Properties

Label 144.4.k.b.37.1
Level $144$
Weight $4$
Character 144.37
Analytic conductor $8.496$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,4,Mod(37,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.37"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 144.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.49627504083\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 37.1
Character \(\chi\) \(=\) 144.37
Dual form 144.4.k.b.109.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.70307 + 0.832707i) q^{2} +(6.61320 - 4.50173i) q^{4} +(-11.7911 - 11.7911i) q^{5} -12.5754i q^{7} +(-14.1273 + 17.6754i) q^{8} +(41.6906 + 22.0536i) q^{10} +(17.0042 + 17.0042i) q^{11} +(-49.2384 + 49.2384i) q^{13} +(10.4716 + 33.9921i) q^{14} +(23.4688 - 59.5417i) q^{16} +51.8247 q^{17} +(-11.6655 + 11.6655i) q^{19} +(-131.057 - 24.8964i) q^{20} +(-60.1231 - 31.8041i) q^{22} +74.5524i q^{23} +153.058i q^{25} +(92.0939 - 174.096i) q^{26} +(-56.6109 - 83.1633i) q^{28} +(-211.183 + 211.183i) q^{29} -326.094 q^{31} +(-13.8571 + 180.488i) q^{32} +(-140.086 + 43.1547i) q^{34} +(-148.277 + 148.277i) q^{35} +(110.757 + 110.757i) q^{37} +(21.8187 - 41.2465i) q^{38} +(374.988 - 41.8350i) q^{40} -348.225i q^{41} +(205.838 + 205.838i) q^{43} +(189.000 + 35.9038i) q^{44} +(-62.0803 - 201.521i) q^{46} -254.983 q^{47} +184.861 q^{49} +(-127.453 - 413.728i) q^{50} +(-103.965 + 547.282i) q^{52} +(225.602 + 225.602i) q^{53} -400.995i q^{55} +(222.274 + 177.656i) q^{56} +(394.989 - 746.696i) q^{58} +(-285.442 - 285.442i) q^{59} +(286.952 - 286.952i) q^{61} +(881.456 - 271.541i) q^{62} +(-112.837 - 499.411i) q^{64} +1161.15 q^{65} +(-627.335 + 627.335i) q^{67} +(342.727 - 233.301i) q^{68} +(277.332 - 524.274i) q^{70} -274.784i q^{71} +298.190i q^{73} +(-391.612 - 207.156i) q^{74} +(-24.6312 + 129.661i) q^{76} +(213.834 - 213.834i) q^{77} -175.664 q^{79} +(-978.782 + 425.338i) q^{80} +(289.969 + 941.276i) q^{82} +(-125.254 + 125.254i) q^{83} +(-611.068 - 611.068i) q^{85} +(-727.796 - 384.991i) q^{86} +(-540.779 + 60.3313i) q^{88} +900.271i q^{89} +(619.190 + 619.190i) q^{91} +(335.615 + 493.030i) q^{92} +(689.237 - 212.326i) q^{94} +275.096 q^{95} +5.27858 q^{97} +(-499.691 + 153.935i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 20 q^{4} - 84 q^{8} + 72 q^{10} + 40 q^{11} + 348 q^{14} - 192 q^{16} + 24 q^{19} - 80 q^{20} + 704 q^{22} + 20 q^{26} - 344 q^{28} - 400 q^{29} - 744 q^{31} + 960 q^{32} - 704 q^{34} + 456 q^{35}+ \cdots - 6760 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.70307 + 0.832707i −0.955680 + 0.294406i
\(3\) 0 0
\(4\) 6.61320 4.50173i 0.826650 0.562717i
\(5\) −11.7911 11.7911i −1.05462 1.05462i −0.998419 0.0562056i \(-0.982100\pi\)
−0.0562056 0.998419i \(-0.517900\pi\)
\(6\) 0 0
\(7\) 12.5754i 0.679005i −0.940605 0.339503i \(-0.889741\pi\)
0.940605 0.339503i \(-0.110259\pi\)
\(8\) −14.1273 + 17.6754i −0.624346 + 0.781148i
\(9\) 0 0
\(10\) 41.6906 + 22.0536i 1.31837 + 0.697396i
\(11\) 17.0042 + 17.0042i 0.466087 + 0.466087i 0.900644 0.434557i \(-0.143095\pi\)
−0.434557 + 0.900644i \(0.643095\pi\)
\(12\) 0 0
\(13\) −49.2384 + 49.2384i −1.05048 + 1.05048i −0.0518270 + 0.998656i \(0.516504\pi\)
−0.998656 + 0.0518270i \(0.983496\pi\)
\(14\) 10.4716 + 33.9921i 0.199903 + 0.648912i
\(15\) 0 0
\(16\) 23.4688 59.5417i 0.366700 0.930339i
\(17\) 51.8247 0.739372 0.369686 0.929157i \(-0.379465\pi\)
0.369686 + 0.929157i \(0.379465\pi\)
\(18\) 0 0
\(19\) −11.6655 + 11.6655i −0.140855 + 0.140855i −0.774018 0.633163i \(-0.781756\pi\)
0.633163 + 0.774018i \(0.281756\pi\)
\(20\) −131.057 24.8964i −1.46526 0.278351i
\(21\) 0 0
\(22\) −60.1231 31.8041i −0.582649 0.308211i
\(23\) 74.5524i 0.675881i 0.941168 + 0.337940i \(0.109730\pi\)
−0.941168 + 0.337940i \(0.890270\pi\)
\(24\) 0 0
\(25\) 153.058i 1.22447i
\(26\) 92.0939 174.096i 0.694657 1.31319i
\(27\) 0 0
\(28\) −56.6109 83.1633i −0.382087 0.561300i
\(29\) −211.183 + 211.183i −1.35227 + 1.35227i −0.469143 + 0.883122i \(0.655437\pi\)
−0.883122 + 0.469143i \(0.844563\pi\)
\(30\) 0 0
\(31\) −326.094 −1.88930 −0.944648 0.328084i \(-0.893597\pi\)
−0.944648 + 0.328084i \(0.893597\pi\)
\(32\) −13.8571 + 180.488i −0.0765506 + 0.997066i
\(33\) 0 0
\(34\) −140.086 + 43.1547i −0.706604 + 0.217676i
\(35\) −148.277 + 148.277i −0.716096 + 0.716096i
\(36\) 0 0
\(37\) 110.757 + 110.757i 0.492117 + 0.492117i 0.908973 0.416855i \(-0.136868\pi\)
−0.416855 + 0.908973i \(0.636868\pi\)
\(38\) 21.8187 41.2465i 0.0931436 0.176081i
\(39\) 0 0
\(40\) 374.988 41.8350i 1.48227 0.165367i
\(41\) 348.225i 1.32643i −0.748430 0.663214i \(-0.769192\pi\)
0.748430 0.663214i \(-0.230808\pi\)
\(42\) 0 0
\(43\) 205.838 + 205.838i 0.729998 + 0.729998i 0.970619 0.240621i \(-0.0773511\pi\)
−0.240621 + 0.970619i \(0.577351\pi\)
\(44\) 189.000 + 35.9038i 0.647566 + 0.123016i
\(45\) 0 0
\(46\) −62.0803 201.521i −0.198984 0.645926i
\(47\) −254.983 −0.791342 −0.395671 0.918392i \(-0.629488\pi\)
−0.395671 + 0.918392i \(0.629488\pi\)
\(48\) 0 0
\(49\) 184.861 0.538952
\(50\) −127.453 413.728i −0.360491 1.17020i
\(51\) 0 0
\(52\) −103.965 + 547.282i −0.277258 + 1.45951i
\(53\) 225.602 + 225.602i 0.584694 + 0.584694i 0.936189 0.351496i \(-0.114327\pi\)
−0.351496 + 0.936189i \(0.614327\pi\)
\(54\) 0 0
\(55\) 400.995i 0.983094i
\(56\) 222.274 + 177.656i 0.530404 + 0.423934i
\(57\) 0 0
\(58\) 394.989 746.696i 0.894218 1.69045i
\(59\) −285.442 285.442i −0.629854 0.629854i 0.318177 0.948031i \(-0.396929\pi\)
−0.948031 + 0.318177i \(0.896929\pi\)
\(60\) 0 0
\(61\) 286.952 286.952i 0.602301 0.602301i −0.338621 0.940923i \(-0.609961\pi\)
0.940923 + 0.338621i \(0.109961\pi\)
\(62\) 881.456 271.541i 1.80556 0.556221i
\(63\) 0 0
\(64\) −112.837 499.411i −0.220385 0.975413i
\(65\) 1161.15 2.21573
\(66\) 0 0
\(67\) −627.335 + 627.335i −1.14390 + 1.14390i −0.156168 + 0.987731i \(0.549914\pi\)
−0.987731 + 0.156168i \(0.950086\pi\)
\(68\) 342.727 233.301i 0.611202 0.416057i
\(69\) 0 0
\(70\) 277.332 524.274i 0.473536 0.895182i
