Properties

Label 576.4.k.b.433.2
Level $576$
Weight $4$
Character 576.433
Analytic conductor $33.985$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,4,Mod(145,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.145"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 576.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.9851001633\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.2
Character \(\chi\) \(=\) 576.433
Dual form 576.4.k.b.145.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-11.7911 - 11.7911i) q^{5} +12.5754i q^{7} +(-17.0042 - 17.0042i) q^{11} +(-49.2384 + 49.2384i) q^{13} +51.8247 q^{17} +(11.6655 - 11.6655i) q^{19} -74.5524i q^{23} +153.058i q^{25} +(-211.183 + 211.183i) q^{29} +326.094 q^{31} +(148.277 - 148.277i) q^{35} +(110.757 + 110.757i) q^{37} -348.225i q^{41} +(-205.838 - 205.838i) q^{43} +254.983 q^{47} +184.861 q^{49} +(225.602 + 225.602i) q^{53} +400.995i q^{55} +(285.442 + 285.442i) q^{59} +(286.952 - 286.952i) q^{61} +1161.15 q^{65} +(627.335 - 627.335i) q^{67} +274.784i q^{71} +298.190i q^{73} +(213.834 - 213.834i) q^{77} +175.664 q^{79} +(125.254 - 125.254i) q^{83} +(-611.068 - 611.068i) q^{85} +900.271i q^{89} +(-619.190 - 619.190i) q^{91} -275.096 q^{95} +5.27858 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 40 q^{11} - 24 q^{19} - 400 q^{29} + 744 q^{31} - 456 q^{35} + 16 q^{37} - 1240 q^{43} - 1176 q^{49} - 752 q^{53} - 1376 q^{59} - 912 q^{61} - 976 q^{65} + 2256 q^{67} - 1904 q^{77} - 5992 q^{79}+ \cdots - 7728 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −11.7911 11.7911i −1.05462 1.05462i −0.998419 0.0562056i \(-0.982100\pi\)
−0.0562056 0.998419i \(-0.517900\pi\)
\(6\) 0 0
\(7\) 12.5754i 0.679005i 0.940605 + 0.339503i \(0.110259\pi\)
−0.940605 + 0.339503i \(0.889741\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −17.0042 17.0042i −0.466087 0.466087i 0.434557 0.900644i \(-0.356905\pi\)
−0.900644 + 0.434557i \(0.856905\pi\)
\(12\) 0 0
\(13\) −49.2384 + 49.2384i −1.05048 + 1.05048i −0.0518270 + 0.998656i \(0.516504\pi\)
−0.998656 + 0.0518270i \(0.983496\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 51.8247 0.739372 0.369686 0.929157i \(-0.379465\pi\)
0.369686 + 0.929157i \(0.379465\pi\)
\(18\) 0 0
\(19\) 11.6655 11.6655i 0.140855 0.140855i −0.633163 0.774018i \(-0.718244\pi\)
0.774018 + 0.633163i \(0.218244\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 74.5524i 0.675881i −0.941168 0.337940i \(-0.890270\pi\)
0.941168 0.337940i \(-0.109730\pi\)
\(24\) 0 0
\(25\) 153.058i 1.22447i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −211.183 + 211.183i −1.35227 + 1.35227i −0.469143 + 0.883122i \(0.655437\pi\)
−0.883122 + 0.469143i \(0.844563\pi\)
\(30\) 0 0
\(31\) 326.094 1.88930 0.944648 0.328084i \(-0.106403\pi\)
0.944648 + 0.328084i \(0.106403\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 148.277 148.277i 0.716096 0.716096i
\(36\) 0 0
\(37\) 110.757 + 110.757i 0.492117 + 0.492117i 0.908973 0.416855i \(-0.136868\pi\)
−0.416855 + 0.908973i \(0.636868\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 348.225i 1.32643i −0.748430 0.663214i \(-0.769192\pi\)
0.748430 0.663214i \(-0.230808\pi\)
\(42\) 0 0
\(43\) −205.838 205.838i −0.729998 0.729998i 0.240621 0.970619i \(-0.422649\pi\)
−0.970619 + 0.240621i \(0.922649\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 254.983 0.791342 0.395671 0.918392i \(-0.370512\pi\)
0.395671 + 0.918392i \(0.370512\pi\)
\(48\) 0 0
\(49\) 184.861 0.538952
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 225.602 + 225.602i 0.584694 + 0.584694i 0.936189 0.351496i \(-0.114327\pi\)
−0.351496 + 0.936189i \(0.614327\pi\)
\(54\) 0 0
