.3680 + 4.99337i) q^{71} +(4.22448 - 5.81450i) q^{73} +(4.74595 + 6.88610i) q^{75} +(-1.12420 - 5.68840i) q^{77} +(-12.1793 - 3.95730i) q^{79} +(8.95549 + 0.893963i) q^{81} +(-3.25369 - 10.0138i) q^{83} +(1.46562 + 2.01725i) q^{85} +(8.91217 - 11.6460i) q^{87} +7.11103i q^{89} +(-3.19098 + 2.31838i) q^{91} +(-1.76555 - 0.622620i) q^{93} +(1.19126 + 0.865501i) q^{95} +(-0.874046 + 2.69004i) q^{97} +(-7.11753 + 6.95275i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{3} + 5 q^{9} + 9 q^{15} - 30 q^{19} - 12 q^{25} + q^{27} - 10 q^{31} - 41 q^{33} - 24 q^{37} - 35 q^{39} + 2 q^{45} + 12 q^{49} - 15 q^{51} + 62 q^{55} + 35 q^{57} + 40 q^{61} + 55 q^{63} + 44 q^{67}+ \cdots - 101 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/132\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(67\) \(89\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0430774 1.73152i 0.0248708 0.999691i
\(4\) 0 0
\(5\) 0.393890 0.127982i 0.176153 0.0572355i −0.219613 0.975587i \(-0.570479\pi\)
0.395765 + 0.918352i \(0.370479\pi\)
\(6\) 0 0
\(7\) 1.02762 1.41440i 0.388404 0.534592i −0.569383 0.822073i \(-0.692818\pi\)
0.957786 + 0.287481i \(0.0928178\pi\)
\(8\) 0 0
\(9\) −2.99629 0.149178i −0.998763 0.0497261i
\(10\) 0 0
\(11\) 2.25433 2.43269i 0.679706 0.733485i
\(12\) 0 0
\(13\) −2.14565 0.697165i −0.595097 0.193359i −0.00404459 0.999992i \(-0.501287\pi\)
−0.591053 + 0.806633i \(0.701287\pi\)
\(14\) 0 0
\(15\) −0.204636 0.687539i −0.0528367 0.177522i
\(16\) 0 0
\(17\) 1.86044 + 5.72585i 0.451223 + 1.38872i 0.875513 + 0.483195i \(0.160524\pi\)
−0.424290 + 0.905526i \(0.639476\pi\)
\(18\) 0 0
\(19\) 2.08977 + 2.87633i 0.479427 + 0.659875i 0.978395 0.206746i \(-0.0662873\pi\)
−0.498968 + 0.866621i \(0.666287\pi\)
\(20\) 0 0
\(21\) −2.40478 1.84027i −0.524766 0.401579i
\(22\) 0 0
\(23\) 1.03009i 0.214789i 0.994216 + 0.107395i \(0.0342508\pi\)
−0.994216 + 0.107395i \(0.965749\pi\)
\(24\) 0 0
\(25\) −3.90632 + 2.83810i −0.781263 + 0.567621i
\(26\) 0 0
\(27\) −0.387377 + 5.18169i −0.0745508 + 0.997217i
\(28\) 0 0
\(29\) 6.84973 + 4.97662i 1.27196 + 0.924136i 0.999279 0.0379677i \(-0.0120884\pi\)
0.272685 + 0.962103i \(0.412088\pi\)
\(30\) 0 0
\(31\) 0.334007 1.02797i 0.0599894 0.184628i −0.916571 0.399872i \(-0.869055\pi\)
0.976560 + 0.215244i \(0.0690546\pi\)
\(32\) 0 0
\(33\) −4.11513 4.00820i −0.716353 0.697738i
\(34\) 0 0
\(35\) 0.223751 0.688633i 0.0378207 0.116400i
\(36\) 0 0
\(37\) −6.18282 4.49208i −1.01645 0.738493i −0.0508971 0.998704i \(-0.516208\pi\)
−0.965552 + 0.260210i \(0.916208\pi\)
\(38\) 0 0
\(39\) −1.29958 + 3.68520i −0.208100 + 0.590104i
\(40\) 0 0
\(41\) −2.22248 + 1.61472i −0.347092 + 0.252177i −0.747648 0.664095i \(-0.768817\pi\)
0.400556 + 0.916272i \(0.368817\pi\)
\(42\) 0 0
\(43\) 2.87755i 0.438822i 0.975633 + 0.219411i \(0.0704135\pi\)
−0.975633 + 0.219411i \(0.929587\pi\)
\(44\) 0 0
\(45\) −1.19930 + 0.324713i −0.178781 + 0.0484053i
\(46\) 0 0
\(47\) −3.87133 5.32843i −0.564692 0.777232i 0.427222 0.904147i \(-0.359492\pi\)
−0.991914 + 0.126915i \(0.959492\pi\)
\(48\) 0 0
\(49\) 1.21860 + 3.75047i 0.174086 + 0.535782i
\(50\) 0 0
\(51\) 9.99453 2.97473i 1.39951 0.416545i
\(52\) 0 0
\(53\) −6.60630 2.14652i −0.907445 0.294847i −0.182138 0.983273i \(-0.558302\pi\)
−0.725306 + 0.688426i \(0.758302\pi\)
\(54\) 0 0
\(55\) 0.576615 1.24673i 0.0777507 0.168109i
\(56\) 0 0
\(57\) 5.07043 3.49457i 0.671594 0.462867i
\(58\) 0 0
\(59\) 6.47553 8.91280i 0.843042 1.16035i −0.142311 0.989822i \(-0.545453\pi\)
0.985353 0.170526i \(-0.0545468\pi\)
\(60\) 0 0
\(61\) 10.8077 3.51165i 1.38379 0.449620i 0.479876 0.877336i \(-0.340682\pi\)
0.903913 + 0.427716i \(0.140682\pi\)
\(62\) 0 0
\(63\) −3.29004 + 4.08464i −0.414506 + 0.514617i
\(64\) 0 0
\(65\) −0.934375 −0.115895
\(66\) 0 0
\(67\) 9.86261 1.20491 0.602455 0.798153i \(-0.294189\pi\)
0.602455 + 0.798153i \(0.294189\pi\)
\(68\) 0 0
\(69\) 1.78362 + 0.0443737i 0.214723 + 0.00534197i
\(70\) 0 0
\(71\) −15.3680 + 4.99337i −1.82385 + 0.592604i −0.824193 + 0.566309i \(0.808371\pi\)
−0.999654 + 0.0262952i \(0.991629\pi\)
\(72\) 0 0
\(73\) 4.22448 5.81450i 0.494438 0.680536i −0.486761 0.873535i \(-0.661822\pi\)
0.981199 + 0.193000i \(0.0618216\pi\)
\(74\) 0 0
\(75\) 4.74595 + 6.88610i 0.548015 + 0.795139i
\(76\) 0 0
\(77\) −1.12420 5.68840i −0.128115 0.648253i
\(78\) 0 0
\(79\) −12.1793 3.95730i −1.37028 0.445231i −0.470817 0.882231i \(-0.656041\pi\)
−0.899461 + 0.437000i \(0.856041\pi\)
\(80\) 0 0
\(81\) 8.95549 + 0.893963i 0.995055 + 0.0993292i
\(82\) 0 0
\(83\) −3.25369 10.0138i −0.357139 1.09916i −0.954759 0.297381i \(-0.903887\pi\)
0.597620 0.801780i \(-0.296113\pi\)
\(84\) 0 0
\(85\) 1.46562 + 2.01725i 0.158968 + 0.218801i
\(86\) 0 0
\(87\) 8.91217 11.6460i 0.955485 1.24859i
\(88\) 0 0
\(89\) 7.11103i 0.753767i 0.926261 + 0.376884i \(0.123004\pi\)
−0.926261 + 0.376884i \(0.876996\pi\)
\(90\) 0 0
\(91\) −3.19098 + 2.31838i −0.334506 + 0.243033i
\(92\) 0 0
\(93\) −1.76555 0.622620i −0.183079 0.0645627i
\(94\) 0 0
\(95\) 1.19126 + 0.865501i 0.122221 + 0.0887985i
\(96\) 0 0
\(97\) −0.874046 + 2.69004i −0.0887459 + 0.273132i −0.985573 0.169249i \(-0.945866\pi\)
0.896827 + 0.442380i \(0.145866\pi\)
\(98\) 0 0
\(99\) −7.11753 + 6.95275i −0.715338 + 0.698778i
\(100\) 0 0
\(101\) 3.25369 10.0138i 0.323754 0.996414i −0.648245 0.761432i \(-0.724497\pi\)