\(71\) 274.784i 0.459308i −0.973272 0.229654i \(-0.926241\pi\)
0.973272 0.229654i \(-0.0737595\pi\)
\(72\) 0 0
\(73\) 298.190i 0.478089i 0.971009 + 0.239044i \(0.0768341\pi\)
−0.971009 + 0.239044i \(0.923166\pi\)
\(74\) −391.612 207.156i −0.615189 0.325424i
\(75\) 0 0
\(76\) −24.6312 + 129.661i −0.0371763 + 0.195699i
\(77\) 213.834 213.834i 0.316475 0.316475i
\(78\) 0 0
\(79\) −175.664 −0.250174 −0.125087 0.992146i \(-0.539921\pi\)
−0.125087 + 0.992146i \(0.539921\pi\)
\(80\) −978.782 + 425.338i −1.36789 + 0.594428i
\(81\) 0 0
\(82\) 289.969 + 941.276i 0.390509 + 1.26764i
\(83\) −125.254 + 125.254i −0.165644 + 0.165644i −0.785062 0.619418i \(-0.787369\pi\)
0.619418 + 0.785062i \(0.287369\pi\)
\(84\) 0 0
\(85\) −611.068 611.068i −0.779760 0.779760i
\(86\) −727.796 384.991i −0.912561 0.482729i
\(87\) 0 0
\(88\) −540.779 + 60.3313i −0.655082 + 0.0730834i
\(89\) 900.271i 1.07223i 0.844145 + 0.536116i \(0.180109\pi\)
−0.844145 + 0.536116i \(0.819891\pi\)
\(90\) 0 0
\(91\) 619.190 + 619.190i 0.713283 + 0.713283i
\(92\) 335.615 + 493.030i 0.380329 + 0.558717i
\(93\) 0 0
\(94\) 689.237 212.326i 0.756270 0.232976i
\(95\) 275.096 0.297098
\(96\) 0 0
\(97\) 5.27858 0.00552534 0.00276267 0.999996i \(-0.499121\pi\)
0.00276267 + 0.999996i \(0.499121\pi\)
\(98\) −499.691 + 153.935i −0.515066 + 0.158671i
\(99\) 0 0
\(100\) 689.028 + 1012.21i 0.689028 + 1.01221i
\(101\) 459.109 + 459.109i 0.452307 + 0.452307i 0.896120 0.443812i \(-0.146374\pi\)
−0.443812 + 0.896120i \(0.646374\pi\)
\(102\) 0 0
\(103\) 791.173i 0.756860i −0.925630 0.378430i \(-0.876464\pi\)
0.925630 0.378430i \(-0.123536\pi\)
\(104\) −174.699 1565.91i −0.164718 1.47645i
\(105\) 0 0
\(106\) −797.678 421.958i −0.730918 0.386643i
\(107\) −1525.81 1525.81i −1.37855 1.37855i −0.847067 0.531487i \(-0.821634\pi\)
−0.531487 0.847067i \(-0.678366\pi\)
\(108\) 0 0
\(109\) −413.307 + 413.307i −0.363189 + 0.363189i −0.864986 0.501796i \(-0.832673\pi\)
0.501796 + 0.864986i \(0.332673\pi\)
\(110\) 333.911 + 1083.92i 0.289429 + 0.939523i
\(111\) 0 0
\(112\) −748.758 295.129i −0.631705 0.248991i
\(113\) −210.248 −0.175031 −0.0875154 0.996163i \(-0.527893\pi\)
−0.0875154 + 0.996163i \(0.527893\pi\)
\(114\) 0 0
\(115\) 879.053 879.053i 0.712801 0.712801i
\(116\) −445.906 + 2347.28i −0.356908 + 1.87879i
\(117\) 0 0
\(118\) 1009.26 + 533.881i 0.787372 + 0.416506i
\(119\) 651.714i 0.502038i
\(120\) 0 0
\(121\) 752.715i 0.565526i
\(122\) −536.704 + 1014.60i −0.398286 + 0.752929i
\(123\) 0 0
\(124\) −2156.52 + 1467.99i −1.56179 + 1.06314i
\(125\) 330.838 330.838i 0.236729 0.236729i
\(126\) 0 0
\(127\) 177.367 0.123927 0.0619637 0.998078i \(-0.480264\pi\)
0.0619637 + 0.998078i \(0.480264\pi\)
\(128\) 720.869 + 1255.99i 0.497785 + 0.867301i
\(129\) 0 0
\(130\) −3138.66 + 966.895i −2.11753 + 0.652325i
\(131\) −938.828 + 938.828i −0.626151 + 0.626151i −0.947097 0.320946i \(-0.895999\pi\)
0.320946 + 0.947097i \(0.395999\pi\)
\(132\) 0 0
\(133\) 146.697 + 146.697i 0.0956411 + 0.0956411i
\(134\) 1173.35 2218.12i 0.756430 1.42997i
\(135\) 0 0
\(136\) −732.145 + 916.020i −0.461624 + 0.577559i
\(137\) 307.429i 0.191718i 0.995395 + 0.0958592i \(0.0305598\pi\)
−0.995395 + 0.0958592i \(0.969440\pi\)
\(138\) 0 0
\(139\) −1253.43 1253.43i −0.764852 0.764852i 0.212343 0.977195i \(-0.431891\pi\)
−0.977195 + 0.212343i \(0.931891\pi\)
\(140\) −313.082 + 1648.09i −0.189002 + 0.994919i
\(141\) 0 0
\(142\) 228.815 + 742.761i 0.135223 + 0.438952i
\(143\) −1674.52 −0.979233
\(144\) 0 0
\(145\) 4980.14 2.85226
\(146\) −248.305 806.028i −0.140752 0.456900i
\(147\) 0 0
\(148\) 1231.06 + 233.860i 0.683731 + 0.129886i
\(149\) −1686.80 1686.80i −0.927436 0.927436i 0.0701033 0.997540i \(-0.477667\pi\)
−0.997540 + 0.0701033i \(0.977667\pi\)
\(150\) 0 0
\(151\) 1682.23i 0.906611i −0.891355 0.453306i \(-0.850245\pi\)
0.891355 0.453306i \(-0.149755\pi\)
\(152\) −41.3894 370.993i −0.0220863 0.197971i
\(153\) 0 0
\(154\) −399.947 + 756.069i −0.209277 + 0.395622i
\(155\) 3844.99 + 3844.99i 1.99250 + 1.99250i
\(156\) 0 0
\(157\) −1066.81 + 1066.81i −0.542300 + 0.542300i −0.924202 0.381903i \(-0.875269\pi\)
0.381903 + 0.924202i \(0.375269\pi\)
\(158\) 474.833 146.277i 0.239087 0.0736529i
\(159\) 0 0
\(160\) 2291.54 1964.76i 1.13226 0.970798i
\(161\) 937.523 0.458927
\(162\) 0 0
\(163\) −2379.54 + 2379.54i −1.14343 + 1.14343i −0.155618 + 0.987817i \(0.549737\pi\)
−0.987817 + 0.155618i \(0.950263\pi\)
\(164\) −1567.61 2302.88i −0.746403 1.09649i
\(165\) 0 0
\(166\) 234.271 442.871i 0.109536 0.207069i
\(167\) 839.991i 0.389224i −0.980880 0.194612i \(-0.937655\pi\)
0.980880 0.194612i \(-0.0623448\pi\)
\(168\) 0 0
\(169\) 2651.84i 1.20703i
\(170\) 2160.60 + 1142.92i 0.974768 + 0.515635i
\(171\) 0 0
\(172\) 2287.87 + 434.619i 1.01424 + 0.192671i
\(173\) 450.278 450.278i 0.197885 0.197885i −0.601208 0.799093i \(-0.705314\pi\)
0.799093 + 0.601208i \(0.205314\pi\)
\(174\) 0 0
\(175\) 1924.76 0.831419
\(176\) 1411.53 613.390i 0.604533 0.262705i
\(177\) 0 0
\(178\) −749.662 2433.50i −0.315672 1.02471i
\(179\) 647.759 647.759i 0.270479 0.270479i −0.558814 0.829293i \(-0.688743\pi\)
0.829293 + 0.558814i \(0.188743\pi\)
\(180\) 0 0
\(181\) −755.750 755.750i −0.310356 0.310356i 0.534691 0.845047i \(-0.320428\pi\)
−0.845047 + 0.534691i \(0.820428\pi\)
\(182\) −2189.32 1158.11i −0.891666 0.471676i
\(183\) 0 0
\(184\) −1317.74 1053.23i −0.527963 0.421983i
\(185\) 2611.89i 1.03800i
\(186\) 0 0
\(187\) 881.237 + 881.237i 0.344612 + 0.344612i
\(188\) −1686.25 + 1147.86i −0.654163 + 0.445301i
\(189\) 0 0
\(190\) −743.605 + 229.075i −0.283931 + 0.0874675i
\(191\) −760.485 −0.288098 −0.144049 0.989571i \(-0.546012\pi\)
−0.144049 + 0.989571i \(0.546012\pi\)
\(192\) 0 0
\(193\) 2184.99 0.814915 0.407458 0.913224i \(-0.366415\pi\)
0.407458 + 0.913224i \(0.366415\pi\)
\(194\) −14.2684 + 4.39551i −0.00528046 + 0.00162670i
\(195\) 0 0
\(196\) 1222.52 832.193i 0.445525 0.303277i
\(197\) −83.4121 83.4121i −0.0301668 0.0301668i 0.691862 0.722029i \(-0.256790\pi\)
