Properties

Label 1452.2.b.e.725.3
Level $1452$
Weight $2$
Character 1452.725
Analytic conductor $11.594$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,2,Mod(725,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.725"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,6,0,0,0,0,0,-10,0,0,0,0,0,-16,0,0,0,0,0,0,0,0,0,-32,0,6, 0,0,0,40,0,0,0,0,0,36,0,0,0,0,0,0,0,2,0,0,0,-28,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,44,0,16,0,0,0,0,0,-84,0,0,0,0,0,-58,0,0,0,0,0,0,0,0,0,-80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5942783735\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} - 12 x^{13} + 23 x^{12} - 72 x^{11} + 146 x^{10} - 176 x^{9} + 223 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 725.3
Root \(1.63346 - 0.576037i\) of defining polynomial
Character \(\chi\) \(=\) 1452.725
Dual form 1452.2.b.e.725.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.05261 + 1.37550i) q^{3} -0.414160i q^{5} -1.74829i q^{7} +(-0.784027 - 2.89574i) q^{9} +2.25607i q^{13} +(0.569679 + 0.435949i) q^{15} -6.02051 q^{17} +3.55534i q^{19} +(2.40478 + 1.84027i) q^{21} +1.03009i q^{23} +4.82847 q^{25} +(4.80838 + 1.96965i) q^{27} +8.46674 q^{29} +1.08087 q^{31} -0.724072 q^{35} +7.64238 q^{37} +(-3.10324 - 2.37476i) q^{39} -2.74713 q^{41} -2.87755i q^{43} +(-1.19930 + 0.324713i) q^{45} +6.58630i q^{47} +3.94348 q^{49} +(6.33725 - 8.28124i) q^{51} -6.94627i q^{53} +(-4.89038 - 3.74238i) q^{57} +11.0168i q^{59} +11.3639i q^{61} +(-5.06259 + 1.37071i) q^{63} +0.934375 q^{65} +9.86261 q^{67} +(-1.41690 - 1.08428i) q^{69} +16.1589i q^{71} -7.18712i q^{73} +(-5.08249 + 6.64159i) q^{75} +12.8061i q^{79} +(-7.77060 + 4.54067i) q^{81} +10.5292 q^{83} +2.49345i q^{85} +(-8.91217 + 11.6460i) q^{87} +7.11103i q^{89} +3.94427 q^{91} +(-1.13773 + 1.48674i) q^{93} +1.47248 q^{95} -2.82847 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{3} - 10 q^{9} - 16 q^{15} - 32 q^{25} + 6 q^{27} + 40 q^{31} + 36 q^{37} + 2 q^{45} - 28 q^{49} + 44 q^{67} + 16 q^{69} - 84 q^{75} - 58 q^{81} - 80 q^{91} + 12 q^{93} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.05261 + 1.37550i −0.607724 + 0.794148i
\(4\) 0 0
\(5\) 0.414160i 0.185218i −0.995703 0.0926090i \(-0.970479\pi\)
0.995703 0.0926090i \(-0.0295207\pi\)
\(6\) 0 0
\(7\) 1.74829i 0.660792i −0.943842 0.330396i \(-0.892818\pi\)
0.943842 0.330396i \(-0.107182\pi\)
\(8\) 0 0
\(9\) −0.784027 2.89574i −0.261342 0.965246i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 2.25607i 0.625722i 0.949799 + 0.312861i \(0.101287\pi\)
−0.949799 + 0.312861i \(0.898713\pi\)
\(14\) 0 0
\(15\) 0.569679 + 0.435949i 0.147091 + 0.112561i
\(16\) 0 0
\(17\) −6.02051 −1.46019 −0.730094 0.683347i \(-0.760524\pi\)
−0.730094 + 0.683347i \(0.760524\pi\)
\(18\) 0 0
\(19\) 3.55534i 0.815650i 0.913060 + 0.407825i \(0.133713\pi\)
−0.913060 + 0.407825i \(0.866287\pi\)
\(20\) 0 0
\(21\) 2.40478 + 1.84027i 0.524766 + 0.401579i
\(22\) 0 0
\(23\) 1.03009i 0.214789i 0.994216 + 0.107395i \(0.0342508\pi\)
−0.994216 + 0.107395i \(0.965749\pi\)
\(24\) 0 0
\(25\) 4.82847 0.965694
\(26\) 0 0
\(27\) 4.80838 + 1.96965i 0.925372 + 0.379059i
\(28\) 0 0
\(29\) 8.46674 1.57223 0.786117 0.618078i \(-0.212088\pi\)
0.786117 + 0.618078i \(0.212088\pi\)
\(30\) 0 0
\(31\) 1.08087 0.194130 0.0970649 0.995278i \(-0.469055\pi\)
0.0970649 + 0.995278i \(0.469055\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.724072 −0.122391
\(36\) 0 0
\(37\) 7.64238 1.25640 0.628200 0.778052i \(-0.283792\pi\)
0.628200 + 0.778052i \(0.283792\pi\)
\(38\) 0 0
\(39\) −3.10324 2.37476i −0.496916 0.380267i
\(40\) 0 0
\(41\) −2.74713 −0.429030 −0.214515 0.976721i \(-0.568817\pi\)
−0.214515 + 0.976721i \(0.568817\pi\)
\(42\) 0 0
\(43\) 2.87755i 0.438822i −0.975633 0.219411i \(-0.929587\pi\)
0.975633 0.219411i \(-0.0704135\pi\)
\(44\) 0 0
\(45\) −1.19930 + 0.324713i −0.178781 + 0.0484053i
\(46\) 0 0
\(47\) 6.58630i 0.960711i 0.877074 + 0.480356i \(0.159492\pi\)
−0.877074 + 0.480356i \(0.840508\pi\)
\(48\) 0 0
\(49\) 3.94348 0.563354
\(50\) 0 0
\(51\) 6.33725 8.28124i 0.887392 1.15961i
\(52\) 0 0
\(53\) 6.94627i 0.954144i −0.878864 0.477072i \(-0.841698\pi\)
0.878864 0.477072i \(-0.158302\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −4.89038 3.74238i −0.647747 0.495690i
\(58\) 0 0
\(59\) 11.0168i 1.43427i 0.696935 + 0.717135i \(0.254547\pi\)
−0.696935 + 0.717135i \(0.745453\pi\)
\(60\) 0 0
\(61\) 11.3639i 1.45500i 0.686107 + 0.727501i \(0.259318\pi\)
−0.686107 + 0.727501i \(0.740682\pi\)
\(62\) 0 0
\(63\) −5.06259 + 1.37071i −0.637827 + 0.172693i
\(64\) 0 0
\(65\) 0.934375 0.115895
\(66\) 0 0
\(67\) 9.86261 1.20491 0.602455 0.798153i \(-0.294189\pi\)
0.602455 + 0.798153i \(0.294189\pi\)