0.972000 0.234982i \(-0.0755032\pi\)
\(102\) 0 0
\(103\) −8.66248 6.29366i −0.853539 0.620133i 0.0725803 0.997363i \(-0.476877\pi\)
−0.926120 + 0.377230i \(0.876877\pi\)
\(104\) 0 0
\(105\) −1.18274 0.417092i −0.115424 0.0407040i
\(106\) 0 0
\(107\) −13.5394 + 9.83697i −1.30891 + 0.950976i −1.00000 0.000117106i \(-0.999963\pi\)
−0.308906 + 0.951093i \(0.599963\pi\)
\(108\) 0 0
\(109\) 19.3039i 1.84898i 0.381209 + 0.924489i \(0.375508\pi\)
−0.381209 + 0.924489i \(0.624492\pi\)
\(110\) 0 0
\(111\) −8.04444 + 10.5121i −0.763545 + 0.997768i
\(112\) 0 0
\(113\) 0.263124 + 0.362159i 0.0247526 + 0.0340690i 0.821214 0.570620i \(-0.193297\pi\)
−0.796461 + 0.604689i \(0.793297\pi\)
\(114\) 0 0
\(115\) 0.131834 + 0.405743i 0.0122936 + 0.0378357i
\(116\) 0 0
\(117\) 6.32499 + 2.40899i 0.584746 + 0.222711i
\(118\) 0 0
\(119\) 10.0104 + 3.25259i 0.917656 + 0.298164i
\(120\) 0 0
\(121\) −0.835996 10.9682i −0.0759996 0.997108i
\(122\) 0 0
\(123\) 2.70018 + 3.91781i 0.243467 + 0.353257i
\(124\) 0 0
\(125\) −2.39262 + 3.29315i −0.214002 + 0.294548i
\(126\) 0 0
\(127\) −2.73439 + 0.888458i −0.242638 + 0.0788379i −0.427811 0.903868i \(-0.640715\pi\)
0.185174 + 0.982706i \(0.440715\pi\)
\(128\) 0 0
\(129\) 4.98251 + 0.123957i 0.438686 + 0.0109138i
\(130\) 0 0
\(131\) 8.65271 0.755990 0.377995 0.925808i \(-0.376614\pi\)
0.377995 + 0.925808i \(0.376614\pi\)
\(132\) 0 0
\(133\) 6.21576 0.538975
\(134\) 0 0
\(135\) 0.510582 + 2.09059i 0.0439439 + 0.179930i
\(136\) 0 0
\(137\) 2.46591 0.801224i 0.210677 0.0684532i −0.201777 0.979431i \(-0.564672\pi\)
0.412454 + 0.910978i \(0.364672\pi\)
\(138\) 0 0
\(139\) −7.81529 + 10.7568i −0.662884 + 0.912382i −0.999573 0.0292340i \(-0.990693\pi\)
0.336688 + 0.941616i \(0.390693\pi\)
\(140\) 0 0
\(141\) −9.39303 + 6.47374i −0.791036 + 0.545187i
\(142\) 0 0
\(143\) −6.53300 + 3.64808i −0.546317 + 0.305068i
\(144\) 0 0
\(145\) 3.33496 + 1.08359i 0.276953 + 0.0899876i
\(146\) 0 0
\(147\) 6.54649 1.94847i 0.539946 0.160707i
\(148\) 0 0
\(149\) 2.27994 + 7.01695i 0.186780 + 0.574851i 0.999974 0.00714183i \(-0.00227333\pi\)
−0.813194 + 0.581992i \(0.802273\pi\)
\(150\) 0 0
\(151\) −1.86490 2.56681i −0.151763 0.208884i 0.726366 0.687309i \(-0.241208\pi\)
−0.878129 + 0.478425i \(0.841208\pi\)
\(152\) 0 0
\(153\) −4.72024 17.4338i −0.381609 1.40944i
\(154\) 0 0
\(155\) 0.447653i 0.0359563i
\(156\) 0 0
\(157\) −5.74463 + 4.17372i −0.458471 + 0.333099i −0.792931 0.609311i \(-0.791446\pi\)
0.334460 + 0.942410i \(0.391446\pi\)
\(158\) 0 0
\(159\) −4.00131 + 11.3464i −0.317324 + 0.899831i
\(160\) 0 0
\(161\) 1.45696 + 1.05854i 0.114824 + 0.0834249i
\(162\) 0 0
\(163\) 4.89227 15.0569i 0.383192 1.17934i −0.554591 0.832123i \(-0.687125\pi\)
0.937783 0.347221i \(-0.112875\pi\)
\(164\) 0 0
\(165\) −2.13389 1.05212i −0.166123 0.0819077i
\(166\) 0 0
\(167\) 0.207920 0.639912i 0.0160893 0.0495179i −0.942690 0.333671i \(-0.891712\pi\)
0.958779 + 0.284153i \(0.0917125\pi\)
\(168\) 0 0
\(169\) −6.39943 4.64946i −0.492264 0.357651i
\(170\) 0 0
\(171\) −5.83248 8.93006i −0.446021 0.682898i
\(172\) 0 0
\(173\) 15.0060 10.9025i 1.14088 0.828900i 0.153641 0.988127i \(-0.450900\pi\)
0.987242 + 0.159227i \(0.0509000\pi\)
\(174\) 0 0
\(175\) 8.44157i 0.638123i
\(176\) 0 0
\(177\) −15.1537 11.5964i −1.13902 0.871640i
\(178\) 0 0
\(179\) 5.03331 + 6.92776i 0.376208 + 0.517805i 0.954575 0.297971i \(-0.0963099\pi\)
−0.578367 + 0.815777i \(0.696310\pi\)
\(180\) 0 0
\(181\) −3.78804 11.6584i −0.281563 0.866560i −0.987408 0.158195i \(-0.949433\pi\)
0.705845 0.708366i \(-0.250567\pi\)
\(182\) 0 0
\(183\) −5.61490 18.8650i −0.415065 1.39454i
\(184\) 0 0
\(185\) −3.01026 0.978091i −0.221318 0.0719107i
\(186\) 0 0
\(187\) 18.1233 + 8.38206i 1.32530 + 0.612957i
\(188\) 0 0
\(189\) 6.93089 + 5.87271i 0.504148 + 0.427177i
\(190\) 0 0
\(191\) 0.0771543 0.106194i 0.00558269 0.00768391i −0.806217 0.591621i \(-0.798488\pi\)
0.811799 + 0.583937i \(0.198488\pi\)
\(192\) 0 0
\(193\) 10.4543 3.39680i 0.752515 0.244507i 0.0924520 0.995717i \(-0.470530\pi\)
0.660063 + 0.751210i \(0.270530\pi\)
\(194\) 0 0
\(195\) −0.0402505 + 1.61789i −0.00288240 + 0.115859i
\(196\) 0 0
\(197\) −13.2520 −0.944164 −0.472082 0.881555i \(-0.656497\pi\)
−0.472082 + 0.881555i \(0.656497\pi\)
\(198\) 0 0
\(199\) 9.25589 0.656132 0.328066 0.944655i \(-0.393603\pi\)
0.328066 + 0.944655i \(0.393603\pi\)
\(200\) 0 0
\(201\) 0.424856 17.0773i 0.0299670 1.20454i
\(202\) 0 0
\(203\) 14.0778 4.57417i 0.988071 0.321044i
\(204\) 0 0
\(205\) −0.668754 + 0.920461i −0.0467078 + 0.0642878i
\(206\) 0 0
\(207\) 0.153668 3.08645i 0.0106806 0.214523i
\(208\) 0 0
\(209\) 11.7083 + 1.40041i 0.809877 + 0.0968684i
\(210\) 0 0
\(211\) −1.30838 0.425117i −0.0900724 0.0292663i 0.263634 0.964623i \(-0.415079\pi\)
−0.353707 + 0.935356i \(0.615079\pi\)
\(212\) 0 0
\(213\) 7.98408 + 26.8250i 0.547060 + 1.83802i
\(214\) 0 0
\(215\) 0.368275 + 1.13344i 0.0251162 + 0.0772996i
\(216\) 0 0
\(217\) −1.11072 1.52878i −0.0754007 0.103780i
\(218\) 0 0
\(219\) −9.88592 7.56523i −0.668028 0.511211i
\(220\) 0 0
\(221\) 13.5827i 0.913672i
\(222\) 0 0
\(223\) 12.0113 8.72671i 0.804335 0.584384i −0.107847 0.994167i \(-0.534396\pi\)
0.912183 + 0.409784i \(0.134396\pi\)
\(224\) 0 0
\(225\) 12.1278 7.92104i 0.808522 0.528069i
\(226\) 0 0
\(227\) −3.39405 2.46592i −0.225271 0.163669i 0.469425 0.882972i \(-0.344461\pi\)