−0.722029 + 0.691862i \(0.756790\pi\)
\(198\) 0 0
\(199\) 1734.18i 0.617754i −0.951102 0.308877i \(-0.900047\pi\)
0.951102 0.308877i \(-0.0999531\pi\)
\(200\) −2705.36 2162.31i −0.956490 0.764491i
\(201\) 0 0
\(202\) −1623.31 858.701i −0.565423 0.299099i
\(203\) 2655.70 + 2655.70i 0.918195 + 0.918195i
\(204\) 0 0
\(205\) −4105.94 + 4105.94i −1.39888 + 1.39888i
\(206\) 658.815 + 2138.60i 0.222824 + 0.723316i
\(207\) 0 0
\(208\) 1776.17 + 4087.31i 0.592093 + 1.36252i
\(209\) −396.723 −0.131301
\(210\) 0 0
\(211\) −365.900 + 365.900i −0.119382 + 0.119382i −0.764274 0.644892i \(-0.776902\pi\)
0.644892 + 0.764274i \(0.276902\pi\)
\(212\) 2507.55 + 476.350i 0.812354 + 0.154320i
\(213\) 0 0
\(214\) 5394.91 + 2853.81i 1.72331 + 0.911602i
\(215\) 4854.09i 1.53975i
\(216\) 0 0
\(217\) 4100.75i 1.28284i
\(218\) 773.035 1461.36i 0.240168 0.454018i
\(219\) 0 0
\(220\) −1805.17 2651.86i −0.553203 0.812674i
\(221\) −2551.77 + 2551.77i −0.776698 + 0.776698i
\(222\) 0 0
\(223\) −4037.17 −1.21233 −0.606164 0.795340i \(-0.707292\pi\)
−0.606164 + 0.795340i \(0.707292\pi\)
\(224\) 2269.70 + 174.258i 0.677013 + 0.0519782i
\(225\) 0 0
\(226\) 568.316 175.075i 0.167274 0.0515302i
\(227\) 1502.81 1502.81i 0.439407 0.439407i −0.452406 0.891812i \(-0.649434\pi\)
0.891812 + 0.452406i \(0.149434\pi\)
\(228\) 0 0
\(229\) −3443.65 3443.65i −0.993723 0.993723i 0.00625772 0.999980i \(-0.498008\pi\)
−0.999980 + 0.00625772i \(0.998008\pi\)
\(230\) −1644.15 + 3108.14i −0.471357 + 0.891063i
\(231\) 0 0
\(232\) −749.283 6716.19i −0.212038 1.90060i
\(233\) 1139.00i 0.320250i 0.987097 + 0.160125i \(0.0511898\pi\)
−0.987097 + 0.160125i \(0.948810\pi\)
\(234\) 0 0
\(235\) 3006.52 + 3006.52i 0.834569 + 0.834569i
\(236\) −3172.67 602.702i −0.875098 0.166240i
\(237\) 0 0
\(238\) 542.686 + 1761.63i 0.147803 + 0.479788i
\(239\) 4603.80 1.24600 0.623002 0.782220i \(-0.285913\pi\)
0.623002 + 0.782220i \(0.285913\pi\)
\(240\) 0 0
\(241\) −4681.58 −1.25132 −0.625658 0.780097i \(-0.715170\pi\)
−0.625658 + 0.780097i \(0.715170\pi\)
\(242\) 626.791 + 2034.64i 0.166494 + 0.540462i
\(243\) 0 0
\(244\) 605.889 3189.45i 0.158967 0.836817i
\(245\) −2179.70 2179.70i −0.568392 0.568392i
\(246\) 0 0
\(247\) 1148.78i 0.295931i
\(248\) 4606.84 5763.83i 1.17957 1.47582i
\(249\) 0 0
\(250\) −618.788 + 1169.77i −0.156542 + 0.295931i
\(251\) 476.440 + 476.440i 0.119811 + 0.119811i 0.764470 0.644659i \(-0.223001\pi\)
−0.644659 + 0.764470i \(0.723001\pi\)
\(252\) 0 0
\(253\) −1267.70 + 1267.70i −0.315019 + 0.315019i
\(254\) −479.436 + 147.695i −0.118435 + 0.0364850i
\(255\) 0 0
\(256\) −2994.43 2794.75i −0.731062 0.682311i
\(257\) −925.326 −0.224592 −0.112296 0.993675i \(-0.535821\pi\)
−0.112296 + 0.993675i \(0.535821\pi\)
\(258\) 0 0
\(259\) 1392.81 1392.81i 0.334150 0.334150i
\(260\) 7678.89 5227.17i 1.83163 1.24683i
\(261\) 0 0
\(262\) 1755.95 3319.49i 0.414058 0.782743i
\(263\) 3477.65i 0.815365i 0.913124 + 0.407683i \(0.133663\pi\)
−0.913124 + 0.407683i \(0.866337\pi\)
\(264\) 0 0
\(265\) 5320.17i 1.23327i
\(266\) −518.689 274.378i −0.119560 0.0632450i
\(267\) 0 0
\(268\) −1324.60 + 6972.79i −0.301913 + 1.58929i
\(269\) −3773.37 + 3773.37i −0.855266 + 0.855266i −0.990776 0.135510i \(-0.956733\pi\)
0.135510 + 0.990776i \(0.456733\pi\)
\(270\) 0 0
\(271\) 8007.09 1.79482 0.897410 0.441198i \(-0.145446\pi\)
0.897410 + 0.441198i \(0.145446\pi\)
\(272\) 1216.26 3085.73i 0.271128 0.687867i
\(273\) 0 0
\(274\) −255.998 831.002i −0.0564431 0.183221i
\(275\) −2602.63 + 2602.63i −0.570708 + 0.570708i
\(276\) 0 0
\(277\) 4550.73 + 4550.73i 0.987101 + 0.987101i 0.999918 0.0128173i \(-0.00407998\pi\)
−0.0128173 + 0.999918i \(0.504080\pi\)
\(278\) 4431.85 + 2344.37i 0.956131 + 0.505777i
\(279\) 0 0
\(280\) −526.090 4715.60i −0.112285 1.00647i
\(281\) 3333.05i 0.707592i 0.935323 + 0.353796i \(0.115109\pi\)
−0.935323 + 0.353796i \(0.884891\pi\)
\(282\) 0 0
\(283\) 6242.23 + 6242.23i 1.31117 + 1.31117i 0.920552 + 0.390621i \(0.127740\pi\)
0.390621 + 0.920552i \(0.372260\pi\)
\(284\) −1237.00 1817.20i −0.258460 0.379687i
\(285\) 0 0
\(286\) 4526.35 1394.38i 0.935834 0.288292i
\(287\) −4379.05 −0.900651
\(288\) 0 0
\(289\) −2227.20 −0.453329
\(290\) −13461.7 + 4147.00i −2.72585 + 0.839725i
\(291\) 0 0
\(292\) 1342.37 + 1971.99i 0.269028 + 0.395212i
\(293\) 2458.24 + 2458.24i 0.490143 + 0.490143i 0.908351 0.418208i \(-0.137342\pi\)
−0.418208 + 0.908351i \(0.637342\pi\)
\(294\) 0 0
\(295\) 6731.33i 1.32852i
\(296\) −3522.37 + 392.969i −0.691668 + 0.0771651i
\(297\) 0 0
\(298\) 5964.15 + 3154.93i 1.15938 + 0.613290i
\(299\) −3670.84 3670.84i −0.710001 0.710001i
\(300\) 0 0
\(301\) 2588.48 2588.48i 0.495673 0.495673i
\(302\) 1400.81 + 4547.20i 0.266912 + 0.866431i
\(303\) 0 0
\(304\) 420.807 + 968.356i 0.0793912 + 0.182694i
\(305\) −6766.93 −1.27040
\(306\) 0 0
\(307\) −3008.49 + 3008.49i −0.559295 + 0.559295i −0.929107 0.369812i \(-0.879422\pi\)
0.369812 + 0.929107i \(0.379422\pi\)
\(308\) 451.503 2376.75i 0.0835284 0.439700i
\(309\) 0 0
\(310\) −13595.1 7191.55i −2.49080 1.31759i
\(311\) 4507.09i 0.821779i 0.911685 + 0.410890i \(0.134782\pi\)
−0.911685 + 0.410890i \(0.865218\pi\)
\(312\) 0 0
\(313\) 5237.61i 0.945837i 0.881106 + 0.472919i \(0.156800\pi\)
−0.881106 + 0.472919i \(0.843200\pi\)
\(314\) 1995.33 3772.02i 0.358609 0.677922i
\(315\) 0 0
\(316\) −1161.70 + 790.794i −0.206807 + 0.140777i
\(317\) 989.530 989.530i 0.175323 0.175323i −0.613990 0.789314i \(-0.710437\pi\)
0.789314 + 0.613990i \(0.210437\pi\)
\(318\) 0 0
\(319\) −7181.99 −1.26055
\(320\) −4558.13 + 7219.06i −0.796272 + 1.26112i
\(321\) 0 0
\(322\) −2534.19 + 780.682i −0.438587 + 0.135111i
\(323\) −604.559 + 604.559i −0.104144 + 0.104144i
\(324\) 0 0
\(325\) −7536.35 7536.35i −1.28628 1.28628i
\(326\) 4450.61 8413.52i 0.756124 1.42939i
\(327\) 0 0
\(328\) 6154.99 + 4919.48i 1.03614 + 0.828150i
\(329\) 3206.50i 0.537325i
\(330\) 0 0
\(331\) −5652.55 5652.55i −0.938647 0.938647i 0.0595765 0.998224i \(-0.481025\pi\)