\(55\) 400.995i 0.983094i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 285.442 + 285.442i 0.629854 + 0.629854i 0.948031 0.318177i \(-0.103071\pi\)
−0.318177 + 0.948031i \(0.603071\pi\)
\(60\) 0 0
\(61\) 286.952 286.952i 0.602301 0.602301i −0.338621 0.940923i \(-0.609961\pi\)
0.940923 + 0.338621i \(0.109961\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1161.15 2.21573
\(66\) 0 0
\(67\) 627.335 627.335i 1.14390 1.14390i 0.156168 0.987731i \(-0.450086\pi\)
0.987731 0.156168i \(-0.0499141\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 274.784i 0.459308i 0.973272 + 0.229654i \(0.0737595\pi\)
−0.973272 + 0.229654i \(0.926241\pi\)
\(72\) 0 0
\(73\) 298.190i 0.478089i 0.971009 + 0.239044i \(0.0768341\pi\)
−0.971009 + 0.239044i \(0.923166\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 213.834 213.834i 0.316475 0.316475i
\(78\) 0 0
\(79\) 175.664 0.250174 0.125087 0.992146i \(-0.460079\pi\)
0.125087 + 0.992146i \(0.460079\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 125.254 125.254i 0.165644 0.165644i −0.619418 0.785062i \(-0.712631\pi\)
0.785062 + 0.619418i \(0.212631\pi\)
\(84\) 0 0
\(85\) −611.068 611.068i −0.779760 0.779760i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 900.271i 1.07223i 0.844145 + 0.536116i \(0.180109\pi\)
−0.844145 + 0.536116i \(0.819891\pi\)
\(90\) 0 0
\(91\) −619.190 619.190i −0.713283 0.713283i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −275.096 −0.297098
\(96\) 0 0
\(97\) 5.27858 0.00552534 0.00276267 0.999996i \(-0.499121\pi\)
0.00276267 + 0.999996i \(0.499121\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 459.109 + 459.109i 0.452307 + 0.452307i 0.896120 0.443812i \(-0.146374\pi\)
−0.443812 + 0.896120i \(0.646374\pi\)
\(102\) 0 0
\(103\) 791.173i 0.756860i 0.925630 + 0.378430i \(0.123536\pi\)
−0.925630 + 0.378430i \(0.876464\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1525.81 + 1525.81i 1.37855 + 1.37855i 0.847067 + 0.531487i \(0.178366\pi\)
0.531487 + 0.847067i \(0.321634\pi\)
\(108\) 0 0
\(109\) −413.307 + 413.307i −0.363189 + 0.363189i −0.864986 0.501796i \(-0.832673\pi\)
0.501796 + 0.864986i \(0.332673\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −210.248 −0.175031 −0.0875154 0.996163i \(-0.527893\pi\)
−0.0875154 + 0.996163i \(0.527893\pi\)
\(114\) 0 0
\(115\) −879.053 + 879.053i −0.712801 + 0.712801i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 651.714i 0.502038i
\(120\) 0 0
\(121\) 752.715i 0.565526i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 330.838 330.838i 0.236729 0.236729i
\(126\) 0 0
\(127\) −177.367 −0.123927 −0.0619637 0.998078i \(-0.519736\pi\)
−0.0619637 + 0.998078i \(0.519736\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 938.828 938.828i 0.626151 0.626151i −0.320946 0.947097i \(-0.604001\pi\)
0.947097 + 0.320946i \(0.104001\pi\)
\(132\) 0 0
\(133\) 146.697 + 146.697i 0.0956411 + 0.0956411i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 307.429i 0.191718i 0.995395 + 0.0958592i \(0.0305598\pi\)
−0.995395 + 0.0958592i \(0.969440\pi\)
\(138\) 0 0
\(139\) 1253.43 + 1253.43i 0.764852 + 0.764852i 0.977195 0.212343i \(-0.0681095\pi\)
−0.212343 + 0.977195i \(0.568109\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1674.52 0.979233
\(144\) 0 0
\(145\) 4980.14 2.85226
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1686.80 1686.80i −0.927436 0.927436i 0.0701033 0.997540i \(-0.477667\pi\)
−0.997540 + 0.0701033i \(0.977667\pi\)
\(150\) 0 0
\(151\) 1682.23i 0.906611i 0.891355 + 0.453306i \(0.149755\pi\)
−0.891355 + 0.453306i \(0.850245\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3844.99 3844.99i −1.99250 1.99250i
\(156\) 0 0
\(157\) −1066.81 + 1066.81i −0.542300 + 0.542300i −0.924202 0.381903i \(-0.875269\pi\)