−0.694696 + 0.719303i \(0.744461\pi\)
\(228\) 0 0
\(229\) 0.966481 2.97452i 0.0638669 0.196562i −0.914031 0.405644i \(-0.867047\pi\)
0.977898 + 0.209082i \(0.0670474\pi\)
\(230\) 0 0
\(231\) −9.89798 + 1.70153i −0.651239 + 0.111952i
\(232\) 0 0
\(233\) −8.67466 + 26.6978i −0.568296 + 1.74903i 0.0896546 + 0.995973i \(0.471424\pi\)
−0.657950 + 0.753061i \(0.728576\pi\)
\(234\) 0 0
\(235\) −2.20682 1.60335i −0.143957 0.104591i
\(236\) 0 0
\(237\) −7.37677 + 20.9182i −0.479173 + 1.35878i
\(238\) 0 0
\(239\) 13.9530 10.1374i 0.902545 0.655737i −0.0365737 0.999331i \(-0.511644\pi\)
0.939118 + 0.343594i \(0.111644\pi\)
\(240\) 0 0
\(241\) 14.7794i 0.952024i 0.879439 + 0.476012i \(0.157918\pi\)
−0.879439 + 0.476012i \(0.842082\pi\)
\(242\) 0 0
\(243\) 1.93369 15.4681i 0.124046 0.992276i
\(244\) 0 0
\(245\) 0.959990 + 1.32131i 0.0613315 + 0.0844155i
\(246\) 0 0
\(247\) −2.47866 7.62852i −0.157713 0.485391i
\(248\) 0 0
\(249\) −17.4793 + 5.20245i −1.10770 + 0.329692i
\(250\) 0 0
\(251\) −1.47665 0.479791i −0.0932051 0.0302842i 0.262043 0.965056i \(-0.415604\pi\)
−0.355248 + 0.934772i \(0.615604\pi\)
\(252\) 0 0
\(253\) 2.50590 + 2.32217i 0.157545 + 0.145993i
\(254\) 0 0
\(255\) 3.55603 2.45084i 0.222687 0.153477i
\(256\) 0 0
\(257\) −9.74891 + 13.4182i −0.608120 + 0.837006i −0.996421 0.0845268i \(-0.973062\pi\)
0.388301 + 0.921533i \(0.373062\pi\)
\(258\) 0 0
\(259\) −12.7072 + 4.12881i −0.789585 + 0.256552i
\(260\) 0 0
\(261\) −19.7814 15.9332i −1.22444 0.986242i
\(262\) 0 0
\(263\) 8.42736 0.519654 0.259827 0.965655i \(-0.416335\pi\)
0.259827 + 0.965655i \(0.416335\pi\)
\(264\) 0 0
\(265\) −2.87687 −0.176725
\(266\) 0 0
\(267\) 12.3129 + 0.306325i 0.753534 + 0.0187468i
\(268\) 0 0
\(269\) 23.6131 7.67235i 1.43971 0.467792i 0.517906 0.855438i \(-0.326712\pi\)
0.921808 + 0.387646i \(0.126712\pi\)
\(270\) 0 0
\(271\) −15.7841 + 21.7250i −0.958819 + 1.31970i −0.0113216 + 0.999936i \(0.503604\pi\)
−0.947497 + 0.319765i \(0.896396\pi\)
\(272\) 0 0
\(273\) 3.87686 + 5.62511i 0.234638 + 0.340447i
\(274\) 0 0
\(275\) −1.90188 + 15.9009i −0.114688 + 0.958860i
\(276\) 0 0
\(277\) −22.3433 7.25978i −1.34248 0.436198i −0.452323 0.891854i \(-0.649405\pi\)
−0.890156 + 0.455656i \(0.849405\pi\)
\(278\) 0 0
\(279\) −1.15413 + 3.03026i −0.0690961 + 0.181417i
\(280\) 0 0
\(281\) 3.78587 + 11.6517i 0.225846 + 0.695082i 0.998205 + 0.0598957i \(0.0190768\pi\)
−0.772359 + 0.635187i \(0.780923\pi\)
\(282\) 0 0
\(283\) −0.829965 1.14235i −0.0493363 0.0679056i 0.783636 0.621220i \(-0.213363\pi\)
−0.832972 + 0.553315i \(0.813363\pi\)
\(284\) 0 0
\(285\) 1.54994 2.02540i 0.0918108 0.119974i
\(286\) 0 0
\(287\) 4.80278i 0.283499i
\(288\) 0 0
\(289\) −15.5708 + 11.3128i −0.915928 + 0.665461i
\(290\) 0 0
\(291\) 4.62019 + 1.62930i 0.270840 + 0.0955114i
\(292\) 0 0
\(293\) −21.3215 15.4909i −1.24561 0.904991i −0.247654 0.968849i \(-0.579660\pi\)
−0.997959 + 0.0638576i \(0.979660\pi\)
\(294\) 0 0
\(295\) 1.40996 4.33942i 0.0820911 0.252651i
\(296\) 0 0
\(297\) 11.7322 + 12.6236i 0.680771 + 0.732496i
\(298\) 0 0
\(299\) 0.718144 2.21022i 0.0415314 0.127820i
\(300\) 0 0
\(301\) 4.06999 + 2.95702i 0.234590 + 0.170440i
\(302\) 0 0
\(303\) −17.1989 6.06519i −0.988054 0.348436i
\(304\) 0 0
\(305\) 3.80763 2.76640i 0.218024 0.158404i
\(306\) 0 0
\(307\) 6.75671i 0.385626i −0.981236 0.192813i \(-0.938239\pi\)
0.981236 0.192813i \(-0.0617611\pi\)
\(308\) 0 0
\(309\) −11.2707 + 14.7281i −0.641169 + 0.837852i
\(310\) 0 0
\(311\) 5.64245 + 7.76617i 0.319954 + 0.440379i 0.938453 0.345407i \(-0.112259\pi\)
−0.618499 + 0.785786i \(0.712259\pi\)
\(312\) 0 0
\(313\) −1.98440 6.10737i −0.112165 0.345209i 0.879180 0.476490i \(-0.158091\pi\)
−0.991345 + 0.131281i \(0.958091\pi\)
\(314\) 0 0
\(315\) −0.773151 + 2.02997i −0.0435621 + 0.114376i
\(316\) 0 0
\(317\) −12.5082 4.06416i −0.702531 0.228266i −0.0640980 0.997944i \(-0.520417\pi\)
−0.638433 + 0.769677i \(0.720417\pi\)
\(318\) 0 0
\(319\) 27.5482 5.44436i 1.54240 0.304825i
\(320\) 0 0
\(321\) 16.4496 + 23.8675i 0.918128 + 1.33215i
\(322\) 0 0
\(323\) −12.5815 + 17.3170i −0.700054 + 0.963541i
\(324\) 0 0
\(325\) 10.3602 3.36624i 0.574682 0.186725i
\(326\) 0 0
\(327\) 33.4250 + 0.831562i 1.84841 + 0.0459855i
\(328\) 0 0
\(329\) −11.5148 −0.634830
\(330\) 0 0
\(331\) −4.41807 −0.242839 −0.121420 0.992601i \(-0.538745\pi\)
−0.121420 + 0.992601i \(0.538745\pi\)
\(332\) 0 0
\(333\) 17.8554 + 14.3819i 0.978469 + 0.788124i
\(334\) 0 0
\(335\) 3.88478 1.26224i 0.212248 0.0689636i
\(336\) 0 0
\(337\) −7.57182 + 10.4217i −0.412463 + 0.567707i −0.963817 0.266565i \(-0.914111\pi\)
0.551354 + 0.834272i \(0.314111\pi\)
\(338\) 0 0
\(339\) 0.638418 0.440002i 0.0346741 0.0238976i
\(340\) 0 0
\(341\) −1.74777 3.12991i −0.0946470 0.169494i
\(342\) 0 0
\(343\) 18.1960 + 5.91223i 0.982490 + 0.319230i
\(344\) 0 0
\(345\) 0.708229 0.210794i 0.0381297 0.0113488i
\(346\) 0 0
\(347\) −8.44112 25.9791i −0.453143 1.39463i −0.873301 0.487181i \(-0.838025\pi\)
0.420158 0.907451i \(-0.361975\pi\)
\(348\) 0 0
\(349\) −6.06127 8.34262i −0.324452 0.446570i 0.615368 0.788240i \(-0.289008\pi\)
−0.939820 + 0.341670i \(0.889008\pi\)
\(350\) 0 0
\(351\) 4.44367 10.8481i 0.237186 0.579026i
\(352\) 0 0
\(353\) 24.4516i 1.30143i −0.759322 0.650715i \(-0.774469\pi\)
0.759322 0.650715i \(-0.225531\pi\)
\(354\) 0 0
\(355\) −5.41424 + 3.93367i −0.287358 + 0.208778i