\(68\) 0 0
\(69\) −1.41690 1.08428i −0.170574 0.130533i
\(70\) 0 0
\(71\) 16.1589i 1.91771i 0.283902 + 0.958853i \(0.408371\pi\)
−0.283902 + 0.958853i \(0.591629\pi\)
\(72\) 0 0
\(73\) 7.18712i 0.841189i −0.907249 0.420594i \(-0.861822\pi\)
0.907249 0.420594i \(-0.138178\pi\)
\(74\) 0 0
\(75\) −5.08249 + 6.64159i −0.586876 + 0.766904i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 12.8061i 1.44080i 0.693561 + 0.720398i \(0.256041\pi\)
−0.693561 + 0.720398i \(0.743959\pi\)
\(80\) 0 0
\(81\) −7.77060 + 4.54067i −0.863400 + 0.504519i
\(82\) 0 0
\(83\) 10.5292 1.15573 0.577863 0.816134i \(-0.303887\pi\)
0.577863 + 0.816134i \(0.303887\pi\)
\(84\) 0 0
\(85\) 2.49345i 0.270453i
\(86\) 0 0
\(87\) −8.91217 + 11.6460i −0.955485 + 1.24859i
\(88\) 0 0
\(89\) 7.11103i 0.753767i 0.926261 + 0.376884i \(0.123004\pi\)
−0.926261 + 0.376884i \(0.876996\pi\)
\(90\) 0 0
\(91\) 3.94427 0.413472
\(92\) 0 0
\(93\) −1.13773 + 1.48674i −0.117977 + 0.154168i
\(94\) 0 0
\(95\) 1.47248 0.151073
\(96\) 0 0
\(97\) −2.82847 −0.287188 −0.143594 0.989637i \(-0.545866\pi\)
−0.143594 + 0.989637i \(0.545866\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.5292 −1.04769 −0.523846 0.851813i \(-0.675503\pi\)
−0.523846 + 0.851813i \(0.675503\pi\)
\(102\) 0 0
\(103\) 10.7074 1.05503 0.527516 0.849545i \(-0.323123\pi\)
0.527516 + 0.849545i \(0.323123\pi\)
\(104\) 0 0
\(105\) 0.762165 0.995965i 0.0743797 0.0971962i
\(106\) 0 0
\(107\) −16.7356 −1.61790 −0.808948 0.587880i \(-0.799963\pi\)
−0.808948 + 0.587880i \(0.799963\pi\)
\(108\) 0 0
\(109\) 19.3039i 1.84898i −0.381209 0.924489i \(-0.624492\pi\)
0.381209 0.924489i \(-0.375508\pi\)
\(110\) 0 0
\(111\) −8.04444 + 10.5121i −0.763545 + 0.997768i
\(112\) 0 0
\(113\) 0.447653i 0.0421116i −0.999778 0.0210558i \(-0.993297\pi\)
0.999778 0.0210558i \(-0.00670277\pi\)
\(114\) 0 0
\(115\) 0.426623 0.0397828
\(116\) 0 0
\(117\) 6.53300 1.76882i 0.603976 0.163528i
\(118\) 0 0
\(119\) 10.5256i 0.964880i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 2.89166 3.77869i 0.260732 0.340713i
\(124\) 0 0
\(125\) 4.07056i 0.364082i
\(126\) 0 0
\(127\) 2.87511i 0.255125i −0.991831 0.127562i \(-0.959285\pi\)
0.991831 0.127562i \(-0.0407153\pi\)
\(128\) 0 0
\(129\) 3.95808 + 3.02893i 0.348489 + 0.266683i
\(130\) 0 0
\(131\) −8.65271 −0.755990 −0.377995 0.925808i \(-0.623386\pi\)
−0.377995 + 0.925808i \(0.623386\pi\)
\(132\) 0 0
\(133\) 6.21576 0.538975
\(134\) 0 0
\(135\) 0.815750 1.99144i 0.0702086 0.171396i
\(136\) 0 0
\(137\) 2.59281i 0.221519i −0.993847 0.110760i \(-0.964672\pi\)
0.993847 0.110760i \(-0.0353283\pi\)
\(138\) 0 0
\(139\) 13.2962i 1.12777i 0.825855 + 0.563883i \(0.190693\pi\)
−0.825855 + 0.563883i \(0.809307\pi\)
\(140\) 0 0
\(141\) −9.05949 6.93281i −0.762947 0.583848i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 3.50658i 0.291206i
\(146\) 0 0
\(147\) −4.15094 + 5.42428i −0.342364 + 0.447387i
\(148\) 0 0
\(149\) −7.37805 −0.604434 −0.302217 0.953239i \(-0.597727\pi\)
−0.302217 + 0.953239i \(0.597727\pi\)
\(150\) 0 0
\(151\) 3.17275i 0.258195i −0.991632 0.129097i \(-0.958792\pi\)
0.991632 0.129097i \(-0.0412080\pi\)
\(152\) 0 0
\(153\) 4.72024 + 17.4338i 0.381609 + 1.40944i
\(154\) 0 0
\(155\) 0.447653i 0.0359563i
\(156\) 0 0
\(157\) 7.10075 0.566702 0.283351 0.959016i \(-0.408554\pi\)
0.283351 + 0.959016i \(0.408554\pi\)
\(158\) 0 0
\(159\) 9.55463 + 7.31171i 0.757731 + 0.579856i
\(160\) 0 0
\(161\) 1.80090 0.141931
\(162\) 0 0
\(163\) 15.8317 1.24004 0.620018 0.784588i \(-0.287125\pi\)
0.620018 + 0.784588i \(0.287125\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.672844 −0.0520662 −0.0260331 0.999661i \(-0.508288\pi\)
−0.0260331 + 0.999661i \(0.508288\pi\)
\(168\) 0 0
\(169\) 7.91013 0.608472
\(170\) 0 0
\(171\) 10.2953 2.78748i 0.787303 0.213164i
\(172\) 0 0
\(173\) 18.5484 1.41021 0.705105 0.709103i \(-0.250900\pi\)
0.705105 + 0.709103i \(0.250900\pi\)
\(174\) 0 0
\(175\) 8.44157i 0.638123i
\(176\) 0 0
\(177\) −15.1537 11.5964i −1.13902 0.871640i
\(178\) 0 0
\(179\) 8.56319i 0.640043i −0.947410 0.320021i \(-0.896310\pi\)
0.947410 0.320021i \(-0.103690\pi\)
\(180\) 0 0
\(181\) −12.2583 −0.911156 −0.455578 0.890196i \(-0.650567\pi\)
−0.455578 + 0.890196i \(0.650567\pi\)
\(182\) 0 0
\(183\) −15.6311 11.9618i −1.15549 0.884240i
\(184\) 0 0
\(185\) 3.16517i 0.232708i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 3.44352 8.40644i 0.250479 0.611478i
\(190\) 0 0
\(191\) 0.131263i 0.00949784i 0.999989 + 0.00474892i \(0.00151163\pi\)
−0.999989 + 0.00474892i \(0.998488\pi\)
\(192\) 0 0
\(193\) 10.9923i 0.791241i 0.918414 + 0.395621i \(0.129470\pi\)
−0.918414 + 0.395621i \(0.870530\pi\)
\(194\) 0 0
\(195\) −0.983532 + 1.28524i −0.0704322 + 0.0920378i