−0.998224 + 0.0595765i \(0.981025\pi\)
\(332\) −264.470 + 1392.19i −0.0437189 + 0.230140i
\(333\) 0 0
\(334\) 699.466 + 2270.56i 0.114590 + 0.371974i
\(335\) 14793.9 2.41277
\(336\) 0 0
\(337\) 291.315 0.0470888 0.0235444 0.999723i \(-0.492505\pi\)
0.0235444 + 0.999723i \(0.492505\pi\)
\(338\) 2208.21 + 7168.13i 0.355357 + 1.15353i
\(339\) 0 0
\(340\) −6791.98 1290.25i −1.08337 0.205805i
\(341\) −5544.96 5544.96i −0.880577 0.880577i
\(342\) 0 0
\(343\) 6638.03i 1.04496i
\(344\) −6546.19 + 730.317i −1.02601 + 0.114465i
\(345\) 0 0
\(346\) −842.185 + 1592.08i −0.130856 + 0.247373i
\(347\) −6530.87 6530.87i −1.01036 1.01036i −0.999946 0.0104158i \(-0.996684\pi\)
−0.0104158 0.999946i \(-0.503316\pi\)
\(348\) 0 0
\(349\) 7267.79 7267.79i 1.11472 1.11472i 0.122213 0.992504i \(-0.461001\pi\)
0.992504 0.122213i \(-0.0389990\pi\)
\(350\) −5202.77 + 1602.76i −0.794571 + 0.244775i
\(351\) 0 0
\(352\) −3304.68 + 2833.43i −0.500399 + 0.429040i
\(353\) 8253.63 1.24447 0.622233 0.782832i \(-0.286226\pi\)
0.622233 + 0.782832i \(0.286226\pi\)
\(354\) 0 0
\(355\) −3240.00 + 3240.00i −0.484398 + 0.484398i
\(356\) 4052.78 + 5953.67i 0.603362 + 0.886360i
\(357\) 0 0
\(358\) −1211.55 + 2290.33i −0.178861 + 0.338122i
\(359\) 4827.70i 0.709738i 0.934916 + 0.354869i \(0.115475\pi\)
−0.934916 + 0.354869i \(0.884525\pi\)
\(360\) 0 0
\(361\) 6586.83i 0.960320i
\(362\) 2672.16 + 1413.53i 0.387972 + 0.205230i
\(363\) 0 0
\(364\) 6882.26 + 1307.40i 0.991012 + 0.188259i
\(365\) 3515.97 3515.97i 0.504204 0.504204i
\(366\) 0 0
\(367\) −2556.37 −0.363600 −0.181800 0.983336i \(-0.558192\pi\)
−0.181800 + 0.983336i \(0.558192\pi\)
\(368\) 4438.98 + 1749.66i 0.628798 + 0.247846i
\(369\) 0 0
\(370\) 2174.93 + 7060.12i 0.305593 + 0.991995i
\(371\) 2837.02 2837.02i 0.397010 0.397010i
\(372\) 0 0
\(373\) 1141.57 + 1141.57i 0.158468 + 0.158468i 0.781887 0.623420i \(-0.214257\pi\)
−0.623420 + 0.781887i \(0.714257\pi\)
\(374\) −3115.86 1648.23i −0.430795 0.227883i
\(375\) 0 0
\(376\) 3602.23 4506.92i 0.494071 0.618155i
\(377\) 20796.6i 2.84106i
\(378\) 0 0
\(379\) −2602.11 2602.11i −0.352668 0.352668i 0.508433 0.861101i \(-0.330225\pi\)
−0.861101 + 0.508433i \(0.830225\pi\)
\(380\) 1819.27 1238.41i 0.245596 0.167182i
\(381\) 0 0
\(382\) 2055.65 633.261i 0.275330 0.0848179i
\(383\) 370.858 0.0494777 0.0247388 0.999694i \(-0.492125\pi\)
0.0247388 + 0.999694i \(0.492125\pi\)
\(384\) 0 0
\(385\) −5042.65 −0.667526
\(386\) −5906.17 + 1819.45i −0.778799 + 0.239916i
\(387\) 0 0
\(388\) 34.9083 23.7627i 0.00456752 0.00310920i
\(389\) 6457.55 + 6457.55i 0.841673 + 0.841673i 0.989077 0.147403i \(-0.0470914\pi\)
−0.147403 + 0.989077i \(0.547091\pi\)
\(390\) 0 0
\(391\) 3863.66i 0.499728i
\(392\) −2611.59 + 3267.48i −0.336492 + 0.421001i
\(393\) 0 0
\(394\) 294.927 + 156.011i 0.0377112 + 0.0199486i
\(395\) 2071.27 + 2071.27i 0.263840 + 0.263840i
\(396\) 0 0
\(397\) −232.353 + 232.353i −0.0293739 + 0.0293739i −0.721641 0.692267i \(-0.756612\pi\)
0.692267 + 0.721641i \(0.256612\pi\)
\(398\) 1444.07 + 4687.62i 0.181871 + 0.590375i
\(399\) 0 0
\(400\) 9113.36 + 3592.10i 1.13917 + 0.449012i
\(401\) 119.615 0.0148960 0.00744801 0.999972i \(-0.497629\pi\)
0.00744801 + 0.999972i \(0.497629\pi\)
\(402\) 0 0
\(403\) 16056.4 16056.4i 1.98467 1.98467i
\(404\) 5102.96 + 969.393i 0.628421 + 0.119379i
\(405\) 0 0
\(406\) −9389.97 4967.13i −1.14782 0.607179i
\(407\) 3766.67i 0.458739i
\(408\) 0 0
\(409\) 626.952i 0.0757965i 0.999282 + 0.0378983i \(0.0120663\pi\)
−0.999282 + 0.0378983i \(0.987934\pi\)
\(410\) 7679.60 14517.7i 0.925045 1.74873i
\(411\) 0 0
\(412\) −3561.65 5232.18i −0.425897 0.625658i
\(413\) −3589.54 + 3589.54i −0.427674 + 0.427674i
\(414\) 0 0
\(415\) 2953.76 0.349384
\(416\) −8204.65 9569.26i −0.966986 1.12782i
\(417\) 0 0
\(418\) 1072.37 330.354i 0.125482 0.0386559i
\(419\) 4981.58 4981.58i 0.580826 0.580826i −0.354304 0.935130i \(-0.615282\pi\)
0.935130 + 0.354304i \(0.115282\pi\)
\(420\) 0 0
\(421\) 10770.4 + 10770.4i 1.24683 + 1.24683i 0.957110 + 0.289723i \(0.0935632\pi\)
0.289723 + 0.957110i \(0.406437\pi\)
\(422\) 684.366 1293.74i 0.0789442 0.149238i
\(423\) 0 0
\(424\) −7174.74 + 800.441i −0.821783 + 0.0916813i
\(425\) 7932.20i 0.905337i
\(426\) 0 0
\(427\) −3608.52 3608.52i −0.408966 0.408966i
\(428\) −16959.2 3221.69i −1.91532 0.363846i
\(429\) 0 0
\(430\) 4042.03 + 13120.9i 0.453312 + 1.47151i
\(431\) −7546.94 −0.843442 −0.421721 0.906726i \(-0.638574\pi\)
−0.421721 + 0.906726i \(0.638574\pi\)
\(432\) 0 0
\(433\) 5614.17 0.623094 0.311547 0.950231i \(-0.399153\pi\)
0.311547 + 0.950231i \(0.399153\pi\)
\(434\) −3414.72 11084.6i −0.377677 1.22599i
\(435\) 0 0
\(436\) −872.684 + 4593.88i −0.0958578 + 0.504603i
\(437\) −869.689 869.689i −0.0952010 0.0952010i
\(438\) 0 0
\(439\) 7198.92i 0.782656i −0.920251 0.391328i \(-0.872016\pi\)
0.920251 0.391328i \(-0.127984\pi\)
\(440\) 7087.73 + 5664.99i 0.767942 + 0.613790i
\(441\) 0 0
\(442\) 4772.73 9022.48i 0.513610 0.970940i
\(443\) 5582.95 + 5582.95i 0.598767 + 0.598767i 0.939984 0.341217i \(-0.110839\pi\)
−0.341217 + 0.939984i \(0.610839\pi\)
\(444\) 0 0
\(445\) 10615.2 10615.2i 1.13080 1.13080i
\(446\) 10912.8 3361.78i 1.15860 0.356917i
\(447\) 0 0
\(448\) −6280.28 + 1418.96i −0.662311 + 0.149642i
\(449\) −1224.53 −0.128706 −0.0643530 0.997927i \(-0.520498\pi\)
−0.0643530 + 0.997927i \(0.520498\pi\)
\(450\) 0 0
\(451\) 5921.28 5921.28i 0.618231 0.618231i
\(452\) −1390.41 + 946.481i −0.144689 + 0.0984927i
\(453\) 0 0
\(454\) −2810.81 + 5313.62i −0.290568 + 0.549297i
\(455\) 14601.8i 1.50449i
\(456\) 0 0
\(457\) 11182.3i 1.14461i −0.820040 0.572307i \(-0.806049\pi\)
0.820040 0.572307i \(-0.193951\pi\)
\(458\) 12176.0 + 6440.88i 1.24224 + 0.657123i
\(459\) 0 0
\(460\) 1856.09 9770.61i 0.188132 0.990341i
\(461\) 11334.9 11334.9i 1.14516 1.14516i 0.157670 0.987492i \(-0.449602\pi\)
0.987492 0.157670i \(-0.0503982\pi\)
\(462\) 0 0
\(463\) 3013.37 0.302469 0.151234 0.988498i \(-0.451675\pi\)
0.151234 + 0.988498i \(0.451675\pi\)