\(356\) 0 0
\(357\) 6.06313 17.1931i 0.320895 0.909956i
\(358\) 0 0
\(359\) −14.0418 10.2020i −0.741099 0.538440i 0.151956 0.988387i \(-0.451443\pi\)
−0.893055 + 0.449947i \(0.851443\pi\)
\(360\) 0 0
\(361\) 1.96522 6.04833i 0.103433 0.318333i
\(362\) 0 0
\(363\) −19.0276 + 0.975058i −0.998690 + 0.0511773i
\(364\) 0 0
\(365\) 0.919825 2.83093i 0.0481459 0.148178i
\(366\) 0 0
\(367\) 15.2108 + 11.0513i 0.793999 + 0.576874i 0.909148 0.416474i \(-0.136734\pi\)
−0.115148 + 0.993348i \(0.536734\pi\)
\(368\) 0 0
\(369\) 6.90006 4.50663i 0.359203 0.234606i
\(370\) 0 0
\(371\) −9.82478 + 7.13812i −0.510077 + 0.370593i
\(372\) 0 0
\(373\) 4.38788i 0.227196i −0.993527 0.113598i \(-0.963762\pi\)
0.993527 0.113598i \(-0.0362376\pi\)
\(374\) 0 0
\(375\) 5.59907 + 4.28471i 0.289135 + 0.221261i
\(376\) 0 0
\(377\) −11.2276 15.4535i −0.578252 0.795896i
\(378\) 0 0
\(379\) −4.75715 14.6410i −0.244358 0.752057i −0.995741 0.0921911i \(-0.970613\pi\)
0.751383 0.659866i \(-0.229387\pi\)
\(380\) 0 0
\(381\) 1.42059 + 4.77291i 0.0727789 + 0.244524i
\(382\) 0 0
\(383\) 20.5912 + 6.69047i 1.05216 + 0.341867i 0.783515 0.621373i \(-0.213425\pi\)
0.268643 + 0.963240i \(0.413425\pi\)
\(384\) 0 0
\(385\) −1.17083 2.09672i −0.0596708 0.106859i
\(386\) 0 0
\(387\) 0.429268 8.62196i 0.0218209 0.438279i
\(388\) 0 0
\(389\) 5.63286 7.75297i 0.285597 0.393091i −0.641981 0.766721i \(-0.721887\pi\)
0.927578 + 0.373630i \(0.121887\pi\)
\(390\) 0 0
\(391\) −5.89815 + 1.91643i −0.298282 + 0.0969178i
\(392\) 0 0
\(393\) 0.372736 14.9823i 0.0188021 0.755757i
\(394\) 0 0
\(395\) −5.30377 −0.266861
\(396\) 0 0
\(397\) 4.38148 0.219900 0.109950 0.993937i \(-0.464931\pi\)
0.109950 + 0.993937i \(0.464931\pi\)
\(398\) 0 0
\(399\) 0.267759 10.7627i 0.0134047 0.538808i
\(400\) 0 0
\(401\) −13.6643 + 4.43979i −0.682361 + 0.221712i −0.629629 0.776896i \(-0.716793\pi\)
−0.0527321 + 0.998609i \(0.516793\pi\)
\(402\) 0 0
\(403\) −1.43333 + 1.97280i −0.0713991 + 0.0982724i
\(404\) 0 0
\(405\) 3.64189 0.794023i 0.180967 0.0394553i
\(406\) 0 0
\(407\) −24.8660 + 4.91427i −1.23256 + 0.243591i
\(408\) 0 0
\(409\) 12.2638 + 3.98476i 0.606408 + 0.197034i 0.596096 0.802913i \(-0.296718\pi\)
0.0103116 + 0.999947i \(0.496718\pi\)
\(410\) 0 0
\(411\) −1.28111 4.30428i −0.0631923 0.212314i
\(412\) 0 0
\(413\) −5.95186 18.3179i −0.292872 0.901367i
\(414\) 0 0
\(415\) −2.56319 3.52793i −0.125822 0.173179i
\(416\) 0 0
\(417\) 18.2889 + 13.9957i 0.895614 + 0.685371i
\(418\) 0 0
\(419\) 7.17498i 0.350521i 0.984522 + 0.175260i \(0.0560767\pi\)
−0.984522 + 0.175260i \(0.943923\pi\)
\(420\) 0 0
\(421\) 23.7052 17.2229i 1.15532 0.839391i 0.166143 0.986102i \(-0.446869\pi\)
0.989180 + 0.146710i \(0.0468685\pi\)
\(422\) 0 0
\(423\) 10.8047 + 16.5430i 0.525345 + 0.804350i
\(424\) 0 0
\(425\) −23.5180 17.0868i −1.14079 0.828833i
\(426\) 0 0
\(427\) 6.13938 18.8951i 0.297105 0.914396i
\(428\) 0 0
\(429\) 6.03528 + 11.4691i 0.291386 + 0.553735i
\(430\) 0 0
\(431\) 4.64694 14.3018i 0.223835 0.688895i −0.774572 0.632485i \(-0.782035\pi\)
0.998408 0.0564093i \(-0.0179652\pi\)
\(432\) 0 0
\(433\) −3.55854 2.58543i −0.171013 0.124248i 0.498987 0.866610i \(-0.333706\pi\)
−0.669999 + 0.742362i \(0.733706\pi\)
\(434\) 0 0
\(435\) 2.01992 5.72785i 0.0968478 0.274630i
\(436\) 0 0
\(437\) −2.96288 + 2.15266i −0.141734 + 0.102976i
\(438\) 0 0
\(439\) 23.9994i 1.14543i 0.819755 + 0.572715i \(0.194110\pi\)
−0.819755 + 0.572715i \(0.805890\pi\)
\(440\) 0 0
\(441\) −3.09180 11.4193i −0.147228 0.543776i
\(442\) 0 0
\(443\) 16.7454 + 23.0481i 0.795600 + 1.09505i 0.993388 + 0.114804i \(0.0366240\pi\)
−0.197789 + 0.980245i \(0.563376\pi\)
\(444\) 0 0
\(445\) 0.910087 + 2.80096i 0.0431423 + 0.132778i
\(446\) 0 0
\(447\) 12.2482 3.64549i 0.579318 0.172426i
\(448\) 0 0
\(449\) 24.0564 + 7.81641i 1.13529 + 0.368879i 0.815585 0.578637i \(-0.196415\pi\)
0.319708 + 0.947516i \(0.396415\pi\)
\(450\) 0 0
\(451\) −1.08207 + 9.04672i −0.0509525 + 0.425993i
\(452\) 0 0
\(453\) −4.52480 + 3.11852i −0.212594 + 0.146521i
\(454\) 0 0
\(455\) −0.960182 + 1.32158i −0.0450140 + 0.0619565i
\(456\) 0 0
\(457\) 10.4335 3.39004i 0.488057 0.158579i −0.0546427 0.998506i \(-0.517402\pi\)
0.542700 + 0.839926i \(0.317402\pi\)
\(458\) 0 0
\(459\) −30.3903 + 7.42217i −1.41850 + 0.346437i
\(460\) 0 0
\(461\) 12.5522 0.584616 0.292308 0.956324i \(-0.405577\pi\)
0.292308 + 0.956324i \(0.405577\pi\)
\(462\) 0 0
\(463\) −25.9141 −1.20433 −0.602165 0.798371i \(-0.705695\pi\)
−0.602165 + 0.798371i \(0.705695\pi\)
\(464\) 0 0
\(465\) −0.775118 0.0192837i −0.0359452 0.000894262i
\(466\) 0 0
\(467\) −18.7784 + 6.10147i −0.868961 + 0.282342i −0.709366 0.704840i \(-0.751019\pi\)
−0.159594 + 0.987183i \(0.551019\pi\)
\(468\) 0 0
\(469\) 10.1350 13.9496i 0.467991 0.644135i
\(470\) 0 0
\(471\) 6.97939 + 10.1267i 0.321593 + 0.466614i
\(472\) 0 0
\(473\) 7.00019 + 6.48694i 0.321869 + 0.298270i
\(474\) 0 0
\(475\) −16.3266 5.30484i −0.749117 0.243403i
\(476\) 0 0
\(477\) 19.4742 + 7.41710i 0.891660 + 0.339606i
\(478\) 0 0
\(479\) −0.740095 2.27778i −0.0338158 0.104074i 0.932724 0.360591i \(-0.117425\pi\)
−0.966540 + 0.256517i \(0.917425\pi\)
\(480\) 0 0
\(481\) 10.1345 + 13.9489i 0.462092 + 0.636015i
\(482\) 0 0
\(483\) 1.89565 2.47715i 0.0862548 0.112714i
\(484\) 0 0
\(485\) 1.17144i 0.0531923i
\(486\) 0 0
