Properties

Label 144.4.k
Level $144$
Weight $4$
Character orbit 144.k
Rep. character $\chi_{144}(37,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $58$
Newform subspaces $3$
Sturm bound $96$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 144.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(96\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(144, [\chi])\).

Total New Old
Modular forms 152 62 90
Cusp forms 136 58 78
Eisenstein series 16 4 12

Trace form

\( 58 q + 2 q^{2} + 8 q^{4} + 2 q^{5} - 40 q^{8} + 52 q^{10} + 22 q^{11} - 2 q^{13} + 160 q^{14} - 104 q^{16} + 4 q^{17} + 22 q^{19} + 116 q^{20} + 348 q^{22} + 284 q^{26} + 352 q^{28} - 198 q^{29} + 368 q^{31}+ \cdots - 7074 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(144, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
144.4.k.a 144.k 16.e $10$ $8.496$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 16.4.e.a \(2\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{4}q^{2}+(1-\beta _{2}+\beta _{5}+\beta _{6}+\beta _{8}+\cdots)q^{4}+\cdots\)
144.4.k.b 144.k 16.e $24$ $8.496$ None 48.4.j.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$
144.4.k.c 144.k 16.e $24$ $8.496$ None 144.4.k.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{4}^{\mathrm{old}}(144, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(144, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)