\(464\) 7617.98 + 17530.4i 0.762189 + 1.75394i
\(465\) 0 0
\(466\) −948.453 3078.80i −0.0942837 0.306057i
\(467\) 843.917 843.917i 0.0836228 0.0836228i −0.664058 0.747681i \(-0.731167\pi\)
0.747681 + 0.664058i \(0.231167\pi\)
\(468\) 0 0
\(469\) 7888.96 + 7888.96i 0.776713 + 0.776713i
\(470\) −10630.4 5623.29i −1.04328 0.551879i
\(471\) 0 0
\(472\) 9077.83 1012.76i 0.885256 0.0987625i
\(473\) 7000.20i 0.680485i
\(474\) 0 0
\(475\) −1785.50 1785.50i −0.172472 0.172472i
\(476\) −2933.84 4309.91i −0.282505 0.415009i
\(477\) 0 0
\(478\) −12444.4 + 3833.62i −1.19078 + 0.366832i
\(479\) −10569.4 −1.00821 −0.504103 0.863644i \(-0.668177\pi\)
−0.504103 + 0.863644i \(0.668177\pi\)
\(480\) 0 0
\(481\) −10907.0 −1.03392
\(482\) 12654.7 3898.39i 1.19586 0.368395i
\(483\) 0 0
\(484\) −3388.52 4977.85i −0.318231 0.467492i
\(485\) −62.2400 62.2400i −0.00582716 0.00582716i
\(486\) 0 0
\(487\) 1579.10i 0.146932i 0.997298 + 0.0734661i \(0.0234061\pi\)
−0.997298 + 0.0734661i \(0.976594\pi\)
\(488\) 1018.11 + 9125.83i 0.0944422 + 0.846531i
\(489\) 0 0
\(490\) 7706.95 + 4076.84i 0.710539 + 0.375863i
\(491\) −8650.50 8650.50i −0.795095 0.795095i 0.187222 0.982318i \(-0.440052\pi\)
−0.982318 + 0.187222i \(0.940052\pi\)
\(492\) 0 0
\(493\) −10944.5 + 10944.5i −0.999828 + 0.999828i
\(494\) 956.595 + 3105.23i 0.0871240 + 0.282816i
\(495\) 0 0
\(496\) −7653.04 + 19416.2i −0.692806 + 1.75769i
\(497\) −3455.51 −0.311873
\(498\) 0 0
\(499\) −11942.3 + 11942.3i −1.07137 + 1.07137i −0.0741168 + 0.997250i \(0.523614\pi\)
−0.997250 + 0.0741168i \(0.976386\pi\)
\(500\) 698.554 3677.24i 0.0624806 0.328903i
\(501\) 0 0
\(502\) −1684.59 891.117i −0.149775 0.0792281i
\(503\) 3290.09i 0.291646i 0.989311 + 0.145823i \(0.0465830\pi\)
−0.989311 + 0.145823i \(0.953417\pi\)
\(504\) 0 0
\(505\) 10826.8i 0.954029i
\(506\) 2371.07 4482.32i 0.208314 0.393801i
\(507\) 0 0
\(508\) 1172.96 798.458i 0.102445 0.0697360i
\(509\) −1392.67 + 1392.67i −0.121275 + 0.121275i −0.765140 0.643864i \(-0.777330\pi\)
0.643864 + 0.765140i \(0.277330\pi\)
\(510\) 0 0
\(511\) 3749.84 0.324625
\(512\) 10421.4 + 5060.92i 0.899538 + 0.436842i
\(513\) 0 0
\(514\) 2501.22 770.525i 0.214639 0.0661214i
\(515\) −9328.77 + 9328.77i −0.798203 + 0.798203i
\(516\) 0 0
\(517\) −4335.78 4335.78i −0.368834 0.368834i
\(518\) −2605.06 + 4924.66i −0.220965 + 0.417717i
\(519\) 0 0
\(520\) −16403.9 + 20523.7i −1.38338 + 1.73081i
\(521\) 1175.72i 0.0988661i −0.998777 0.0494331i \(-0.984259\pi\)
0.998777 0.0494331i \(-0.0157414\pi\)
\(522\) 0 0
\(523\) −9451.05 9451.05i −0.790183 0.790183i 0.191341 0.981524i \(-0.438716\pi\)
−0.981524 + 0.191341i \(0.938716\pi\)
\(524\) −1982.30 + 10435.0i −0.165262 + 0.869953i
\(525\) 0 0
\(526\) −2895.86 9400.34i −0.240049 0.779228i
\(527\) −16899.7 −1.39689
\(528\) 0 0
\(529\) 6608.93 0.543185
\(530\) 4430.14 + 14380.8i 0.363081 + 1.17861i
\(531\) 0 0
\(532\) 1630.53 + 309.747i 0.132881 + 0.0252429i
\(533\) 17146.0 + 17146.0i 1.39339 + 1.39339i
\(534\) 0 0
\(535\) 35981.7i 2.90771i
\(536\) −2225.80 19951.0i −0.179366 1.60774i
\(537\) 0 0
\(538\) 7057.58 13341.8i 0.565565 1.06916i
\(539\) 3143.40 + 3143.40i 0.251198 + 0.251198i
\(540\) 0 0
\(541\) 2893.97 2893.97i 0.229984 0.229984i −0.582702 0.812686i \(-0.698004\pi\)
0.812686 + 0.582702i \(0.198004\pi\)
\(542\) −21643.7 + 6667.56i −1.71527 + 0.528406i
\(543\) 0 0
\(544\) −718.141 + 9353.74i −0.0565994 + 0.737203i
\(545\) 9746.66 0.766057
\(546\) 0 0
\(547\) −956.857 + 956.857i −0.0747939 + 0.0747939i −0.743514 0.668720i \(-0.766842\pi\)
0.668720 + 0.743514i \(0.266842\pi\)
\(548\) 1383.96 + 2033.09i 0.107883 + 0.158484i
\(549\) 0 0
\(550\) 4867.88 9202.34i 0.377394 0.713435i
\(551\) 4927.09i 0.380946i
\(552\) 0 0
\(553\) 2209.04i 0.169870i
\(554\) −16090.4 8511.53i −1.23396 0.652744i
\(555\) 0 0
\(556\) −13931.8 2646.57i −1.06266 0.201870i
\(557\) 8482.07 8482.07i 0.645236 0.645236i −0.306602 0.951838i \(-0.599192\pi\)
0.951838 + 0.306602i \(0.0991919\pi\)
\(558\) 0 0
\(559\) −20270.2 −1.53370
\(560\) 5348.77 + 12308.5i 0.403619 + 0.928804i
\(561\) 0 0
\(562\) −2775.46 9009.48i −0.208319 0.676232i
\(563\) −9461.78 + 9461.78i −0.708289 + 0.708289i −0.966175 0.257886i \(-0.916974\pi\)
0.257886 + 0.966175i \(0.416974\pi\)
\(564\) 0 0
\(565\) 2479.05 + 2479.05i 0.184592 + 0.184592i
\(566\) −22071.1 11675.2i −1.63908 0.867044i
\(567\) 0 0
\(568\) 4856.91 + 3881.97i 0.358788 + 0.286767i
\(569\) 7197.61i 0.530298i 0.964207 + 0.265149i \(0.0854211\pi\)
−0.964207 + 0.265149i \(0.914579\pi\)
\(570\) 0 0
\(571\) 990.936 + 990.936i 0.0726259 + 0.0726259i 0.742487 0.669861i \(-0.233646\pi\)
−0.669861 + 0.742487i \(0.733646\pi\)
\(572\) −11073.9 + 7538.24i −0.809483 + 0.551031i
\(573\) 0 0
\(574\) 11836.9 3646.46i 0.860735 0.265157i
\(575\) −11410.9 −0.827594
\(576\) 0 0
\(577\) −14836.1 −1.07043 −0.535214 0.844717i \(-0.679769\pi\)
−0.535214 + 0.844717i \(0.679769\pi\)
\(578\) 6020.29 1854.61i 0.433237 0.133463i
\(579\) 0 0
\(580\) 32934.7 22419.3i 2.35782 1.60502i
\(581\) 1575.11 + 1575.11i 0.112473 + 0.112473i
\(582\) 0 0
\(583\) 7672.35i 0.545036i
\(584\) −5270.61 4212.63i −0.373458 0.298493i
\(585\) 0 0
\(586\) −8691.80 4597.81i −0.612721 0.324119i
\(587\) −4038.29 4038.29i −0.283949 0.283949i 0.550733 0.834682i \(-0.314348\pi\)
−0.834682 + 0.550733i \(0.814348\pi\)
\(588\) 0 0
\(589\) 3804.04 3804.04i 0.266116 0.266116i
\(590\) −5605.23 18195.3i −0.391125 1.26964i
\(591\) 0 0
\(592\) 9194.00 3995.33i 0.638296 0.277376i
\(593\) −11081.1 −0.767361 −0.383681 0.923466i \(-0.625344\pi\)
−0.383681 + 0.923466i \(0.625344\pi\)
\(594\) 0 0
\(595\) −7684.40 + 7684.40i −0.529461 + 0.529461i
\(596\) −18748.7 3561.62i −1.28855 0.244781i
\(597\) 0 0
\(598\) 12979.3 + 6865.82i 0.887563 + 0.469506i
\(599\) 7036.50i 0.479973i 0.970776 + 0.239986i \(0.0771430\pi\)
−0.970776 + 0.239986i \(0.922857\pi\)
\(600\) 0 0
\(601\) 24290.7i 1.64865i 0.566117 + 0.824325i \(0.308445\pi\)
−0.566117 + 0.824325i \(0.691555\pi\)
\(602\) −4841.40 + 9152.29i −0.327775 + 0.619634i