\(487\) −4.85737 + 3.52909i −0.220109 + 0.159918i −0.692376 0.721537i \(-0.743436\pi\)
0.472267 + 0.881456i \(0.343436\pi\)
\(488\) 0 0
\(489\) −25.8604 9.11965i −1.16945 0.412405i
\(490\) 0 0
\(491\) 23.2904 + 16.9215i 1.05108 + 0.763655i 0.972418 0.233246i \(-0.0749347\pi\)
0.0786636 + 0.996901i \(0.474935\pi\)
\(492\) 0 0
\(493\) −15.7519 + 48.4792i −0.709428 + 2.18339i
\(494\) 0 0
\(495\) −1.91369 + 3.64954i −0.0860139 + 0.164034i
\(496\) 0 0
\(497\) −8.72986 + 26.8677i −0.391588 + 1.20518i
\(498\) 0 0
\(499\) −10.7959 7.84368i −0.483291 0.351132i 0.319307 0.947651i \(-0.396550\pi\)
−0.802598 + 0.596520i \(0.796550\pi\)
\(500\) 0 0
\(501\) −1.09906 0.387583i −0.0491024 0.0173159i
\(502\) 0 0
\(503\) 13.4208 9.75080i 0.598405 0.434767i −0.246907 0.969039i \(-0.579414\pi\)
0.845312 + 0.534272i \(0.179414\pi\)
\(504\) 0 0
\(505\) 4.36076i 0.194051i
\(506\) 0 0
\(507\) −8.32628 + 10.8804i −0.369783 + 0.483217i
\(508\) 0 0
\(509\) −4.44881 6.12326i −0.197190 0.271409i 0.698959 0.715161i \(-0.253647\pi\)
−0.896149 + 0.443753i \(0.853647\pi\)
\(510\) 0 0
\(511\) −3.88285 11.9502i −0.171767 0.528645i
\(512\) 0 0
\(513\) −15.7138 + 9.71434i −0.693780 + 0.428899i
\(514\) 0 0
\(515\) −4.21754 1.37036i −0.185847 0.0603853i
\(516\) 0 0
\(517\) −21.6897 2.59428i −0.953912 0.114096i
\(518\) 0 0
\(519\) −18.2314 26.4527i −0.800269 1.16115i
\(520\) 0 0
\(521\) 14.2086 19.5565i 0.622490 0.856784i −0.375041 0.927008i \(-0.622371\pi\)
0.997531 + 0.0702239i \(0.0223714\pi\)
\(522\) 0 0
\(523\) −17.0507 + 5.54011i −0.745576 + 0.242252i −0.657076 0.753824i \(-0.728207\pi\)
−0.0884994 + 0.996076i \(0.528207\pi\)
\(524\) 0 0
\(525\) 14.6167 + 0.363641i 0.637925 + 0.0158706i
\(526\) 0 0
\(527\) 6.50738 0.283466
\(528\) 0 0
\(529\) 21.9389 0.953866
\(530\) 0 0
\(531\) −20.7322 + 25.7393i −0.899699 + 1.11699i
\(532\) 0 0
\(533\) 5.89439 1.91520i 0.255314 0.0829567i
\(534\) 0 0
\(535\) −4.07408 + 5.60749i −0.176138 + 0.242433i
\(536\) 0 0
\(537\) 12.2123 8.41683i 0.527002 0.363213i
\(538\) 0 0
\(539\) 11.8709 + 5.49032i 0.511315 + 0.236485i
\(540\) 0 0
\(541\) −0.369739 0.120136i −0.0158963 0.00516503i 0.301058 0.953606i \(-0.402660\pi\)
−0.316954 + 0.948441i \(0.602660\pi\)
\(542\) 0 0
\(543\) −20.3498 + 6.05683i −0.873295 + 0.259923i
\(544\) 0 0
\(545\) 2.47056 + 7.60360i 0.105827 + 0.325703i
\(546\) 0 0
\(547\) −14.7588 20.3137i −0.631040 0.868551i 0.367059 0.930198i \(-0.380365\pi\)
−0.998098 + 0.0616464i \(0.980365\pi\)
\(548\) 0 0
\(549\) −32.9070 + 8.90963i −1.40443 + 0.380254i
\(550\) 0 0
\(551\) 30.1021i 1.28239i
\(552\) 0 0
\(553\) −18.1129 + 13.1598i −0.770238 + 0.559611i
\(554\) 0 0
\(555\) −1.82325 + 5.17017i −0.0773928 + 0.219461i
\(556\) 0 0
\(557\) 30.2173 + 21.9541i 1.28035 + 0.930227i 0.999563 0.0295437i \(-0.00940542\pi\)
0.280784 + 0.959771i \(0.409405\pi\)
\(558\) 0 0
\(559\) 2.00612 6.17422i 0.0848500 0.261141i
\(560\) 0 0
\(561\) 15.2944 31.0196i 0.645729 1.30965i
\(562\) 0 0
\(563\) −0.597162 + 1.83788i −0.0251674 + 0.0774573i −0.962851 0.270032i \(-0.912966\pi\)
0.937684 + 0.347489i \(0.112966\pi\)
\(564\) 0 0
\(565\) 0.149992 + 0.108975i 0.00631020 + 0.00458463i
\(566\) 0 0
\(567\) 10.4673 11.7480i 0.439583 0.493368i
\(568\) 0 0
\(569\) −19.3383 + 14.0501i −0.810702 + 0.589009i −0.914034 0.405638i \(-0.867050\pi\)
0.103332 + 0.994647i \(0.467050\pi\)
\(570\) 0 0
\(571\) 24.0487i 1.00641i −0.864167 0.503204i \(-0.832154\pi\)
0.864167 0.503204i \(-0.167846\pi\)
\(572\) 0 0
\(573\) −0.180553 0.138168i −0.00754269 0.00577207i
\(574\) 0 0
\(575\) −2.92351 4.02387i −0.121919 0.167807i
\(576\) 0 0
\(577\) 9.14804 + 28.1548i 0.380838 + 1.17210i 0.939455 + 0.342673i \(0.111332\pi\)
−0.558617 + 0.829426i \(0.688668\pi\)
\(578\) 0 0
\(579\) −5.43127 18.2481i −0.225716 0.758363i
\(580\) 0 0
\(581\) −17.5071 5.68840i −0.726317 0.235995i
\(582\) 0 0
\(583\) −20.1146 + 11.2321i −0.833061 + 0.465188i
\(584\) 0 0
\(585\) 2.79966 + 0.139389i 0.115752 + 0.00576301i
\(586\) 0 0
\(587\) 8.50452 11.7055i 0.351019 0.483136i −0.596600 0.802539i \(-0.703482\pi\)
0.947619 + 0.319402i \(0.103482\pi\)
\(588\) 0 0
\(589\) 3.65477 1.18751i 0.150592 0.0489304i
\(590\) 0 0
\(591\) −0.570861 + 22.9460i −0.0234821 + 0.943872i
\(592\) 0 0
\(593\) 41.4781 1.70330 0.851650 0.524111i \(-0.175602\pi\)
0.851650 + 0.524111i \(0.175602\pi\)
\(594\) 0 0
\(595\) 4.35928 0.178713
\(596\) 0 0
\(597\) 0.398720 16.0267i 0.0163185 0.655929i
\(598\) 0 0
\(599\) 6.84638 2.22452i 0.279736 0.0908916i −0.165789 0.986161i \(-0.553017\pi\)
0.445525 + 0.895270i \(0.353017\pi\)
\(600\) 0 0
\(601\) 18.1873 25.0327i 0.741877 1.02111i −0.256631 0.966509i \(-0.582613\pi\)
0.998508 0.0545973i \(-0.0173875\pi\)
\(602\) 0 0
\(603\) −29.5512 1.47129i −1.20342 0.0599155i
\(604\) 0 0
\(605\) −1.73303 4.21326i −0.0704575 0.171293i
\(606\) 0 0
\(607\) 42.4533 + 13.7939i 1.72313 + 0.559878i 0.992429 0.122824i \(-0.0391949\pi\)
0.730698 + 0.682701i \(0.239195\pi\)
\(608\) 0 0
\(609\) −7.31380 24.5730i −0.296370 0.995750i
\(610\) 0 0
\(611\) 4.59174 + 14.1319i 0.185762 + 0.571717i
\(612\) 0 0
\(613\) 12.5601 + 17.2874i 0.507296 + 0.698233i 0.983460 0.181123i \(-0.0579733\pi\)
−0.476164 + 0.879356i \(0.657973\pi\)
\(614\) 0 0
\(615\) 1.56498 + 1.19761i 0.0631062 + 0.0482922i
\(616\) 0 0
\(617\) 12.7339i 0.512647i 0.966591 + 0.256324i \(0.0825113\pi\)
−0.966591 + 0.256324i \(0.917489\pi\)
\(618\) 0 0
