Properties

Label 1452.2.b
Level $1452$
Weight $2$
Character orbit 1452.b
Rep. character $\chi_{1452}(725,\cdot)$
Character field $\Q$
Dimension $36$
Newform subspaces $5$
Sturm bound $528$
Trace bound $91$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(528\)
Trace bound: \(91\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1452, [\chi])\).

Total New Old
Modular forms 300 36 264
Cusp forms 228 36 192
Eisenstein series 72 0 72

Trace form

\( 36 q - 4 q^{9} + 2 q^{15} - 16 q^{25} + 18 q^{27} + 4 q^{31} - 24 q^{37} + 20 q^{45} - 72 q^{49} - 40 q^{67} - 26 q^{69} - 48 q^{75} + 20 q^{81} - 28 q^{91} + 54 q^{93} + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1452, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1452.2.b.a 1452.b 33.d $4$ $11.594$ \(\Q(\sqrt{-2}, \sqrt{-11})\) None 1452.2.b.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{3}+(-1+2\beta _{3})q^{5}-3\beta _{2}q^{7}+\cdots\)
1452.2.b.b 1452.b 33.d $4$ $11.594$ \(\Q(\sqrt{-2}, \sqrt{3})\) \(\Q(\sqrt{-3}) \) 1452.2.b.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{2}q^{3}+(-2\beta _{1}+\beta _{3})q^{7}+3q^{9}+\cdots\)
1452.2.b.c 1452.b 33.d $4$ $11.594$ \(\Q(\sqrt{-2}, \sqrt{3})\) \(\Q(\sqrt{-3}) \) 1452.2.b.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{2}q^{3}+(2\beta _{1}+\beta _{3})q^{7}+3q^{9}+(-\beta _{1}+\cdots)q^{13}+\cdots\)
1452.2.b.d 1452.b 33.d $8$ $11.594$ 8.0.3588489216.5 None 1452.2.b.d \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1-\beta _{1})q^{3}+\beta _{2}q^{5}+(-1+\beta _{1}+\cdots)q^{9}+\cdots\)
1452.2.b.e 1452.b 33.d $16$ $11.594$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 132.2.p.a \(0\) \(6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{4}q^{3}+\beta _{15}q^{5}+(\beta _{1}+\beta _{2}+\beta _{14}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1452, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1452, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(726, [\chi])\)\(^{\oplus 2}\)