L(s) = 1 | + (−0.132 + 1.72i)3-s + 2.46i·5-s + 3.58i·7-s + (−2.96 − 0.457i)9-s + 3.89i·13-s + (−4.26 − 0.326i)15-s − 1.15·17-s + 5.29i·19-s + (−6.18 − 0.474i)21-s − 7.11i·23-s − 1.08·25-s + (1.18 − 5.05i)27-s − 2.50·29-s + 5.04·31-s − 8.83·35-s + ⋯ |
L(s) = 1 | + (−0.0764 + 0.997i)3-s + 1.10i·5-s + 1.35i·7-s + (−0.988 − 0.152i)9-s + 1.07i·13-s + (−1.10 − 0.0844i)15-s − 0.281·17-s + 1.21i·19-s + (−1.34 − 0.103i)21-s − 1.48i·23-s − 0.217·25-s + (0.227 − 0.973i)27-s − 0.465·29-s + 0.906·31-s − 1.49·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.953 + 0.300i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.953 + 0.300i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.272345665\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.272345665\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.132 - 1.72i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 - 2.46iT - 5T^{2} \) |
| 7 | \( 1 - 3.58iT - 7T^{2} \) |
| 13 | \( 1 - 3.89iT - 13T^{2} \) |
| 17 | \( 1 + 1.15T + 17T^{2} \) |
| 19 | \( 1 - 5.29iT - 19T^{2} \) |
| 23 | \( 1 + 7.11iT - 23T^{2} \) |
| 29 | \( 1 + 2.50T + 29T^{2} \) |
| 31 | \( 1 - 5.04T + 31T^{2} \) |
| 37 | \( 1 + 0.399T + 37T^{2} \) |
| 41 | \( 1 - 11.2T + 41T^{2} \) |
| 43 | \( 1 + 1.31iT - 43T^{2} \) |
| 47 | \( 1 - 5.96iT - 47T^{2} \) |
| 53 | \( 1 - 2.67iT - 53T^{2} \) |
| 59 | \( 1 + 12.3iT - 59T^{2} \) |
| 61 | \( 1 - 7.95iT - 61T^{2} \) |
| 67 | \( 1 + 3.87T + 67T^{2} \) |
| 71 | \( 1 - 3.22iT - 71T^{2} \) |
| 73 | \( 1 + 5.24iT - 73T^{2} \) |
| 79 | \( 1 + 14.6iT - 79T^{2} \) |
| 83 | \( 1 + 3.61T + 83T^{2} \) |
| 89 | \( 1 + 12.1iT - 89T^{2} \) |
| 97 | \( 1 - 3.08T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01139129566829844475788112998, −9.135220537799054881046974278252, −8.652756719142250639642442466661, −7.60583226599265823835619705048, −6.29180819786611113201830941421, −6.10060092697771119032437397680, −4.87990361656554472159206825007, −4.02297968522074885335483091207, −2.93124983801183151470860919281, −2.22970464809381599380569477194,
0.55165265208097902971213058969, 1.28850639903241312618782492817, 2.76625102245573147675420318825, 3.97588300735896586284072929177, 4.98838760514561280827508231713, 5.72844265551306614049760591107, 6.84034718525138116133488871068, 7.49572136840810850432547670966, 8.120357406615349776551910450512, 8.954799895175916418685197866332