\(619\) 28.3335 20.5855i 1.13882 0.827402i 0.151867 0.988401i \(-0.451471\pi\)
0.986955 + 0.160999i \(0.0514715\pi\)
\(620\) 0 0
\(621\) −5.33762 0.399034i −0.214191 0.0160127i
\(622\) 0 0
\(623\) 10.0578 + 7.30743i 0.402958 + 0.292766i
\(624\) 0 0
\(625\) 6.93944 21.3574i 0.277578 0.854296i
\(626\) 0 0
\(627\) 2.92919 20.2127i 0.116981 0.807218i
\(628\) 0 0
\(629\) 14.2182 43.7591i 0.566917 1.74479i
\(630\) 0 0
\(631\) 13.8153 + 10.0374i 0.549978 + 0.399582i 0.827777 0.561057i \(-0.189605\pi\)
−0.277799 + 0.960639i \(0.589605\pi\)
\(632\) 0 0
\(633\) −0.792458 + 2.24716i −0.0314974 + 0.0893166i
\(634\) 0 0
\(635\) −0.963341 + 0.699908i −0.0382290 + 0.0277750i
\(636\) 0 0
\(637\) 8.89678i 0.352503i
\(638\) 0 0
\(639\) 46.7919 12.6690i 1.85106 0.501178i
\(640\) 0 0
\(641\) −6.73706 9.27277i −0.266098 0.366252i 0.654970 0.755655i \(-0.272681\pi\)
−0.921068 + 0.389403i \(0.872681\pi\)
\(642\) 0 0
\(643\) 11.9065 + 36.6445i 0.469548 + 1.44512i 0.853172 + 0.521630i \(0.174676\pi\)
−0.383624 + 0.923489i \(0.625324\pi\)
\(644\) 0 0
\(645\) 1.97842 0.588849i 0.0779004 0.0231859i
\(646\) 0 0
\(647\) −19.6211 6.37527i −0.771384 0.250638i −0.103226 0.994658i \(-0.532917\pi\)
−0.668157 + 0.744020i \(0.732917\pi\)
\(648\) 0 0
\(649\) −7.08414 35.8454i −0.278077 1.40705i
\(650\) 0 0
\(651\) −2.69495 + 1.85738i −0.105623 + 0.0727963i
\(652\) 0 0
\(653\) −16.3086 + 22.4469i −0.638206 + 0.878415i −0.998518 0.0544167i \(-0.982670\pi\)
0.360312 + 0.932832i \(0.382670\pi\)
\(654\) 0 0
\(655\) 3.40821 1.10739i 0.133170 0.0432695i
\(656\) 0 0
\(657\) −13.5252 + 16.7917i −0.527667 + 0.655107i
\(658\) 0 0
\(659\) −31.9195 −1.24341 −0.621703 0.783253i \(-0.713559\pi\)
−0.621703 + 0.783253i \(0.713559\pi\)
\(660\) 0 0
\(661\) −3.70222 −0.144000 −0.0719998 0.997405i \(-0.522938\pi\)
−0.0719998 + 0.997405i \(0.522938\pi\)
\(662\) 0 0
\(663\) −23.5187 0.585108i −0.913390 0.0227237i
\(664\) 0 0
\(665\) 2.44832 0.795508i 0.0949419 0.0308485i
\(666\) 0 0
\(667\) −5.12638 + 7.05586i −0.198494 + 0.273204i
\(668\) 0 0
\(669\) −14.5930 21.1737i −0.564199 0.818621i
\(670\) 0 0
\(671\) 15.8214 34.2083i 0.610780 1.32060i
\(672\) 0 0
\(673\) −26.8205 8.71451i −1.03385 0.335920i −0.257542 0.966267i \(-0.582912\pi\)
−0.776313 + 0.630347i \(0.782912\pi\)
\(674\) 0 0
\(675\) −13.1930 21.3407i −0.507798 0.821406i
\(676\) 0 0
\(677\) 10.0167 + 30.8282i 0.384972 + 1.18482i 0.936500 + 0.350667i \(0.114045\pi\)
−0.551528 + 0.834156i \(0.685955\pi\)
\(678\) 0 0
\(679\) 2.90659 + 4.00058i 0.111545 + 0.153528i
\(680\) 0 0
\(681\) −4.41599 + 5.77062i −0.169221 + 0.221131i
\(682\) 0 0
\(683\) 39.7866i 1.52239i −0.648522 0.761196i \(-0.724613\pi\)
0.648522 0.761196i \(-0.275387\pi\)
\(684\) 0 0
\(685\) 0.868755 0.631187i 0.0331934 0.0241164i
\(686\) 0 0
\(687\) −5.10880 1.80161i −0.194913 0.0687358i
\(688\) 0 0
\(689\) 12.6783 + 9.21136i 0.483007 + 0.350925i
\(690\) 0 0
\(691\) −4.17416 + 12.8467i −0.158792 + 0.488713i −0.998525 0.0542867i \(-0.982712\pi\)
0.839733 + 0.543000i \(0.182712\pi\)
\(692\) 0 0
\(693\) 2.51984 + 17.2118i 0.0957210 + 0.653822i
\(694\) 0 0
\(695\) −1.70168 + 5.23722i −0.0645483 + 0.198659i
\(696\) 0 0
\(697\) −13.3804 9.72146i −0.506820 0.368227i
\(698\) 0 0
\(699\) 45.8540 + 16.1704i 1.73436 + 0.611620i
\(700\) 0 0
\(701\) 9.28637 6.74694i 0.350741 0.254829i −0.398439 0.917195i \(-0.630448\pi\)
0.749180 + 0.662366i \(0.230448\pi\)
\(702\) 0 0
\(703\) 27.1712i 1.02478i
\(704\) 0 0
\(705\) −2.87129 + 3.75208i −0.108139 + 0.141312i
\(706\) 0 0
\(707\) −10.8200 14.8924i −0.406927 0.560087i
\(708\) 0 0
\(709\) 1.57938 + 4.86082i 0.0593147 + 0.182552i 0.976324 0.216315i \(-0.0694037\pi\)
−0.917009 + 0.398866i \(0.869404\pi\)
\(710\) 0 0
\(711\) 35.9024 + 13.6741i 1.34644 + 0.512818i
\(712\) 0 0
\(713\) 1.05890 + 0.344058i 0.0396562 + 0.0128851i
\(714\) 0 0
\(715\) −2.10639 + 2.27305i −0.0787745 + 0.0850072i
\(716\) 0 0
\(717\) −16.9521 24.5965i −0.633087 0.918574i
\(718\) 0 0
\(719\) 18.8234 25.9082i 0.701994 0.966212i −0.297939 0.954585i \(-0.596299\pi\)
0.999932 0.0116265i \(-0.00370092\pi\)
\(720\) 0 0
\(721\) −17.8035 + 5.78470i −0.663036 + 0.215433i
\(722\) 0 0
\(723\) 25.5907 + 0.636658i 0.951729 + 0.0236776i
\(724\) 0 0
\(725\) −40.8814 −1.51830
\(726\) 0 0
\(727\) −4.53747 −0.168285 −0.0841427 0.996454i \(-0.526815\pi\)
−0.0841427 + 0.996454i \(0.526815\pi\)
\(728\) 0 0
\(729\) −26.6999 4.01454i −0.988884 0.148687i
\(730\) 0 0
\(731\) −16.4764 + 5.35350i −0.609401 + 0.198006i
\(732\) 0 0
\(733\) 24.5489 33.7887i 0.906736 1.24802i −0.0615329 0.998105i \(-0.519599\pi\)
0.968269 0.249910i \(-0.0804011\pi\)
\(734\) 0 0
\(735\) 2.32923 1.60532i 0.0859148 0.0592130i
\(736\) 0 0
\(737\) 22.2336 23.9927i 0.818984 0.883783i
\(738\) 0 0
\(739\) −5.72540 1.86030i −0.210612 0.0684321i 0.201811 0.979425i \(-0.435317\pi\)
−0.412423 + 0.910992i \(0.635317\pi\)
\(740\) 0 0
\(741\) −13.3157 + 3.96321i −0.489163 + 0.145592i
\(742\) 0 0
\(743\) 8.03892 + 24.7413i 0.294919 + 0.907669i 0.983248 + 0.182270i \(0.0583445\pi\)
−0.688329 + 0.725399i \(0.741655\pi\)
\(744\) 0 0
\(745\) 1.79609 + 2.47211i 0.0658037 + 0.0905711i
\(746\) 0 0
\(747\) 8.25515 + 30.4897i 0.302040 + 1.11556i
\(748\) 0 0
\(749\) 29.2588i 1.06909i
\(750\) 0 0
\(751\) −6.08977 + 4.42448i −0.222219 + 0.161452i −0.693325 0.720625i \(-0.743855\pi\)
0.471106 + 0.882077i \(0.343855\pi\)