\(196\) 0 0
\(197\) 13.2520 0.944164 0.472082 0.881555i \(-0.343503\pi\)
0.472082 + 0.881555i \(0.343503\pi\)
\(198\) 0 0
\(199\) 9.25589 0.656132 0.328066 0.944655i \(-0.393603\pi\)
0.328066 + 0.944655i \(0.393603\pi\)
\(200\) 0 0
\(201\) −10.3815 + 13.5661i −0.732253 + 0.956877i
\(202\) 0 0
\(203\) 14.8023i 1.03892i
\(204\) 0 0
\(205\) 1.13775i 0.0794640i
\(206\) 0 0
\(207\) 2.98288 0.807620i 0.207324 0.0561335i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.37571i 0.0947077i 0.998878 + 0.0473538i \(0.0150788\pi\)
−0.998878 + 0.0473538i \(0.984921\pi\)
\(212\) 0 0
\(213\) −22.2266 17.0090i −1.52294 1.16544i
\(214\) 0 0
\(215\) −1.19176 −0.0812777
\(216\) 0 0
\(217\) 1.88967i 0.128279i
\(218\) 0 0
\(219\) 9.88592 + 7.56523i 0.668028 + 0.511211i
\(220\) 0 0
\(221\) 13.5827i 0.913672i
\(222\) 0 0
\(223\) −14.8468 −0.994213 −0.497107 0.867689i \(-0.665604\pi\)
−0.497107 + 0.867689i \(0.665604\pi\)
\(224\) 0 0
\(225\) −3.78565 13.9820i −0.252377 0.932133i
\(226\) 0 0
\(227\) −4.19528 −0.278450 −0.139225 0.990261i \(-0.544461\pi\)
−0.139225 + 0.990261i \(0.544461\pi\)
\(228\) 0 0
\(229\) 3.12760 0.206678 0.103339 0.994646i \(-0.467047\pi\)
0.103339 + 0.994646i \(0.467047\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 28.0718 1.83904 0.919522 0.393039i \(-0.128576\pi\)
0.919522 + 0.393039i \(0.128576\pi\)
\(234\) 0 0
\(235\) 2.72778 0.177941
\(236\) 0 0
\(237\) −17.6148 13.4798i −1.14421 0.875607i
\(238\) 0 0
\(239\) 17.2469 1.11561 0.557803 0.829973i \(-0.311644\pi\)
0.557803 + 0.829973i \(0.311644\pi\)
\(240\) 0 0
\(241\) 14.7794i 0.952024i −0.879439 0.476012i \(-0.842082\pi\)
0.879439 0.476012i \(-0.157918\pi\)
\(242\) 0 0
\(243\) 1.93369 15.4681i 0.124046 0.992276i
\(244\) 0 0
\(245\) 1.63323i 0.104343i
\(246\) 0 0
\(247\) −8.02110 −0.510370
\(248\) 0 0
\(249\) −11.0831 + 14.4829i −0.702363 + 0.917818i
\(250\) 0 0
\(251\) 1.55264i 0.0980016i −0.998799 0.0490008i \(-0.984396\pi\)
0.998799 0.0490008i \(-0.0156037\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −3.42976 2.62463i −0.214780 0.164361i
\(256\) 0 0
\(257\) 16.5858i 1.03460i −0.855805 0.517298i \(-0.826938\pi\)
0.855805 0.517298i \(-0.173062\pi\)
\(258\) 0 0
\(259\) 13.3611i 0.830219i
\(260\) 0 0
\(261\) −6.63815 24.5175i −0.410891 1.51759i
\(262\) 0 0
\(263\) −8.42736 −0.519654 −0.259827 0.965655i \(-0.583665\pi\)
−0.259827 + 0.965655i \(0.583665\pi\)
\(264\) 0 0
\(265\) −2.87687 −0.176725
\(266\) 0 0
\(267\) −9.78125 7.48513i −0.598603 0.458083i
\(268\) 0 0
\(269\) 24.8283i 1.51381i −0.653528 0.756903i \(-0.726712\pi\)
0.653528 0.756903i \(-0.273288\pi\)
\(270\) 0 0
\(271\) 26.8536i 1.63124i 0.578588 + 0.815620i \(0.303604\pi\)
−0.578588 + 0.815620i \(0.696396\pi\)
\(272\) 0 0
\(273\) −4.15178 + 5.42537i −0.251277 + 0.328358i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 23.4931i 1.41157i 0.708428 + 0.705783i \(0.249405\pi\)
−0.708428 + 0.705783i \(0.750595\pi\)
\(278\) 0 0
\(279\) −0.847431 3.12991i −0.0507343 0.187383i
\(280\) 0 0
\(281\) −12.2513 −0.730853 −0.365426 0.930840i \(-0.619077\pi\)
−0.365426 + 0.930840i \(0.619077\pi\)
\(282\) 0 0
\(283\) 1.41202i 0.0839359i −0.999119 0.0419680i \(-0.986637\pi\)
0.999119 0.0419680i \(-0.0133627\pi\)
\(284\) 0 0
\(285\) −1.54994 + 2.02540i −0.0918108 + 0.119974i
\(286\) 0 0
\(287\) 4.80278i 0.283499i
\(288\) 0 0
\(289\) 19.2465 1.13215
\(290\) 0 0
\(291\) 2.97728 3.89058i 0.174531 0.228070i
\(292\) 0 0
\(293\) −26.3548 −1.53966 −0.769831 0.638247i \(-0.779660\pi\)
−0.769831 + 0.638247i \(0.779660\pi\)
\(294\) 0 0
\(295\) 4.56273 0.265652
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.32396 −0.134398
\(300\) 0 0
\(301\) −5.03079 −0.289970
\(302\) 0 0
\(303\) 11.0831 14.4829i 0.636708 0.832022i
\(304\) 0 0
\(305\) 4.70648 0.269492
\(306\) 0 0
\(307\) 6.75671i 0.385626i 0.981236 + 0.192813i \(0.0617611\pi\)
−0.981236 + 0.192813i \(0.938239\pi\)
\(308\) 0 0
\(309\) −11.2707 + 14.7281i −0.641169 + 0.837852i
\(310\) 0 0
\(311\) 9.59951i 0.544338i −0.962249 0.272169i \(-0.912259\pi\)
0.962249 0.272169i \(-0.0877410\pi\)
\(312\) 0 0
\(313\) −6.42167 −0.362974 −0.181487 0.983393i \(-0.558091\pi\)
−0.181487 + 0.983393i \(0.558091\pi\)
\(314\) 0 0
\(315\) 0.567692 + 2.09672i 0.0319858 + 0.118137i
\(316\) 0 0
\(317\) 13.1519i 0.738685i −0.929293 0.369342i \(-0.879583\pi\)
0.929293 0.369342i \(-0.120417\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 17.6161 23.0200i 0.983235 1.28485i
\(322\) 0 0
\(323\) 21.4049i 1.19100i
\(324\) 0 0
\(325\) 10.8934i 0.604256i
\(326\) 0 0
\(327\) 26.5526 + 20.3195i 1.46836 + 1.12367i
\(328\) 0 0
\(329\) 11.5148 0.634830
\(330\) 0 0
\(331\) −4.41807 −0.242839 −0.121420 0.992601i \(-0.538745\pi\)