\(603\) 0 0
\(604\) −7572.97 11125.0i −0.510165 0.749450i
\(605\) −8875.31 + 8875.31i −0.596418 + 0.596418i
\(606\) 0 0
\(607\) 10931.5 0.730967 0.365484 0.930818i \(-0.380904\pi\)
0.365484 + 0.930818i \(0.380904\pi\)
\(608\) −1943.83 2267.13i −0.129659 0.151224i
\(609\) 0 0
\(610\) 18291.5 5634.87i 1.21410 0.374015i
\(611\) 12555.0 12555.0i 0.831292 0.831292i
\(612\) 0 0
\(613\) −2217.95 2217.95i −0.146137 0.146137i 0.630253 0.776390i \(-0.282951\pi\)
−0.776390 + 0.630253i \(0.782951\pi\)
\(614\) 5626.97 10637.4i 0.369847 0.699167i
\(615\) 0 0
\(616\) 758.688 + 6800.49i 0.0496240 + 0.444804i
\(617\) 26271.5i 1.71418i 0.515164 + 0.857092i \(0.327731\pi\)
−0.515164 + 0.857092i \(0.672269\pi\)
\(618\) 0 0
\(619\) −11171.8 11171.8i −0.725417 0.725417i 0.244287 0.969703i \(-0.421446\pi\)
−0.969703 + 0.244287i \(0.921446\pi\)
\(620\) 42736.9 + 8118.58i 2.76831 + 0.525887i
\(621\) 0 0
\(622\) −3753.08 12183.0i −0.241937 0.785358i
\(623\) 11321.2 0.728050
\(624\) 0 0
\(625\) 11330.4 0.725148
\(626\) −4361.39 14157.6i −0.278460 0.903918i
\(627\) 0 0
\(628\) −2252.54 + 11857.6i −0.143131 + 0.753453i
\(629\) 5739.95 + 5739.95i 0.363858 + 0.363858i
\(630\) 0 0
\(631\) 17415.1i 1.09871i 0.835590 + 0.549354i \(0.185126\pi\)
−0.835590 + 0.549354i \(0.814874\pi\)
\(632\) 2481.67 3104.93i 0.156195 0.195423i
\(633\) 0 0
\(634\) −1850.78 + 3498.76i −0.115937 + 0.219169i
\(635\) −2091.34 2091.34i −0.130697 0.130697i
\(636\) 0 0
\(637\) −9102.24 + 9102.24i −0.566160 + 0.566160i
\(638\) 19413.4 5980.49i 1.20468 0.371113i
\(639\) 0 0
\(640\) 6309.59 23309.2i 0.389700 1.43965i
\(641\) 2727.28 0.168051 0.0840257 0.996464i \(-0.473222\pi\)
0.0840257 + 0.996464i \(0.473222\pi\)
\(642\) 0 0
\(643\) 11681.7 11681.7i 0.716458 0.716458i −0.251420 0.967878i \(-0.580897\pi\)
0.967878 + 0.251420i \(0.0808975\pi\)
\(644\) 6200.03 4220.48i 0.379372 0.258246i
\(645\) 0 0
\(646\) 1130.75 2137.59i 0.0688678 0.130189i
\(647\) 4399.67i 0.267340i 0.991026 + 0.133670i \(0.0426762\pi\)
−0.991026 + 0.133670i \(0.957324\pi\)
\(648\) 0 0
\(649\) 9707.43i 0.587134i
\(650\) 26646.9 + 14095.7i 1.60796 + 0.850585i
\(651\) 0 0
\(652\) −5024.32 + 26448.4i −0.301791 + 1.58865i
\(653\) 22924.8 22924.8i 1.37384 1.37384i 0.519167 0.854673i \(-0.326242\pi\)
0.854673 0.519167i \(-0.173758\pi\)
\(654\) 0 0
\(655\) 22139.6 1.32071
\(656\) −20733.9 8172.42i −1.23403 0.486401i
\(657\) 0 0
\(658\) −2670.07 8667.40i −0.158192 0.513511i
\(659\) 11508.4 11508.4i 0.680276 0.680276i −0.279786 0.960062i \(-0.590264\pi\)
0.960062 + 0.279786i \(0.0902636\pi\)
\(660\) 0 0
\(661\) 10207.0 + 10207.0i 0.600615 + 0.600615i 0.940476 0.339861i \(-0.110380\pi\)
−0.339861 + 0.940476i \(0.610380\pi\)
\(662\) 19986.2 + 10572.3i 1.17339 + 0.620703i
\(663\) 0 0
\(664\) −444.405 3983.42i −0.0259733 0.232811i
\(665\) 3459.43i 0.201731i
\(666\) 0 0
\(667\) −15744.2 15744.2i −0.913970 0.913970i
\(668\) −3781.42 5555.03i −0.219023 0.321752i
\(669\) 0 0
\(670\) −39989.0 + 12319.0i −2.30583 + 0.710334i
\(671\) 9758.76 0.561450
\(672\) 0 0
\(673\) −23908.4 −1.36939 −0.684695 0.728830i \(-0.740065\pi\)
−0.684695 + 0.728830i \(0.740065\pi\)
\(674\) −787.445 + 242.580i −0.0450019 + 0.0138632i
\(675\) 0 0
\(676\) −11937.9 17537.2i −0.679215 0.997791i
\(677\) −10411.1 10411.1i −0.591035 0.591035i 0.346876 0.937911i \(-0.387242\pi\)
−0.937911 + 0.346876i \(0.887242\pi\)
\(678\) 0 0
\(679\) 66.3800i 0.00375174i
\(680\) 19433.6 2168.09i 1.09595 0.122268i
\(681\) 0 0
\(682\) 19605.8 + 10371.1i 1.10080 + 0.582303i
\(683\) −11126.8 11126.8i −0.623358 0.623358i 0.323030 0.946389i \(-0.395298\pi\)
−0.946389 + 0.323030i \(0.895298\pi\)
\(684\) 0 0
\(685\) 3624.91 3624.91i 0.202191 0.202191i
\(686\) 5527.53 + 17943.1i 0.307642 + 0.998644i
\(687\) 0 0
\(688\) 17086.7 7425.15i 0.946836 0.411455i
\(689\) −22216.5 −1.22842
\(690\) 0 0
\(691\) 2722.85 2722.85i 0.149901 0.149901i −0.628173 0.778074i \(-0.716197\pi\)
0.778074 + 0.628173i \(0.216197\pi\)
\(692\) 950.748 5004.81i 0.0522283 0.274934i
\(693\) 0 0
\(694\) 23091.7 + 12215.1i 1.26304 + 0.668126i
\(695\) 29558.5i 1.61326i
\(696\) 0 0
\(697\) 18046.6i 0.980724i
\(698\) −13593.4 + 25697.3i −0.737133 + 1.39349i
\(699\) 0 0
\(700\) 12728.8 8664.77i 0.687293 0.467853i
\(701\) −2736.38 + 2736.38i −0.147435 + 0.147435i −0.776971 0.629536i \(-0.783245\pi\)
0.629536 + 0.776971i \(0.283245\pi\)
\(702\) 0 0
\(703\) −2584.06 −0.138634
\(704\) 6573.39 10410.8i 0.351909 0.557346i
\(705\) 0 0
\(706\) −22310.1 + 6872.85i −1.18931 + 0.366378i
\(707\) 5773.45 5773.45i 0.307119 0.307119i
\(708\) 0 0
\(709\) −783.090 783.090i −0.0414803 0.0414803i 0.686062 0.727543i \(-0.259338\pi\)
−0.727543 + 0.686062i \(0.759338\pi\)
\(710\) 6059.98 11455.9i 0.320320 0.605539i
\(711\) 0 0
\(712\) −15912.6 12718.4i −0.837571 0.669443i
\(713\) 24311.1i 1.27694i
\(714\) 0 0
\(715\) 19744.4 + 19744.4i 1.03272 + 1.03272i
\(716\) 1367.72 7199.79i 0.0713885 0.375795i
\(717\) 0 0
\(718\) −4020.06 13049.6i −0.208951 0.678283i
\(719\) 11021.5 0.571671 0.285835 0.958279i \(-0.407729\pi\)
0.285835 + 0.958279i \(0.407729\pi\)
\(720\) 0 0
\(721\) −9949.27 −0.513912
\(722\) −5484.90 17804.7i −0.282724 0.917759i
\(723\) 0 0
\(724\) −8400.11 1595.74i −0.431198 0.0819133i
\(725\) −32323.3 32323.3i −1.65580 1.65580i
\(726\) 0 0
\(727\) 21740.4i 1.10909i −0.832154 0.554544i \(-0.812893\pi\)
0.832154 0.554544i \(-0.187107\pi\)
\(728\) −19691.9 + 2196.91i −1.00252 + 0.111844i
\(729\) 0 0
\(730\) −6576.16 + 12431.7i −0.333417 + 0.630299i
\(731\) 10667.5 + 10667.5i 0.539741 + 0.539741i
\(732\) 0 0
\(733\) 13194.8 13194.8i 0.664886 0.664886i −0.291642 0.956528i \(-0.594202\pi\)
0.956528 + 0.291642i \(0.0942015\pi\)
\(734\) 6910.04 2128.70i 0.347485 0.107046i
\(735\) 0 0
\(736\) −13455.8 1033.08i −0.673898 0.0517391i
\(737\) −21334.7 −1.06631
\(738\) 0 0
\(739\) 21786.6 21786.6i 1.08448 1.08448i 0.0883973 0.996085i \(-0.471825\pi\)
0.996085 0.0883973i \(-0.0281745\pi\)
\(740\) −11758.0 17272.9i −0.584099 0.858061i
\(741\) 0 0