\(752\) 0 0
\(753\) −0.894376 + 2.53617i −0.0325929 + 0.0924231i
\(754\) 0 0
\(755\) −1.06307 0.772365i −0.0386891 0.0281093i
\(756\) 0 0
\(757\) −9.14388 + 28.1420i −0.332340 + 1.02284i 0.635677 + 0.771955i \(0.280721\pi\)
−0.968017 + 0.250883i \(0.919279\pi\)
\(758\) 0 0
\(759\) 4.12882 4.23897i 0.149867 0.153865i
\(760\) 0 0
\(761\) −5.86155 + 18.0400i −0.212481 + 0.653950i 0.786842 + 0.617155i \(0.211715\pi\)
−0.999323 + 0.0367949i \(0.988285\pi\)
\(762\) 0 0
\(763\) 27.3034 + 19.8371i 0.988448 + 0.718150i
\(764\) 0 0
\(765\) −4.09048 6.26289i −0.147892 0.226435i
\(766\) 0 0
\(767\) −20.1079 + 14.6093i −0.726056 + 0.527510i
\(768\) 0 0
\(769\) 19.9245i 0.718496i −0.933242 0.359248i \(-0.883033\pi\)
0.933242 0.359248i \(-0.116967\pi\)
\(770\) 0 0
\(771\) 22.8139 + 17.4584i 0.821622 + 0.628749i
\(772\) 0 0
\(773\) 19.3253 + 26.5990i 0.695083 + 0.956699i 0.999991 + 0.00431740i \(0.00137428\pi\)
−0.304908 + 0.952382i \(0.598626\pi\)
\(774\) 0 0
\(775\) 1.61274 + 4.96351i 0.0579314 + 0.178295i
\(776\) 0 0
\(777\) 6.60170 + 22.1805i 0.236835 + 0.795721i
\(778\) 0 0
\(779\) −9.28895 3.01816i −0.332811 0.108137i
\(780\) 0 0
\(781\) −22.4972 + 48.6424i −0.805014 + 1.74056i
\(782\) 0 0
\(783\) −28.4408 + 33.5654i −1.01639 + 1.19953i
\(784\) 0 0
\(785\) −1.72859 + 2.37920i −0.0616959 + 0.0849171i
\(786\) 0 0
\(787\) 0.983499 0.319558i 0.0350580 0.0113910i −0.291436 0.956590i \(-0.594133\pi\)
0.326493 + 0.945199i \(0.394133\pi\)
\(788\) 0 0
\(789\) 0.363029 14.5921i 0.0129242 0.519493i
\(790\) 0 0
\(791\) 0.782627 0.0278270
\(792\) 0 0
\(793\) −25.6379 −0.910427
\(794\) 0 0
\(795\) −0.123928 + 4.98134i −0.00439528 + 0.176670i
\(796\) 0 0
\(797\) −28.1611 + 9.15010i −0.997517 + 0.324113i −0.761873 0.647726i \(-0.775720\pi\)
−0.235644 + 0.971839i \(0.575720\pi\)
\(798\) 0 0
\(799\) 23.3074 32.0799i 0.824556 1.13490i
\(800\) 0 0
\(801\) 1.06081 21.3067i 0.0374819 0.752835i
\(802\) 0 0
\(803\) −4.62152 23.3847i −0.163090 0.825227i
\(804\) 0 0
\(805\) 0.709356 + 0.230484i 0.0250015 + 0.00812349i
\(806\) 0 0
\(807\) −12.2676 41.2169i −0.431840 1.45090i
\(808\) 0 0
\(809\) 1.10292 + 3.39445i 0.0387767 + 0.119342i 0.968571 0.248737i \(-0.0800155\pi\)
−0.929794 + 0.368079i \(0.880015\pi\)
\(810\) 0 0
\(811\) 9.86876 + 13.5832i 0.346539 + 0.476970i 0.946337 0.323181i \(-0.104752\pi\)
−0.599798 + 0.800151i \(0.704752\pi\)
\(812\) 0 0
\(813\) 36.9372 + 28.2663i 1.29545 + 0.991344i
\(814\) 0 0
\(815\) 6.55687i 0.229677i
\(816\) 0 0
\(817\) −8.27676 + 6.01342i −0.289567 + 0.210383i
\(818\) 0 0
\(819\) 9.90696 6.47052i 0.346177 0.226098i
\(820\) 0 0
\(821\) 37.5702 + 27.2964i 1.31121 + 0.952650i 0.999997 + 0.00230991i \(0.000735269\pi\)
0.311213 + 0.950340i \(0.399265\pi\)
\(822\) 0 0
\(823\) −7.20739 + 22.1821i −0.251234 + 0.773218i 0.743314 + 0.668942i \(0.233253\pi\)
−0.994548 + 0.104276i \(0.966747\pi\)
\(824\) 0 0
\(825\) 27.4507 + 3.97811i 0.955711 + 0.138500i
\(826\) 0 0
\(827\) 4.99681 15.3786i 0.173756 0.534767i −0.825818 0.563936i \(-0.809286\pi\)
0.999574 + 0.0291697i \(0.00928631\pi\)
\(828\) 0 0
\(829\) −21.8114 15.8469i −0.757543 0.550387i 0.140613 0.990065i \(-0.455093\pi\)
−0.898156 + 0.439678i \(0.855093\pi\)
\(830\) 0 0
\(831\) −13.5329 + 38.3750i −0.469452 + 1.33122i
\(832\) 0 0
\(833\) −19.2075 + 13.9551i −0.665500 + 0.483514i
\(834\) 0 0
\(835\) 0.278665i 0.00964360i
\(836\) 0 0
\(837\) 5.19723 + 2.12893i 0.179642 + 0.0735867i
\(838\) 0 0
\(839\) −33.0491 45.4882i −1.14098 1.57043i −0.765295 0.643680i \(-0.777407\pi\)
−0.375687 0.926747i \(-0.622593\pi\)
\(840\) 0 0
\(841\) 13.1906 + 40.5965i 0.454848 + 1.39988i
\(842\) 0 0
\(843\) 20.3382 6.05336i 0.700484 0.208489i
\(844\) 0 0
\(845\) −3.11572 1.01236i −0.107184 0.0348262i
\(846\) 0 0
\(847\) −16.3725 10.0887i −0.562564 0.346652i
\(848\) 0 0
\(849\) −2.01375 + 1.38789i −0.0691116 + 0.0476322i
\(850\) 0 0
\(851\) 4.62726 6.36887i 0.158620 0.218322i
\(852\) 0 0
\(853\) −17.3455 + 5.63590i −0.593899 + 0.192969i −0.590518 0.807025i \(-0.701076\pi\)
−0.00338141 + 0.999994i \(0.501076\pi\)
\(854\) 0 0
\(855\) −3.44024 2.77100i −0.117654 0.0947662i
\(856\) 0 0
\(857\) −8.99814 −0.307370 −0.153685 0.988120i \(-0.549114\pi\)
−0.153685 + 0.988120i \(0.549114\pi\)
\(858\) 0 0
\(859\) −24.5634 −0.838092 −0.419046 0.907965i \(-0.637635\pi\)
−0.419046 + 0.907965i \(0.637635\pi\)
\(860\) 0 0
\(861\) 8.31609 + 0.206892i 0.283412 + 0.00705085i
\(862\) 0 0
\(863\) 7.69272 2.49952i 0.261863 0.0850845i −0.175143 0.984543i \(-0.556039\pi\)
0.437006 + 0.899459i \(0.356039\pi\)
\(864\) 0 0
\(865\) 4.51537 6.21487i 0.153527 0.211312i
\(866\) 0 0
\(867\) 18.9176 + 27.4484i 0.642475 + 0.932196i
\(868\) 0 0
\(869\) −37.0831 + 20.7075i −1.25796 + 0.702453i
\(870\) 0 0
\(871\) −21.1617 6.87587i −0.717038 0.232980i
\(872\) 0 0
\(873\) 3.02019 7.92974i 0.102218 0.268381i
\(874\) 0 0
\(875\) 2.19913 + 6.76821i 0.0743440 + 0.228807i
\(876\) 0 0
\(877\) 1.03938 + 1.43058i 0.0350973 + 0.0483073i 0.826205 0.563370i \(-0.190495\pi\)
−0.791108 + 0.611677i \(0.790495\pi\)
\(878\) 0 0
\(879\) −27.7413 + 36.2511i −0.935690 + 1.22272i
\(880\) 0 0
\(881\) 5.64608i 0.190221i −0.995467 0.0951106i \(-0.969680\pi\)
0.995467 0.0951106i \(-0.0303205\pi\)
\(882\) 0 0
\(883\) 14.7730 10.7332i 0.497150 0.361200i −0.310778 0.950483i \(-0.600589\pi\)
0.807927 + 0.589282i \(0.200589\pi\)
\(884\) 0 0