−0.121420 + 0.992601i \(0.538745\pi\)
\(332\) 0 0
\(333\) −5.99184 22.1303i −0.328351 1.21274i
\(334\) 0 0
\(335\) 4.08470i 0.223171i
\(336\) 0 0
\(337\) 12.8819i 0.701724i 0.936427 + 0.350862i \(0.114111\pi\)
−0.936427 + 0.350862i \(0.885889\pi\)
\(338\) 0 0
\(339\) 0.615749 + 0.471204i 0.0334429 + 0.0255923i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 19.1324i 1.03305i
\(344\) 0 0
\(345\) −0.449067 + 0.586822i −0.0241770 + 0.0315934i
\(346\) 0 0
\(347\) 27.3160 1.46640 0.733201 0.680012i \(-0.238025\pi\)
0.733201 + 0.680012i \(0.238025\pi\)
\(348\) 0 0
\(349\) 10.3120i 0.551991i −0.961159 0.275996i \(-0.910992\pi\)
0.961159 0.275996i \(-0.0890075\pi\)
\(350\) 0 0
\(351\) −4.44367 + 10.8481i −0.237186 + 0.579026i
\(352\) 0 0
\(353\) 24.4516i 1.30143i −0.759322 0.650715i \(-0.774469\pi\)
0.759322 0.650715i \(-0.225531\pi\)
\(354\) 0 0
\(355\) 6.69236 0.355194
\(356\) 0 0
\(357\) −14.4780 11.0793i −0.766258 0.586381i
\(358\) 0 0
\(359\) −17.3566 −0.916048 −0.458024 0.888940i \(-0.651443\pi\)
−0.458024 + 0.888940i \(0.651443\pi\)
\(360\) 0 0
\(361\) 6.35959 0.334715
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.97662 −0.155803
\(366\) 0 0
\(367\) −18.8016 −0.981437 −0.490718 0.871318i \(-0.663266\pi\)
−0.490718 + 0.871318i \(0.663266\pi\)
\(368\) 0 0
\(369\) 2.15383 + 7.95497i 0.112124 + 0.414119i
\(370\) 0 0
\(371\) −12.1441 −0.630490
\(372\) 0 0
\(373\) 4.38788i 0.227196i 0.993527 + 0.113598i \(0.0362376\pi\)
−0.993527 + 0.113598i \(0.963762\pi\)
\(374\) 0 0
\(375\) 5.59907 + 4.28471i 0.289135 + 0.221261i
\(376\) 0 0
\(377\) 19.1016i 0.983781i
\(378\) 0 0
\(379\) −15.3945 −0.790760 −0.395380 0.918518i \(-0.629387\pi\)
−0.395380 + 0.918518i \(0.629387\pi\)
\(380\) 0 0
\(381\) 3.95473 + 3.02637i 0.202607 + 0.155045i
\(382\) 0 0
\(383\) 21.6508i 1.10631i 0.833080 + 0.553153i \(0.186575\pi\)
−0.833080 + 0.553153i \(0.813425\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8.33262 + 2.25607i −0.423571 + 0.114683i
\(388\) 0 0
\(389\) 9.58319i 0.485887i 0.970040 + 0.242944i \(0.0781130\pi\)
−0.970040 + 0.242944i \(0.921887\pi\)
\(390\) 0 0
\(391\) 6.20168i 0.313633i
\(392\) 0 0
\(393\) 9.10792 11.9018i 0.459434 0.600368i
\(394\) 0 0
\(395\) 5.30377 0.266861
\(396\) 0 0
\(397\) 4.38148 0.219900 0.109950 0.993937i \(-0.464931\pi\)
0.109950 + 0.993937i \(0.464931\pi\)
\(398\) 0 0
\(399\) −6.54277 + 8.54981i −0.327548 + 0.428026i
\(400\) 0 0
\(401\) 14.3675i 0.717477i 0.933438 + 0.358738i \(0.116793\pi\)
−0.933438 + 0.358738i \(0.883207\pi\)
\(402\) 0 0
\(403\) 2.43852i 0.121471i
\(404\) 0 0
\(405\) 1.88057 + 3.21827i 0.0934461 + 0.159917i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 12.8950i 0.637615i −0.947820 0.318807i \(-0.896718\pi\)
0.947820 0.318807i \(-0.103282\pi\)
\(410\) 0 0
\(411\) 3.56643 + 2.72922i 0.175919 + 0.134623i
\(412\) 0 0
\(413\) 19.2606 0.947753
\(414\) 0 0
\(415\) 4.36076i 0.214061i
\(416\) 0 0
\(417\) −18.2889 13.9957i −0.895614 0.685371i
\(418\) 0 0
\(419\) 7.17498i 0.350521i 0.984522 + 0.175260i \(0.0560767\pi\)
−0.984522 + 0.175260i \(0.943923\pi\)
\(420\) 0 0
\(421\) −29.3013 −1.42806 −0.714029 0.700116i \(-0.753131\pi\)
−0.714029 + 0.700116i \(0.753131\pi\)
\(422\) 0 0
\(423\) 19.0722 5.16384i 0.927323 0.251075i
\(424\) 0 0
\(425\) −29.0699 −1.41010
\(426\) 0 0
\(427\) 19.8674 0.961453
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −15.0378 −0.724347 −0.362173 0.932111i \(-0.617965\pi\)
−0.362173 + 0.932111i \(0.617965\pi\)
\(432\) 0 0
\(433\) 4.39860 0.211383 0.105692 0.994399i \(-0.466294\pi\)
0.105692 + 0.994399i \(0.466294\pi\)
\(434\) 0 0
\(435\) 4.82332 + 3.69106i 0.231261 + 0.176973i
\(436\) 0 0
\(437\) −3.66232 −0.175193
\(438\) 0 0
\(439\) 23.9994i 1.14543i −0.819755 0.572715i \(-0.805890\pi\)
0.819755 0.572715i \(-0.194110\pi\)
\(440\) 0 0
\(441\) −3.09180 11.4193i −0.147228 0.543776i
\(442\) 0 0
\(443\) 28.4890i 1.35355i −0.736188 0.676777i \(-0.763376\pi\)
0.736188 0.676777i \(-0.236624\pi\)
\(444\) 0 0
\(445\) 2.94510 0.139611
\(446\) 0 0
\(447\) 7.76621 10.1485i 0.367329 0.480010i
\(448\) 0 0
\(449\) 25.2944i 1.19372i 0.802346 + 0.596859i \(0.203585\pi\)
−0.802346 + 0.596859i \(0.796415\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 4.36413 + 3.33967i 0.205045 + 0.156911i
\(454\) 0 0
\(455\) 1.63356i 0.0765825i
\(456\) 0 0
\(457\) 10.9704i 0.513174i 0.966521 + 0.256587i \(0.0825980\pi\)
−0.966521 + 0.256587i \(0.917402\pi\)
\(458\) 0 0
\(459\) −28.9489 11.8583i −1.35122 0.553498i
\(460\) 0 0
\(461\) −12.5522 −0.584616 −0.292308 0.956324i \(-0.594423\pi\)
−0.292308 + 0.956324i \(0.594423\pi\)
\(462\) 0 0
\(463\) −25.9141 −1.20433 −0.602165 0.798371i \(-0.705695\pi\)
