Defining parameters
Level: | \( N \) | \(=\) | \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1452.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 33 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(528\) | ||
Trace bound: | \(91\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1452, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 300 | 36 | 264 |
Cusp forms | 228 | 36 | 192 |
Eisenstein series | 72 | 0 | 72 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1452, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1452.2.b.a | $4$ | $11.594$ | \(\Q(\sqrt{-2}, \sqrt{-11})\) | None | \(0\) | \(-2\) | \(0\) | \(0\) | \(q-\beta _{3}q^{3}+(-1+2\beta _{3})q^{5}-3\beta _{2}q^{7}+\cdots\) |
1452.2.b.b | $4$ | $11.594$ | \(\Q(\sqrt{-2}, \sqrt{3})\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{3}+(-2\beta _{1}+\beta _{3})q^{7}+3q^{9}+\cdots\) |
1452.2.b.c | $4$ | $11.594$ | \(\Q(\sqrt{-2}, \sqrt{3})\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{3}+(2\beta _{1}+\beta _{3})q^{7}+3q^{9}+(-\beta _{1}+\cdots)q^{13}+\cdots\) |
1452.2.b.d | $8$ | $11.594$ | 8.0.3588489216.5 | None | \(0\) | \(-4\) | \(0\) | \(0\) | \(q+(-1-\beta _{1})q^{3}+\beta _{2}q^{5}+(-1+\beta _{1}+\cdots)q^{9}+\cdots\) |
1452.2.b.e | $16$ | $11.594$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(6\) | \(0\) | \(0\) | \(q+\beta _{4}q^{3}+\beta _{15}q^{5}+(\beta _{1}+\beta _{2}+\beta _{14}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1452, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1452, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(726, [\chi])\)\(^{\oplus 2}\)