\(885\) −7.45303 2.62830i −0.250531 0.0883493i
\(886\) 0 0
\(887\) −16.0250 11.6429i −0.538068 0.390929i 0.285299 0.958439i \(-0.407907\pi\)
−0.823367 + 0.567509i \(0.807907\pi\)
\(888\) 0 0
\(889\) −1.55328 + 4.78051i −0.0520954 + 0.160333i
\(890\) 0 0
\(891\) 22.3634 19.7707i 0.749201 0.662343i
\(892\) 0 0
\(893\) 7.23610 22.2704i 0.242147 0.745252i
\(894\) 0 0
\(895\) 2.86920 + 2.08460i 0.0959069 + 0.0696804i
\(896\) 0 0
\(897\) −3.79610 1.33869i −0.126748 0.0446975i
\(898\) 0 0
\(899\) 7.40367 5.37908i 0.246926 0.179402i
\(900\) 0 0
\(901\) 41.8201i 1.39323i
\(902\) 0 0
\(903\) 5.29545 6.91987i 0.176222 0.230279i
\(904\) 0 0
\(905\) −2.98414 4.10731i −0.0991961 0.136532i
\(906\) 0 0
\(907\) −9.21050 28.3470i −0.305830 0.941247i −0.979366 0.202093i \(-0.935226\pi\)
0.673537 0.739154i \(-0.264774\pi\)
\(908\) 0 0
\(909\) −11.2428 + 29.5190i −0.372902 + 0.979082i
\(910\) 0 0
\(911\) −28.2499 9.17895i −0.935962 0.304112i −0.198963 0.980007i \(-0.563757\pi\)
−0.736998 + 0.675895i \(0.763757\pi\)
\(912\) 0 0
\(913\) −31.6955 14.6592i −1.04897 0.485150i
\(914\) 0 0
\(915\) −4.62604 6.71213i −0.152932 0.221896i
\(916\) 0 0
\(917\) 8.89169 12.2384i 0.293629 0.404146i
\(918\) 0 0
\(919\) 40.2985 13.0938i 1.32932 0.431924i 0.443637 0.896206i \(-0.353688\pi\)
0.885687 + 0.464283i \(0.153688\pi\)
\(920\) 0 0
\(921\) −11.6993 0.291062i −0.385507 0.00959081i
\(922\) 0 0
\(923\) 36.4556 1.19995
\(924\) 0 0
\(925\) 36.9010 1.21330
\(926\) 0 0
\(927\) 25.0164 + 20.1499i 0.821647 + 0.661809i
\(928\) 0 0
\(929\) −33.1232 + 10.7624i −1.08674 + 0.353102i −0.796985 0.604000i \(-0.793573\pi\)
−0.289752 + 0.957102i \(0.593573\pi\)
\(930\) 0 0
\(931\) −8.24098 + 11.3427i −0.270087 + 0.371743i
\(932\) 0 0
\(933\) 13.6903 9.43544i 0.448200 0.308903i
\(934\) 0 0
\(935\) 8.21133 + 0.982146i 0.268539 + 0.0321196i
\(936\) 0 0
\(937\) 48.0434 + 15.6102i 1.56951 + 0.509964i 0.959327 0.282297i \(-0.0910963\pi\)
0.610182 + 0.792261i \(0.291096\pi\)
\(938\) 0 0
\(939\) −10.6605 + 3.17294i −0.347892 + 0.103545i
\(940\) 0 0
\(941\) −12.6511 38.9362i −0.412415 1.26928i −0.914542 0.404490i \(-0.867449\pi\)
0.502127 0.864794i \(-0.332551\pi\)
\(942\) 0 0
\(943\) −1.66331 2.28936i −0.0541650 0.0745517i
\(944\) 0 0
\(945\) 3.48161 + 1.42617i 0.113257 + 0.0463932i
\(946\) 0 0
\(947\) 2.82537i 0.0918122i −0.998946 0.0459061i \(-0.985382\pi\)
0.998946 0.0459061i \(-0.0146175\pi\)
\(948\) 0 0
\(949\) −13.1179 + 9.53074i −0.425826 + 0.309381i
\(950\) 0 0
\(951\) −7.57598 + 21.4831i −0.245668 + 0.696637i
\(952\) 0 0
\(953\) −2.02099 1.46833i −0.0654662 0.0475640i 0.554571 0.832137i \(-0.312882\pi\)
−0.620037 + 0.784573i \(0.712882\pi\)
\(954\) 0 0
\(955\) 0.0167993 0.0517030i 0.000543614 0.00167307i
\(956\) 0 0
\(957\) −8.24028 47.9346i −0.266370 1.54950i
\(958\) 0 0
\(959\) 1.40077 4.31113i 0.0452333 0.139214i
\(960\) 0 0
\(961\) 24.1344 + 17.5346i 0.778528 + 0.565634i
\(962\) 0 0
\(963\) 42.0355 27.4546i 1.35457 0.884712i
\(964\) 0 0
\(965\) 3.68310 2.67593i 0.118563 0.0861412i
\(966\) 0 0
\(967\) 16.8424i 0.541616i −0.962633 0.270808i \(-0.912709\pi\)
0.962633 0.270808i \(-0.0872909\pi\)
\(968\) 0 0
\(969\) 29.4426 + 22.5310i 0.945832 + 0.723801i
\(970\) 0 0
\(971\) −18.6779 25.7079i −0.599402 0.825006i 0.396251 0.918142i \(-0.370311\pi\)
−0.995653 + 0.0931359i \(0.970311\pi\)
\(972\) 0 0
\(973\) 7.18328 + 22.1078i 0.230285 + 0.708745i
\(974\) 0 0
\(975\) −5.38241 18.0839i −0.172375 0.579148i
\(976\) 0 0
\(977\) 5.17367 + 1.68103i 0.165520 + 0.0537808i 0.390605 0.920558i \(-0.372266\pi\)
−0.225085 + 0.974339i \(0.572266\pi\)
\(978\) 0 0
\(979\) 17.2990 + 16.0306i 0.552877 + 0.512340i
\(980\) 0 0
\(981\) 2.87972 57.8400i 0.0919425 1.84669i
\(982\) 0 0
\(983\) −23.4580 + 32.2871i −0.748193 + 1.02980i 0.249912 + 0.968269i \(0.419598\pi\)
−0.998105 + 0.0615308i \(0.980402\pi\)
\(984\) 0 0
\(985\) −5.21981 + 1.69602i −0.166317 + 0.0540397i
\(986\) 0 0
\(987\) −0.496027 + 19.9380i −0.0157887 + 0.634634i
\(988\) 0 0
\(989\) −2.96414 −0.0942541
\(990\) 0 0
\(991\) −44.2995 −1.40722 −0.703610 0.710586i \(-0.748430\pi\)
−0.703610 + 0.710586i \(0.748430\pi\)
\(992\) 0 0
\(993\) −0.190319 + 7.64996i −0.00603960 + 0.242764i
\(994\) 0 0
\(995\) 3.64580 1.18459i 0.115580 0.0375541i
\(996\) 0 0
\(997\) 25.0872 34.5296i 0.794520 1.09356i −0.199011 0.979997i \(-0.563773\pi\)
0.993531 0.113566i \(-0.0362272\pi\)
\(998\) 0 0
\(999\) 25.6717 30.2973i 0.812215 0.958565i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 132.2.p.a.101.3 yes 16
3.2 odd 2 inner 132.2.p.a.101.4 yes 16
4.3 odd 2 528.2.bn.d.497.2 16
11.4 even 5 1452.2.b.e.725.4 16
11.6 odd 10 inner 132.2.p.a.17.4 yes 16
11.7 odd 10 1452.2.b.e.725.3 16
12.11 even 2 528.2.bn.d.497.1 16
33.17 even 10 inner 132.2.p.a.17.3 16
33.26 odd 10 1452.2.b.e.725.2 16
33.29 even 10 1452.2.b.e.725.1 16
44.39 even 10 528.2.bn.d.17.1 16
132.83 odd 10 528.2.bn.d.17.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.p.a.17.3 16 33.17 even 10 inner
132.2.p.a.17.4 yes 16 11.6 odd 10 inner
132.2.p.a.101.3 yes 16 1.1 even 1 trivial
132.2.p.a.101.4 yes 16 3.2 odd 2 inner
528.2.bn.d.17.1 16 44.39 even 10
528.2.bn.d.17.2 16 132.83 odd 10
528.2.bn.d.497.1 16 12.11 even 2
528.2.bn.d.497.2 16 4.3 odd 2
1452.2.b.e.725.1 16 33.29 even 10
1452.2.b.e.725.2 16 33.26 odd 10
1452.2.b.e.725.3 16 11.7 odd 10
1452.2.b.e.725.4 16 11.4 even 5