−0.602165 + 0.798371i \(0.705695\pi\)
\(464\) 0 0
\(465\) 0.615749 + 0.471204i 0.0285547 + 0.0218515i
\(466\) 0 0
\(467\) 19.7448i 0.913679i 0.889549 + 0.456840i \(0.151019\pi\)
−0.889549 + 0.456840i \(0.848981\pi\)
\(468\) 0 0
\(469\) 17.2427i 0.796194i
\(470\) 0 0
\(471\) −7.47432 + 9.76712i −0.344398 + 0.450045i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 17.1668i 0.787669i
\(476\) 0 0
\(477\) −20.1146 + 5.44606i −0.920984 + 0.249358i
\(478\) 0 0
\(479\) 2.39500 0.109430 0.0547151 0.998502i \(-0.482575\pi\)
0.0547151 + 0.998502i \(0.482575\pi\)
\(480\) 0 0
\(481\) 17.2418i 0.786157i
\(482\) 0 0
\(483\) −1.89565 + 2.47715i −0.0862548 + 0.112714i
\(484\) 0 0
\(485\) 1.17144i 0.0531923i
\(486\) 0 0
\(487\) 6.00404 0.272069 0.136035 0.990704i \(-0.456564\pi\)
0.136035 + 0.990704i \(0.456564\pi\)
\(488\) 0 0
\(489\) −16.6646 + 21.7766i −0.753600 + 0.984772i
\(490\) 0 0
\(491\) 28.7885 1.29921 0.649604 0.760273i \(-0.274935\pi\)
0.649604 + 0.760273i \(0.274935\pi\)
\(492\) 0 0
\(493\) −50.9741 −2.29576
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 28.2504 1.26720
\(498\) 0 0
\(499\) 13.3445 0.597381 0.298690 0.954350i \(-0.403450\pi\)
0.298690 + 0.954350i \(0.403450\pi\)
\(500\) 0 0
\(501\) 0.708242 0.925500i 0.0316419 0.0413483i
\(502\) 0 0
\(503\) 16.5891 0.739669 0.369835 0.929098i \(-0.379414\pi\)
0.369835 + 0.929098i \(0.379414\pi\)
\(504\) 0 0
\(505\) 4.36076i 0.194051i
\(506\) 0 0
\(507\) −8.32628 + 10.8804i −0.369783 + 0.483217i
\(508\) 0 0
\(509\) 7.56876i 0.335480i 0.985831 + 0.167740i \(0.0536468\pi\)
−0.985831 + 0.167740i \(0.946353\pi\)
\(510\) 0 0
\(511\) −12.5652 −0.555850
\(512\) 0 0
\(513\) −7.00276 + 17.0954i −0.309180 + 0.754780i
\(514\) 0 0
\(515\) 4.43458i 0.195411i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −19.5242 + 25.5134i −0.857018 + 1.11991i
\(520\) 0 0
\(521\) 24.1731i 1.05904i 0.848296 + 0.529522i \(0.177629\pi\)
−0.848296 + 0.529522i \(0.822371\pi\)
\(522\) 0 0
\(523\) 17.9282i 0.783945i −0.919977 0.391972i \(-0.871793\pi\)
0.919977 0.391972i \(-0.128207\pi\)
\(524\) 0 0
\(525\) 11.6114 + 8.88568i 0.506764 + 0.387803i
\(526\) 0 0
\(527\) −6.50738 −0.283466
\(528\) 0 0
\(529\) 21.9389 0.953866
\(530\) 0 0
\(531\) 31.9019 8.63749i 1.38442 0.374835i
\(532\) 0 0
\(533\) 6.19773i 0.268454i
\(534\) 0 0
\(535\) 6.93124i 0.299664i
\(536\) 0 0
\(537\) 11.7787 + 9.01369i 0.508289 + 0.388969i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0.388767i 0.0167144i 0.999965 + 0.00835720i \(0.00266021\pi\)
−0.999965 + 0.00835720i \(0.997340\pi\)
\(542\) 0 0
\(543\) 12.9032 16.8614i 0.553731 0.723592i
\(544\) 0 0
\(545\) −7.99490 −0.342464
\(546\) 0 0
\(547\) 25.1091i 1.07359i −0.843713 0.536794i \(-0.819635\pi\)
0.843713 0.536794i \(-0.180365\pi\)
\(548\) 0 0
\(549\) 32.9070 8.90963i 1.40443 0.380254i
\(550\) 0 0
\(551\) 30.1021i 1.28239i
\(552\) 0 0
\(553\) 22.3887 0.952066
\(554\) 0 0
\(555\) 4.35371 + 3.33169i 0.184805 + 0.141422i
\(556\) 0 0
\(557\) 37.3506 1.58260 0.791299 0.611430i \(-0.209405\pi\)
0.791299 + 0.611430i \(0.209405\pi\)
\(558\) 0 0
\(559\) 6.49195 0.274580
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.93246 0.0814434 0.0407217 0.999171i \(-0.487034\pi\)
0.0407217 + 0.999171i \(0.487034\pi\)
\(564\) 0 0
\(565\) −0.185400 −0.00779983
\(566\) 0 0
\(567\) 7.93842 + 13.5853i 0.333382 + 0.570528i
\(568\) 0 0
\(569\) −23.9034 −1.00208 −0.501041 0.865423i \(-0.667050\pi\)
−0.501041 + 0.865423i \(0.667050\pi\)
\(570\) 0 0
\(571\) 24.0487i 1.00641i 0.864167 + 0.503204i \(0.167846\pi\)
−0.864167 + 0.503204i \(0.832154\pi\)
\(572\) 0 0
\(573\) −0.180553 0.138168i −0.00754269 0.00577207i
\(574\) 0 0
\(575\) 4.97377i 0.207421i
\(576\) 0 0
\(577\) 29.6037 1.23242 0.616209 0.787583i \(-0.288668\pi\)
0.616209 + 0.787583i \(0.288668\pi\)
\(578\) 0 0
\(579\) −15.1199 11.5706i −0.628363 0.480857i
\(580\) 0 0
\(581\) 18.4080i 0.763695i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −0.732576 2.70571i −0.0302883 0.111867i
\(586\) 0 0
\(587\) 14.4688i 0.597189i 0.954380 + 0.298595i \(0.0965178\pi\)
−0.954380 + 0.298595i \(0.903482\pi\)
\(588\) 0 0
\(589\) 3.84285i 0.158342i
\(590\) 0 0
\(591\) −13.9491 + 18.2281i −0.573791 + 0.749806i
\(592\) 0 0
\(593\) −41.4781 −1.70330 −0.851650 0.524111i \(-0.824398\pi\)
−0.851650 + 0.524111i \(0.824398\pi\)
\(594\) 0 0
\(595\) 4.35928 0.178713
\(596\) 0 0
\(597\) −9.74283 + 12.7315i −0.398748 + 0.521066i
\(598\) 0 0
\(599\) 7.19871i 0.294131i −0.989127 0.147066i \(-0.953017\pi\)
0.989127 0.147066i \(-0.0469829\pi\)
\(600\) 0 0
\(601\) 30.9422i 1.26216i −0.775719 0.631079i \(-0.782613\pi\)
0.775719 0.631079i \(-0.217387\pi\)
\(602\) 0 0