\(742\) −5306.26 + 10031.1i −0.262532 + 0.496297i
\(743\) 7418.24i 0.366284i −0.983086 0.183142i \(-0.941373\pi\)
0.983086 0.183142i \(-0.0586268\pi\)
\(744\) 0 0
\(745\) 39778.3i 1.95619i
\(746\) −4036.35 2135.16i −0.198098 0.104790i
\(747\) 0 0
\(748\) 9794.89 + 1860.70i 0.478792 + 0.0909546i
\(749\) −19187.5 + 19187.5i −0.936045 + 0.936045i
\(750\) 0 0
\(751\) −9320.68 −0.452885 −0.226442 0.974025i \(-0.572709\pi\)
−0.226442 + 0.974025i \(0.572709\pi\)
\(752\) −5984.15 + 15182.1i −0.290185 + 0.736217i
\(753\) 0 0
\(754\) 17317.5 + 56214.8i 0.836427 + 2.71515i
\(755\) −19835.3 + 19835.3i −0.956135 + 0.956135i
\(756\) 0 0
\(757\) 2105.29 + 2105.29i 0.101081 + 0.101081i 0.755839 0.654758i \(-0.227229\pi\)
−0.654758 + 0.755839i \(0.727229\pi\)
\(758\) 9200.47 + 4866.89i 0.440866 + 0.233210i
\(759\) 0 0
\(760\) −3886.38 + 4862.43i −0.185492 + 0.232077i
\(761\) 13011.0i 0.619776i −0.950773 0.309888i \(-0.899708\pi\)
0.950773 0.309888i \(-0.100292\pi\)
\(762\) 0 0
\(763\) 5197.48 + 5197.48i 0.246607 + 0.246607i
\(764\) −5029.24 + 3423.50i −0.238156 + 0.162118i
\(765\) 0 0
\(766\) −1002.46 + 308.816i −0.0472849 + 0.0145665i
\(767\) 28109.4 1.32330
\(768\) 0 0
\(769\) 26438.9 1.23981 0.619904 0.784677i \(-0.287171\pi\)
0.619904 + 0.784677i \(0.287171\pi\)
\(770\) 13630.7 4199.05i 0.637941 0.196524i
\(771\) 0 0
\(772\) 14449.7 9836.22i 0.673650 0.458566i
\(773\) 21614.3 + 21614.3i 1.00571 + 1.00571i 0.999984 + 0.00572318i \(0.00182175\pi\)
0.00572318 + 0.999984i \(0.498178\pi\)
\(774\) 0 0
\(775\) 49911.4i 2.31338i
\(776\) −74.5722 + 93.3007i −0.00344972 + 0.00431611i
\(777\) 0 0
\(778\) −22832.5 12078.0i −1.05216 0.556577i
\(779\) 4062.20 + 4062.20i 0.186834 + 0.186834i
\(780\) 0 0
\(781\) 4672.48 4672.48i 0.214077 0.214077i
\(782\) −3217.29 10443.7i −0.147123 0.477580i
\(783\) 0 0
\(784\) 4338.46 11006.9i 0.197634 0.501408i
\(785\) 25157.8 1.14385
\(786\) 0 0
\(787\) −20949.4 + 20949.4i −0.948874 + 0.948874i −0.998755 0.0498808i \(-0.984116\pi\)
0.0498808 + 0.998755i \(0.484116\pi\)
\(788\) −927.120 176.122i −0.0419128 0.00796204i
\(789\) 0 0
\(790\) −7323.55 3874.03i −0.329823 0.174471i
\(791\) 2643.94i 0.118847i
\(792\) 0 0
\(793\) 28258.1i 1.26541i
\(794\) 434.584 821.548i 0.0194242 0.0367199i
\(795\) 0 0
\(796\) −7806.83 11468.5i −0.347620 0.510666i
\(797\) −1576.38 + 1576.38i −0.0700603 + 0.0700603i −0.741269 0.671208i \(-0.765776\pi\)
0.671208 + 0.741269i \(0.265776\pi\)
\(798\) 0 0
\(799\) −13214.4 −0.585097
\(800\) −27625.2 2120.95i −1.22087 0.0937336i
\(801\) 0 0
\(802\) −323.329 + 99.6044i −0.0142358 + 0.00438548i
\(803\) −5070.48 + 5070.48i −0.222831 + 0.222831i
\(804\) 0 0
\(805\) −11054.4 11054.4i −0.483995 0.483995i
\(806\) −30031.2 + 56771.7i −1.31241 + 2.48101i
\(807\) 0 0
\(808\) −14600.9 + 1628.93i −0.635715 + 0.0709228i
\(809\) 8102.89i 0.352142i −0.984378 0.176071i \(-0.943661\pi\)
0.984378 0.176071i \(-0.0563388\pi\)
\(810\) 0 0
\(811\) 20649.6 + 20649.6i 0.894090 + 0.894090i 0.994905 0.100816i \(-0.0321452\pi\)
−0.100816 + 0.994905i \(0.532145\pi\)
\(812\) 29517.9 + 5607.42i 1.27571 + 0.242342i
\(813\) 0 0
\(814\) −3136.53 10181.6i −0.135056 0.438408i
\(815\) 56114.6 2.41179
\(816\) 0 0
\(817\) −4802.38 −0.205647
\(818\) −522.067 1694.70i −0.0223150 0.0724373i
\(819\) 0 0
\(820\) −8669.55 + 45637.2i −0.369212 + 1.94356i
\(821\) −13405.1 13405.1i −0.569844 0.569844i 0.362240 0.932085i \(-0.382012\pi\)
−0.932085 + 0.362240i \(0.882012\pi\)
\(822\) 0 0
\(823\) 17203.4i 0.728643i 0.931273 + 0.364321i \(0.118699\pi\)
−0.931273 + 0.364321i \(0.881301\pi\)
\(824\) 13984.3 + 11177.2i 0.591219 + 0.472542i
\(825\) 0 0
\(826\) 6713.74 12691.8i 0.282810 0.534630i
\(827\) 11127.2 + 11127.2i 0.467872 + 0.467872i 0.901224 0.433353i \(-0.142670\pi\)
−0.433353 + 0.901224i \(0.642670\pi\)
\(828\) 0 0
\(829\) −5752.09 + 5752.09i −0.240987 + 0.240987i −0.817259 0.576271i \(-0.804507\pi\)
0.576271 + 0.817259i \(0.304507\pi\)
\(830\) −7984.23 + 2459.61i −0.333899 + 0.102861i
\(831\) 0 0
\(832\) 30146.1 + 19034.3i 1.25617 + 0.793145i
\(833\) 9580.34 0.398486
\(834\) 0 0
\(835\) −9904.39 + 9904.39i −0.410486 + 0.410486i
\(836\) −2623.61 + 1785.94i −0.108540 + 0.0738853i
\(837\) 0 0
\(838\) −9317.38 + 17613.8i −0.384086 + 0.726083i
\(839\) 45875.9i 1.88774i −0.330318 0.943870i \(-0.607156\pi\)
0.330318 0.943870i \(-0.392844\pi\)
\(840\) 0 0
\(841\) 64807.5i 2.65724i
\(842\) −38081.7 20144.6i −1.55865 0.824499i
\(843\) 0 0
\(844\) −772.585 + 4066.95i −0.0315089 + 0.165865i
\(845\) −31268.1 + 31268.1i −1.27296 + 1.27296i
\(846\) 0 0
\(847\) −9465.66 −0.383995
\(848\) 18727.3 8138.10i 0.758371 0.329556i
\(849\) 0 0
\(850\) −6605.20 21441.3i −0.266537 0.865213i
\(851\) −8257.21 + 8257.21i −0.332613 + 0.332613i
\(852\) 0 0
\(853\) −27266.2 27266.2i −1.09446 1.09446i −0.995046 0.0994157i \(-0.968303\pi\)
−0.0994157 0.995046i \(-0.531697\pi\)
\(854\) 12758.9 + 6749.24i 0.511243 + 0.270438i
\(855\) 0 0
\(856\) 48524.7 5413.60i 1.93755 0.216160i
\(857\) 28960.0i 1.15432i −0.816629 0.577162i \(-0.804160\pi\)
0.816629 0.577162i \(-0.195840\pi\)
\(858\) 0 0
\(859\) 17255.5 + 17255.5i 0.685388 + 0.685388i 0.961209 0.275821i \(-0.0889496\pi\)
−0.275821 + 0.961209i \(0.588950\pi\)
\(860\) −21851.8 32101.0i −0.866442 1.27283i
\(861\) 0 0
\(862\) 20399.9 6284.39i 0.806061 0.248314i
\(863\) −39885.9 −1.57327 −0.786635 0.617418i \(-0.788179\pi\)
−0.786635 + 0.617418i \(0.788179\pi\)
\(864\) 0 0
\(865\) −10618.5 −0.417388
\(866\) −15175.5 + 4674.95i −0.595478 + 0.183443i
\(867\) 0 0
\(868\) 18460.5 + 27119.1i 0.721877 + 1.06046i
\(869\) −2987.03 2987.03i −0.116603 0.116603i
\(870\) 0 0
\(871\) 61778.0i 2.40329i
\(872\) −1466.43 13144.3i −0.0569489 0.510460i
\(873\) 0 0
\(874\) 3075.03 + 1626.64i 0.119010 + 0.0629540i
\(875\) −4160.41 4160.41i −0.160740 0.160740i
\(876\) 0 0
\(877\) 8855.51 8855.51i 0.340968 0.340968i −0.515763 0.856731i \(-0.672491\pi\)
0.856731 + 0.515763i \(0.172491\pi\)
\(878\) 5994.59 + 19459.2i 0.230419 + 0.747969i
