L(s) = 1 | + (−1.05 + 1.37i)3-s − 0.414i·5-s − 1.74i·7-s + (−0.784 − 2.89i)9-s + 2.25i·13-s + (0.569 + 0.435i)15-s − 6.02·17-s + 3.55i·19-s + (2.40 + 1.84i)21-s + 1.03i·23-s + 4.82·25-s + (4.80 + 1.96i)27-s + 8.46·29-s + 1.08·31-s − 0.724·35-s + ⋯ |
L(s) = 1 | + (−0.607 + 0.794i)3-s − 0.185i·5-s − 0.660i·7-s + (−0.261 − 0.965i)9-s + 0.625i·13-s + (0.147 + 0.112i)15-s − 1.46·17-s + 0.815i·19-s + (0.524 + 0.401i)21-s + 0.214i·23-s + 0.965·25-s + (0.925 + 0.379i)27-s + 1.57·29-s + 0.194·31-s − 0.122·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.418 - 0.907i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.418 - 0.907i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.160634443\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.160634443\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.05 - 1.37i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + 0.414iT - 5T^{2} \) |
| 7 | \( 1 + 1.74iT - 7T^{2} \) |
| 13 | \( 1 - 2.25iT - 13T^{2} \) |
| 17 | \( 1 + 6.02T + 17T^{2} \) |
| 19 | \( 1 - 3.55iT - 19T^{2} \) |
| 23 | \( 1 - 1.03iT - 23T^{2} \) |
| 29 | \( 1 - 8.46T + 29T^{2} \) |
| 31 | \( 1 - 1.08T + 31T^{2} \) |
| 37 | \( 1 - 7.64T + 37T^{2} \) |
| 41 | \( 1 + 2.74T + 41T^{2} \) |
| 43 | \( 1 + 2.87iT - 43T^{2} \) |
| 47 | \( 1 - 6.58iT - 47T^{2} \) |
| 53 | \( 1 + 6.94iT - 53T^{2} \) |
| 59 | \( 1 - 11.0iT - 59T^{2} \) |
| 61 | \( 1 - 11.3iT - 61T^{2} \) |
| 67 | \( 1 - 9.86T + 67T^{2} \) |
| 71 | \( 1 - 16.1iT - 71T^{2} \) |
| 73 | \( 1 + 7.18iT - 73T^{2} \) |
| 79 | \( 1 - 12.8iT - 79T^{2} \) |
| 83 | \( 1 - 10.5T + 83T^{2} \) |
| 89 | \( 1 - 7.11iT - 89T^{2} \) |
| 97 | \( 1 + 2.82T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.767962971719907086032658984356, −8.956498295045744144952560499698, −8.255018554052862672882739104907, −6.96754373579683188348002111375, −6.46391956027837290451407375414, −5.42817524896782148290593633434, −4.43989057763634499803865987024, −4.04568743318069378859762059830, −2.69156174697407713068128968750, −1.01763400526740904974901191390,
0.63188934827682347091977902714, 2.17677756500355146416549298576, 2.93466517497433678039860707655, 4.59717240108577219078180136359, 5.21226395498142210035783582905, 6.41943223093875601232684413615, 6.61869870610684780133670102933, 7.76204594366414028015863693767, 8.493922444416172829622785059683, 9.227878146132794962601938875027