\(603\) −7.73255 28.5595i −0.314894 1.16303i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 44.6380i 1.81180i −0.423489 0.905901i \(-0.639195\pi\)
0.423489 0.905901i \(-0.360805\pi\)
\(608\) 0 0
\(609\) 20.3607 + 15.5811i 0.825055 + 0.631376i
\(610\) 0 0
\(611\) −14.8592 −0.601138
\(612\) 0 0
\(613\) 21.3685i 0.863064i 0.902098 + 0.431532i \(0.142027\pi\)
−0.902098 + 0.431532i \(0.857973\pi\)
\(614\) 0 0
\(615\) −1.56498 1.19761i −0.0631062 0.0482922i
\(616\) 0 0
\(617\) 12.7339i 0.512647i 0.966591 + 0.256324i \(0.0825113\pi\)
−0.966591 + 0.256324i \(0.917489\pi\)
\(618\) 0 0
\(619\) −35.0222 −1.40766 −0.703830 0.710368i \(-0.748529\pi\)
−0.703830 + 0.710368i \(0.748529\pi\)
\(620\) 0 0
\(621\) −2.02892 + 4.95307i −0.0814178 + 0.198760i
\(622\) 0 0
\(623\) 12.4321 0.498083
\(624\) 0 0
\(625\) 22.4565 0.898260
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −46.0110 −1.83458
\(630\) 0 0
\(631\) −17.0766 −0.679810 −0.339905 0.940460i \(-0.610395\pi\)
−0.339905 + 0.940460i \(0.610395\pi\)
\(632\) 0 0
\(633\) −1.89229 1.44808i −0.0752119 0.0575562i
\(634\) 0 0
\(635\) −1.19076 −0.0472537
\(636\) 0 0
\(637\) 8.89678i 0.352503i
\(638\) 0 0
\(639\) 46.7919 12.6690i 1.85106 0.501178i
\(640\) 0 0
\(641\) 11.4618i 0.452713i 0.974045 + 0.226356i \(0.0726814\pi\)
−0.974045 + 0.226356i \(0.927319\pi\)
\(642\) 0 0
\(643\) 38.5303 1.51949 0.759744 0.650222i \(-0.225324\pi\)
0.759744 + 0.650222i \(0.225324\pi\)
\(644\) 0 0
\(645\) 1.25446 1.63928i 0.0493944 0.0645465i
\(646\) 0 0
\(647\) 20.6308i 0.811081i −0.914077 0.405540i \(-0.867083\pi\)
0.914077 0.405540i \(-0.132917\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 2.59926 + 1.98909i 0.101873 + 0.0779585i
\(652\) 0 0
\(653\) 27.7459i 1.08578i −0.839804 0.542890i \(-0.817330\pi\)
0.839804 0.542890i \(-0.182670\pi\)
\(654\) 0 0
\(655\) 3.58361i 0.140023i
\(656\) 0 0
\(657\) −20.8120 + 5.63489i −0.811954 + 0.219838i
\(658\) 0 0
\(659\) 31.9195 1.24341 0.621703 0.783253i \(-0.286441\pi\)
0.621703 + 0.783253i \(0.286441\pi\)
\(660\) 0 0
\(661\) −3.70222 −0.144000 −0.0719998 0.997405i \(-0.522938\pi\)
−0.0719998 + 0.997405i \(0.522938\pi\)
\(662\) 0 0
\(663\) 18.6831 + 14.2973i 0.725591 + 0.555261i
\(664\) 0 0
\(665\) 2.57432i 0.0998278i
\(666\) 0 0
\(667\) 8.72152i 0.337699i
\(668\) 0 0
\(669\) 15.6278 20.4218i 0.604208 0.789553i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 28.2008i 1.08706i 0.839390 + 0.543530i \(0.182912\pi\)
−0.839390 + 0.543530i \(0.817088\pi\)
\(674\) 0 0
\(675\) 23.2171 + 9.51039i 0.893627 + 0.366055i
\(676\) 0 0
\(677\) −32.4147 −1.24580 −0.622898 0.782303i \(-0.714045\pi\)
−0.622898 + 0.782303i \(0.714045\pi\)
\(678\) 0 0
\(679\) 4.94499i 0.189771i
\(680\) 0 0
\(681\) 4.41599 5.77062i 0.169221 0.221131i
\(682\) 0 0
\(683\) 39.7866i 1.52239i −0.648522 0.761196i \(-0.724613\pi\)
0.648522 0.761196i \(-0.275387\pi\)
\(684\) 0 0
\(685\) −1.07384 −0.0410293
\(686\) 0 0
\(687\) −3.29214 + 4.30203i −0.125603 + 0.164133i
\(688\) 0 0
\(689\) 15.6713 0.597029
\(690\) 0 0
\(691\) −13.5079 −0.513863 −0.256932 0.966430i \(-0.582712\pi\)
−0.256932 + 0.966430i \(0.582712\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.50674 0.208883
\(696\) 0 0
\(697\) 16.5391 0.626464
\(698\) 0 0
\(699\) −29.5486 + 38.6129i −1.11763 + 1.46047i
\(700\) 0 0
\(701\) 11.4786 0.433540 0.216770 0.976223i \(-0.430448\pi\)
0.216770 + 0.976223i \(0.430448\pi\)
\(702\) 0 0
\(703\) 27.1712i 1.02478i
\(704\) 0 0
\(705\) −2.87129 + 3.75208i −0.108139 + 0.141312i
\(706\) 0 0
\(707\) 18.4080i 0.692306i
\(708\) 0 0
\(709\) 5.11097 0.191946 0.0959732 0.995384i \(-0.469404\pi\)
0.0959732 + 0.995384i \(0.469404\pi\)
\(710\) 0 0
\(711\) 37.0831 10.0403i 1.39072 0.376541i
\(712\) 0 0
\(713\) 1.11340i 0.0416970i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −18.1542 + 23.7231i −0.677981 + 0.885957i
\(718\) 0 0
\(719\) 32.0243i 1.19430i 0.802128 + 0.597152i \(0.203701\pi\)
−0.802128 + 0.597152i \(0.796299\pi\)
\(720\) 0 0
\(721\) 18.7197i 0.697157i
\(722\) 0 0
\(723\) 20.3291 + 15.5569i 0.756048 + 0.578568i
\(724\) 0 0
\(725\) 40.8814 1.51830
\(726\) 0 0
\(727\) −4.53747 −0.168285 −0.0841427 0.996454i \(-0.526815\pi\)
−0.0841427 + 0.996454i \(0.526815\pi\)
\(728\) 0 0
\(729\) 19.2410 + 18.9416i 0.712628 + 0.701542i
\(730\) 0 0
\(731\) 17.3243i 0.640762i
\(732\) 0 0
\(733\) 41.7652i 1.54263i −0.636453 0.771316i \(-0.719599\pi\)
0.636453 0.771316i \(-0.280401\pi\)
\(734\) 0 0
\(735\) 2.24652 + 1.71916i 0.0828641 + 0.0634120i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 6.02004i 0.221451i 0.993851 + 0.110725i \(0.0353174\pi\)
−0.993851 + 0.110725i \(0.964683\pi\)
\(740\) 0 0
\(741\) 8.44308 11.0331i 0.310164 0.405310i
\(742\) 0 0
\(743\) −26.0145 −0.954379 −0.477190 0.878800i \(-0.658345\pi\)