\(879\) 0 0
\(880\) −23875.9 9410.88i −0.914611 0.360501i
\(881\) 43343.8 1.65753 0.828767 0.559593i \(-0.189043\pi\)
0.828767 + 0.559593i \(0.189043\pi\)
\(882\) 0 0
\(883\) 11229.3 11229.3i 0.427968 0.427968i −0.459968 0.887936i \(-0.652139\pi\)
0.887936 + 0.459968i \(0.152139\pi\)
\(884\) −5387.97 + 28362.7i −0.204997 + 1.07912i
\(885\) 0 0
\(886\) −19740.1 10442.2i −0.748511 0.395949i
\(887\) 36912.9i 1.39731i 0.715459 + 0.698655i \(0.246218\pi\)
−0.715459 + 0.698655i \(0.753782\pi\)
\(888\) 0 0
\(889\) 2230.45i 0.0841473i
\(890\) −19854.2 + 37532.8i −0.747770 + 1.41360i
\(891\) 0 0
\(892\) −26698.6 + 18174.3i −1.00217 + 0.682197i
\(893\) 2974.49 2974.49i 0.111464 0.111464i
\(894\) 0 0
\(895\) −15275.5 −0.570508
\(896\) 15794.5 9065.19i 0.588902 0.337998i
\(897\) 0 0
\(898\) 3309.98 1019.67i 0.123002 0.0378918i
\(899\) 68865.5 68865.5i 2.55483 2.55483i
\(900\) 0 0
\(901\) 11691.7 + 11691.7i 0.432306 + 0.432306i
\(902\) −11075.0 + 20936.3i −0.408820 + 0.772842i
\(903\) 0 0
\(904\) 2970.25 3716.21i 0.109280 0.136725i
\(905\) 17822.2i 0.654618i
\(906\) 0 0
\(907\) 14588.0 + 14588.0i 0.534053 + 0.534053i 0.921776 0.387723i \(-0.126738\pi\)
−0.387723 + 0.921776i \(0.626738\pi\)
\(908\) 3173.14 16703.7i 0.115974 0.610497i
\(909\) 0 0
\(910\) 12159.0 + 39469.8i 0.442932 + 1.43781i
\(911\) −50418.8 −1.83365 −0.916823 0.399295i \(-0.869255\pi\)
−0.916823 + 0.399295i \(0.869255\pi\)
\(912\) 0 0
\(913\) −4259.69 −0.154409
\(914\) 9311.61 + 30226.7i 0.336981 + 1.09388i
\(915\) 0 0
\(916\) −38275.9 7271.14i −1.38064 0.262277i
\(917\) 11806.1 + 11806.1i 0.425160 + 0.425160i
\(918\) 0 0
\(919\) 53290.4i 1.91283i 0.292018 + 0.956413i \(0.405673\pi\)
−0.292018 + 0.956413i \(0.594327\pi\)
\(920\) 3118.90 + 27956.2i 0.111769 + 1.00184i
\(921\) 0 0
\(922\) −21200.4 + 40077.8i −0.757266 + 1.43155i
\(923\) 13529.9 + 13529.9i 0.482495 + 0.482495i
\(924\) 0 0
\(925\) −16952.3 + 16952.3i −0.602581 + 0.602581i
\(926\) −8145.35 + 2509.25i −0.289064 + 0.0890488i
\(927\) 0 0
\(928\) −35189.6 41042.4i −1.24478 1.45181i
\(929\) −44859.2 −1.58427 −0.792133 0.610349i \(-0.791029\pi\)
−0.792133 + 0.610349i \(0.791029\pi\)
\(930\) 0 0
\(931\) −2156.48 + 2156.48i −0.0759140 + 0.0759140i
\(932\) 5127.47 + 7532.43i 0.180210 + 0.264735i
\(933\) 0 0
\(934\) −1578.43 + 2983.91i −0.0552976 + 0.104536i
\(935\) 20781.4i 0.726872i
\(936\) 0 0
\(937\) 22463.9i 0.783204i −0.920135 0.391602i \(-0.871921\pi\)
0.920135 0.391602i \(-0.128079\pi\)
\(938\) −27893.6 14755.2i −0.970958 0.513620i
\(939\) 0 0
\(940\) 33417.3 + 6348.17i 1.15952 + 0.220271i
\(941\) −20653.7 + 20653.7i −0.715507 + 0.715507i −0.967682 0.252175i \(-0.918854\pi\)
0.252175 + 0.967682i \(0.418854\pi\)
\(942\) 0 0
\(943\) 25961.0 0.896507
\(944\) −23694.7 + 10296.7i −0.816946 + 0.355010i
\(945\) 0 0
\(946\) −5829.11 18922.0i −0.200339 0.650326i
\(947\) −33123.2 + 33123.2i −1.13660 + 1.13660i −0.147544 + 0.989055i \(0.547137\pi\)
−0.989055 + 0.147544i \(0.952863\pi\)
\(948\) 0 0
\(949\) −14682.4 14682.4i −0.502224 0.502224i
\(950\) 6313.12 + 3339.53i 0.215605 + 0.114051i
\(951\) 0 0
\(952\) 11519.3 + 9206.97i 0.392166 + 0.313445i
\(953\) 10871.9i 0.369544i −0.982781 0.184772i \(-0.940845\pi\)
0.982781 0.184772i \(-0.0591546\pi\)
\(954\) 0 0
\(955\) 8966.93 + 8966.93i 0.303836 + 0.303836i
\(956\) 30445.9 20725.1i 1.03001 0.701147i
\(957\) 0 0
\(958\) 28570.0 8801.25i 0.963522 0.296822i
\(959\) 3866.02 0.130178
\(960\) 0 0
\(961\) 76546.3 2.56944
\(962\) 29482.4 9082.33i 0.988099 0.304393i
\(963\) 0 0
\(964\) −30960.2 + 21075.2i −1.03440 + 0.704137i
\(965\) −25763.3 25763.3i −0.859430 0.859430i
\(966\) 0 0
\(967\) 6501.58i 0.216212i 0.994139 + 0.108106i \(0.0344786\pi\)
−0.994139 + 0.108106i \(0.965521\pi\)
\(968\) 13304.5 + 10633.9i 0.441759 + 0.353084i
\(969\) 0 0
\(970\) 220.067 + 116.412i 0.00728446 + 0.00385335i
\(971\) 16761.7 + 16761.7i 0.553975 + 0.553975i 0.927586 0.373611i \(-0.121880\pi\)
−0.373611 + 0.927586i \(0.621880\pi\)
\(972\) 0 0
\(973\) −15762.3 + 15762.3i −0.519338 + 0.519338i
\(974\) −1314.93 4268.43i −0.0432578 0.140420i
\(975\) 0 0
\(976\) −10351.2 23820.0i −0.339480 0.781208i
\(977\) 7407.34 0.242561 0.121280 0.992618i \(-0.461300\pi\)
0.121280 + 0.992618i \(0.461300\pi\)
\(978\) 0 0
\(979\) −15308.4 + 15308.4i −0.499753 + 0.499753i
\(980\) −24227.2 4602.37i −0.789705 0.150018i
\(981\) 0 0
\(982\) 30586.3 + 16179.6i 0.993938 + 0.525776i
\(983\) 35694.8i 1.15818i −0.815265 0.579088i \(-0.803409\pi\)
0.815265 0.579088i \(-0.196591\pi\)
\(984\) 0 0
\(985\) 1967.04i 0.0636294i
\(986\) 20470.2 38697.3i 0.661160 1.24987i
\(987\) 0 0
\(988\) −5171.49 7597.10i −0.166525 0.244631i
\(989\) −15345.7 + 15345.7i −0.493392 + 0.493392i
\(990\) 0 0
\(991\) 46662.2 1.49573 0.747867 0.663849i \(-0.231078\pi\)
0.747867 + 0.663849i \(0.231078\pi\)
\(992\) 4518.73 58856.1i 0.144627 1.88375i
\(993\) 0 0
\(994\) 9340.48 2877.42i 0.298050 0.0918172i
\(995\) −20447.9 + 20447.9i −0.651498 + 0.651498i
\(996\) 0 0
\(997\) −22390.7 22390.7i −0.711255 0.711255i 0.255543 0.966798i \(-0.417746\pi\)
−0.966798 + 0.255543i \(0.917746\pi\)
\(998\) 22336.5 42225.4i 0.708467 1.33930i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.4.k.b.37.1 24
3.2 odd 2 48.4.j.a.37.12 yes 24
4.3 odd 2 576.4.k.b.433.2 24
12.11 even 2 192.4.j.a.49.12 24
16.3 odd 4 576.4.k.b.145.2 24
16.13 even 4 inner 144.4.k.b.109.1 24
24.5 odd 2 384.4.j.b.97.7 24
24.11 even 2 384.4.j.a.97.6 24
48.5 odd 4 384.4.j.b.289.7 24
48.11 even 4 384.4.j.a.289.6 24
48.29 odd 4 48.4.j.a.13.12 24
48.35 even 4 192.4.j.a.145.12 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.j.a.13.12 24 48.29 odd 4
48.4.j.a.37.12 yes 24 3.2 odd 2
144.4.k.b.37.1 24 1.1 even 1 trivial
144.4.k.b.109.1 24 16.13 even 4 inner
192.4.j.a.49.12 24 12.11 even 2
192.4.j.a.145.12 24 48.35 even 4
384.4.j.a.97.6 24 24.11 even 2
384.4.j.a.289.6 24 48.11 even 4
384.4.j.b.97.7 24 24.5 odd 2
384.4.j.b.289.7 24 48.5 odd 4
576.4.k.b.145.2 24 16.3 odd 4
576.4.k.b.433.2 24 4.3 odd 2