−0.477190 + 0.878800i \(0.658345\pi\)
\(744\) 0 0
\(745\) 3.05569i 0.111952i
\(746\) 0 0
\(747\) −8.25515 30.4897i −0.302040 1.11556i
\(748\) 0 0
\(749\) 29.2588i 1.06909i
\(750\) 0 0
\(751\) 7.52737 0.274678 0.137339 0.990524i \(-0.456145\pi\)
0.137339 + 0.990524i \(0.456145\pi\)
\(752\) 0 0
\(753\) 2.13566 + 1.63432i 0.0778278 + 0.0595580i
\(754\) 0 0
\(755\) −1.31403 −0.0478223
\(756\) 0 0
\(757\) −29.5902 −1.07548 −0.537738 0.843112i \(-0.680721\pi\)
−0.537738 + 0.843112i \(0.680721\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18.9684 0.687604 0.343802 0.939042i \(-0.388285\pi\)
0.343802 + 0.939042i \(0.388285\pi\)
\(762\) 0 0
\(763\) −33.7488 −1.22179
\(764\) 0 0
\(765\) 7.22039 1.95494i 0.261054 0.0706809i
\(766\) 0 0
\(767\) −24.8548 −0.897454
\(768\) 0 0
\(769\) 19.9245i 0.718496i 0.933242 + 0.359248i \(0.116967\pi\)
−0.933242 + 0.359248i \(0.883033\pi\)
\(770\) 0 0
\(771\) 22.8139 + 17.4584i 0.821622 + 0.628749i
\(772\) 0 0
\(773\) 32.8782i 1.18255i −0.806472 0.591273i \(-0.798626\pi\)
0.806472 0.591273i \(-0.201374\pi\)
\(774\) 0 0
\(775\) 5.21895 0.187470
\(776\) 0 0
\(777\) 18.3783 + 14.0640i 0.659317 + 0.504544i
\(778\) 0 0
\(779\) 9.76698i 0.349938i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 40.7113 + 16.6765i 1.45490 + 0.595969i
\(784\) 0 0
\(785\) 2.94085i 0.104963i
\(786\) 0 0
\(787\) 1.03411i 0.0368621i 0.999830 + 0.0184311i \(0.00586712\pi\)
−0.999830 + 0.0184311i \(0.994133\pi\)
\(788\) 0 0
\(789\) 8.87072 11.5919i 0.315806 0.412682i
\(790\) 0 0
\(791\) −0.782627 −0.0278270
\(792\) 0 0
\(793\) −25.6379 −0.910427
\(794\) 0 0
\(795\) 3.02822 3.95715i 0.107400 0.140345i
\(796\) 0 0
\(797\) 29.6103i 1.04885i 0.851456 + 0.524426i \(0.175720\pi\)
−0.851456 + 0.524426i \(0.824280\pi\)
\(798\) 0 0
\(799\) 39.6529i 1.40282i
\(800\) 0 0
\(801\) 20.5917 5.57524i 0.727571 0.196991i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0.745861i 0.0262882i
\(806\) 0 0
\(807\) 34.1514 + 26.1344i 1.20219 + 0.919976i
\(808\) 0 0
\(809\) −3.56913 −0.125484 −0.0627420 0.998030i \(-0.519985\pi\)
−0.0627420 + 0.998030i \(0.519985\pi\)
\(810\) 0 0
\(811\) 16.7897i 0.589567i 0.955564 + 0.294784i \(0.0952476\pi\)
−0.955564 + 0.294784i \(0.904752\pi\)
\(812\) 0 0
\(813\) −36.9372 28.2663i −1.29545 0.991344i
\(814\) 0 0
\(815\) 6.55687i 0.229677i
\(816\) 0 0
\(817\) 10.2306 0.357925
\(818\) 0 0
\(819\) −3.09242 11.4216i −0.108058 0.399102i
\(820\) 0 0
\(821\) 46.4394 1.62075 0.810373 0.585915i \(-0.199265\pi\)
0.810373 + 0.585915i \(0.199265\pi\)
\(822\) 0 0
\(823\) −23.3236 −0.813010 −0.406505 0.913649i \(-0.633253\pi\)
−0.406505 + 0.913649i \(0.633253\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −16.1700 −0.562287 −0.281143 0.959666i \(-0.590714\pi\)
−0.281143 + 0.959666i \(0.590714\pi\)
\(828\) 0 0
\(829\) 26.9604 0.936375 0.468187 0.883629i \(-0.344907\pi\)
0.468187 + 0.883629i \(0.344907\pi\)
\(830\) 0 0
\(831\) −32.3149 24.7291i −1.12099 0.857843i
\(832\) 0 0
\(833\) −23.7418 −0.822603
\(834\) 0 0
\(835\) 0.278665i 0.00964360i
\(836\) 0 0
\(837\) 5.19723 + 2.12893i 0.179642 + 0.0735867i
\(838\) 0 0
\(839\) 56.2265i 1.94115i 0.240791 + 0.970577i \(0.422593\pi\)
−0.240791 + 0.970577i \(0.577407\pi\)
\(840\) 0 0
\(841\) 42.6856 1.47192
\(842\) 0 0
\(843\) 12.8959 16.8518i 0.444157 0.580405i
\(844\) 0 0
\(845\) 3.27606i 0.112700i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.94224 + 1.48631i 0.0666576 + 0.0510099i
\(850\) 0 0
\(851\) 7.87236i 0.269861i
\(852\) 0 0
\(853\) 18.2381i 0.624462i −0.950006 0.312231i \(-0.898924\pi\)
0.950006 0.312231i \(-0.101076\pi\)
\(854\) 0 0
\(855\) −1.15446 4.26391i −0.0394818 0.145823i
\(856\) 0 0
\(857\) 8.99814 0.307370 0.153685 0.988120i \(-0.450886\pi\)
0.153685 + 0.988120i \(0.450886\pi\)
\(858\) 0 0
\(859\) −24.5634 −0.838092 −0.419046 0.907965i \(-0.637635\pi\)
−0.419046 + 0.907965i \(0.637635\pi\)
\(860\) 0 0
\(861\) −6.60625 5.05546i −0.225140 0.172289i
\(862\) 0 0
\(863\) 8.08860i 0.275339i −0.990478 0.137670i \(-0.956039\pi\)
0.990478 0.137670i \(-0.0439612\pi\)
\(864\) 0 0
\(865\) 7.68201i 0.261196i
\(866\) 0 0
\(867\) −20.2591 + 26.4737i −0.688035 + 0.899095i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 22.2508i 0.753939i
\(872\) 0 0
\(873\) 2.21760 + 8.19051i 0.0750543 + 0.277207i
\(874\) 0 0
\(875\) −7.11652 −0.240582
\(876\) 0 0
\(877\) 1.76830i 0.0597111i 0.999554 + 0.0298556i \(0.00950473\pi\)
−0.999554 + 0.0298556i \(0.990495\pi\)
\(878\) 0 0
\(879\) 27.7413 36.2511i 0.935690 1.22272i
\(880\) 0 0
\(881\) 5.64608i 0.190221i −0.995467 0.0951106i \(-0.969680\pi\)
0.995467 0.0951106i \(-0.0303205\pi\)
\(882\) 0 0
\(883\) −18.2604 −0.614511 −0.307255 0.951627i \(-0.599411\pi\)
−0.307255 + 0.951627i \(0.599411\pi\)
\(884\) 0 0
\(885\) −4.80277 + 6.27606i −0.161443 + 0.210967i
\(886\) 0 0
\(887\) −19.8080 −0.665088 −0.332544 0.943088i \(-0.607907\pi\)
−0.332544 + 0.943088i \(0.607907\pi\)
\(888\) 0 0
\(889\) −5.02653 −0.168584
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −23.4165 −0.783604
\(894\) 0 0
\(895\) −3.54653 −0.118547
\(896\) 0 0
\(897\) 2.44623 3.19662i 0.0816771 0.106732i
\(898\) 0 0
\(899\) 9.15144 0.305217
\(900\) 0 0
\(901\) 41.8201i 1.39323i
\(902\) 0 0
\(903\) 5.29545 6.91987i 0.176222 0.230279i
\(904\) 0 0
\(905\) 5.07692i 0.168762i
\(906\) 0 0
\(907\) −29.8058 −0.989685 −0.494843 0.868983i \(-0.664774\pi\)
−0.494843 + 0.868983i \(0.664774\pi\)
\(908\) 0 0
\(909\) 8.25515 + 30.4897i 0.273806 + 1.01128i
\(910\) 0 0
\(911\) 29.7037i 0.984128i −0.870559 0.492064i \(-0.836243\pi\)
0.870559 0.492064i \(-0.163757\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −4.95409 + 6.47379i −0.163777 + 0.214017i
\(916\) 0 0
\(917\) 15.1274i 0.499552i
\(918\) 0 0
\(919\) 42.3723i 1.39773i 0.715251 + 0.698867i \(0.246312\pi\)
−0.715251 + 0.698867i \(0.753688\pi\)
\(920\) 0 0
\(921\) −9.29389 7.11218i −0.306244 0.234354i
\(922\) 0 0
\(923\) −36.4556 −1.19995
\(924\) 0 0
\(925\) 36.9010 1.21330
\(926\) 0 0
\(927\) −8.39490 31.0059i −0.275725 1.01837i
\(928\) 0 0
\(929\) 34.8278i 1.14266i 0.820720 + 0.571331i \(0.193573\pi\)
−0.820720 + 0.571331i \(0.806427\pi\)
\(930\) 0 0
\(931\) 14.0204i 0.459500i
\(932\) 0 0
\(933\) 13.2042 + 10.1045i 0.432285 + 0.330808i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 50.5158i 1.65028i −0.564929 0.825140i \(-0.691096\pi\)
0.564929 0.825140i \(-0.308904\pi\)
\(938\) 0 0
\(939\) 6.75951 8.83303i 0.220588 0.288255i
\(940\) 0 0
\(941\) 40.9400 1.33460 0.667302 0.744787i \(-0.267449\pi\)
0.667302 + 0.744787i \(0.267449\pi\)
\(942\) 0 0
\(943\) 2.82980i 0.0921509i
\(944\) 0 0
\(945\) −3.48161 1.42617i −0.113257 0.0463932i
\(946\) 0 0
\(947\) 2.82537i 0.0918122i −0.998946 0.0459061i \(-0.985382\pi\)
0.998946 0.0459061i \(-0.0146175\pi\)
\(948\) 0 0
\(949\) 16.2147 0.526350
\(950\) 0 0
\(951\) 18.0905 + 13.8438i 0.586625 + 0.448917i
\(952\) 0 0
\(953\) −2.49808 −0.0809207 −0.0404604 0.999181i \(-0.512882\pi\)
−0.0404604 + 0.999181i \(0.512882\pi\)
\(954\) 0 0
\(955\) 0.0543638 0.00175917
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.53299 −0.146378
\(960\) 0 0
\(961\) −29.8317 −0.962314
\(962\) 0 0
\(963\) 13.1212 + 48.4621i 0.422825 + 1.56167i
\(964\) 0 0
\(965\) 4.55256 0.146552
\(966\) 0 0
\(967\) 16.8424i 0.541616i 0.962633 + 0.270808i \(0.0872909\pi\)
−0.962633 + 0.270808i \(0.912709\pi\)
\(968\) 0 0
\(969\) 29.4426 + 22.5310i 0.945832 + 0.723801i
\(970\) 0 0
\(971\) 31.7767i 1.01976i 0.860244 + 0.509882i \(0.170311\pi\)
−0.860244 + 0.509882i \(0.829689\pi\)
\(972\) 0 0
\(973\) 23.2456 0.745219
\(974\) 0 0
\(975\) −14.9839 11.4665i −0.479869 0.367221i
\(976\) 0 0
\(977\) 5.43992i 0.174038i 0.996207 + 0.0870192i \(0.0277342\pi\)
−0.996207 + 0.0870192i \(0.972266\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −55.8990 + 15.1348i −1.78472 + 0.483216i
\(982\) 0 0
\(983\) 39.9091i 1.27290i −0.771317 0.636451i \(-0.780402\pi\)
0.771317 0.636451i \(-0.219598\pi\)
\(984\) 0 0
\(985\) 5.48843i 0.174876i
\(986\) 0 0
\(987\) −12.1206 + 15.8386i −0.385802 + 0.504149i
\(988\) 0 0
\(989\) 2.96414 0.0942541
\(990\) 0 0
\(991\) −44.2995 −1.40722 −0.703610 0.710586i \(-0.748430\pi\)
−0.703610 + 0.710586i \(0.748430\pi\)
\(992\) 0 0
\(993\) 4.65051 6.07708i 0.147579 0.192850i
\(994\) 0 0
\(995\) 3.83342i 0.121528i
\(996\) 0 0
\(997\) 42.6809i 1.35172i −0.737031 0.675859i \(-0.763773\pi\)
0.737031 0.675859i \(-0.236227\pi\)
\(998\) 0 0
\(999\) 36.7475 + 15.0528i 1.16264 + 0.476250i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.2.b.e.725.3 16
3.2 odd 2 inner 1452.2.b.e.725.1 16
11.4 even 5 132.2.p.a.17.4 yes 16
11.8 odd 10 132.2.p.a.101.3 yes 16
11.10 odd 2 inner 1452.2.b.e.725.4 16
33.8 even 10 132.2.p.a.101.4 yes 16
33.26 odd 10 132.2.p.a.17.3 16
33.32 even 2 inner 1452.2.b.e.725.2 16
44.15 odd 10 528.2.bn.d.17.1 16
44.19 even 10 528.2.bn.d.497.2 16
132.59 even 10 528.2.bn.d.17.2 16
132.107 odd 10 528.2.bn.d.497.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.p.a.17.3 16 33.26 odd 10
132.2.p.a.17.4 yes 16 11.4 even 5
132.2.p.a.101.3 yes 16 11.8 odd 10
132.2.p.a.101.4 yes 16 33.8 even 10
528.2.bn.d.17.1 16 44.15 odd 10
528.2.bn.d.17.2 16 132.59 even 10
528.2.bn.d.497.1 16 132.107 odd 10
528.2.bn.d.497.2 16 44.19 even 10
1452.2.b.e.725.1 16 3.2 odd 2 inner
1452.2.b.e.725.2 16 33.32 even 2 inner
1452.2.b.e.725.3 16 1.1 even 1 trivial
1452.2.b.e.725.4 16 11.10 odd 2 inner