0.381903 + 0.924202i \(0.375269\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 937.523 0.458927
\(162\) 0 0
\(163\) 2379.54 2379.54i 1.14343 1.14343i 0.155618 0.987817i \(-0.450263\pi\)
0.987817 0.155618i \(-0.0497367\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 839.991i 0.389224i 0.980880 + 0.194612i \(0.0623448\pi\)
−0.980880 + 0.194612i \(0.937655\pi\)
\(168\) 0 0
\(169\) 2651.84i 1.20703i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 450.278 450.278i 0.197885 0.197885i −0.601208 0.799093i \(-0.705314\pi\)
0.799093 + 0.601208i \(0.205314\pi\)
\(174\) 0 0
\(175\) −1924.76 −0.831419
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −647.759 + 647.759i −0.270479 + 0.270479i −0.829293 0.558814i \(-0.811257\pi\)
0.558814 + 0.829293i \(0.311257\pi\)
\(180\) 0 0
\(181\) −755.750 755.750i −0.310356 0.310356i 0.534691 0.845047i \(-0.320428\pi\)
−0.845047 + 0.534691i \(0.820428\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2611.89i 1.03800i
\(186\) 0 0
\(187\) −881.237 881.237i −0.344612 0.344612i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 760.485 0.288098 0.144049 0.989571i \(-0.453988\pi\)
0.144049 + 0.989571i \(0.453988\pi\)
\(192\) 0 0
\(193\) 2184.99 0.814915 0.407458 0.913224i \(-0.366415\pi\)
0.407458 + 0.913224i \(0.366415\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −83.4121 83.4121i −0.0301668 0.0301668i 0.691862 0.722029i \(-0.256790\pi\)
−0.722029 + 0.691862i \(0.756790\pi\)
\(198\) 0 0
\(199\) 1734.18i 0.617754i 0.951102 + 0.308877i \(0.0999531\pi\)
−0.951102 + 0.308877i \(0.900047\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2655.70 2655.70i −0.918195 0.918195i
\(204\) 0 0
\(205\) −4105.94 + 4105.94i −1.39888 + 1.39888i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −396.723 −0.131301
\(210\) 0 0
\(211\) 365.900 365.900i 0.119382 0.119382i −0.644892 0.764274i \(-0.723098\pi\)
0.764274 + 0.644892i \(0.223098\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4854.09i 1.53975i
\(216\) 0 0
\(217\) 4100.75i 1.28284i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2551.77 + 2551.77i −0.776698 + 0.776698i
\(222\) 0 0
\(223\) 4037.17 1.21233 0.606164 0.795340i \(-0.292708\pi\)
0.606164 + 0.795340i \(0.292708\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1502.81 + 1502.81i −0.439407 + 0.439407i −0.891812 0.452406i \(-0.850566\pi\)
0.452406 + 0.891812i \(0.350566\pi\)
\(228\) 0 0
\(229\) −3443.65 3443.65i −0.993723 0.993723i 0.00625772 0.999980i \(-0.498008\pi\)
−0.999980 + 0.00625772i \(0.998008\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1139.00i 0.320250i 0.987097 + 0.160125i \(0.0511898\pi\)
−0.987097 + 0.160125i \(0.948810\pi\)
\(234\) 0 0
\(235\) −3006.52 3006.52i −0.834569 0.834569i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4603.80 −1.24600 −0.623002 0.782220i \(-0.714087\pi\)
−0.623002 + 0.782220i \(0.714087\pi\)
\(240\) 0 0
\(241\) −4681.58 −1.25132 −0.625658 0.780097i \(-0.715170\pi\)
−0.625658 + 0.780097i \(0.715170\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2179.70 2179.70i −0.568392 0.568392i
\(246\) 0 0
\(247\) 1148.78i 0.295931i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −476.440 476.440i −0.119811 0.119811i 0.644659 0.764470i \(-0.276999\pi\)
−0.764470 + 0.644659i \(0.776999\pi\)
\(252\) 0 0
\(253\) −1267.70 + 1267.70i −0.315019 + 0.315019i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −925.326 −0.224592 −0.112296 0.993675i \(-0.535821\pi\)
−0.112296 + 0.993675i \(0.535821\pi\)
\(258\) 0 0
\(259\) −1392.81 + 1392.81i −0.334150 + 0.334150i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3477.65i 0.815365i −0.913124 0.407683i \(-0.866337\pi\)
0.913124 0.407683i \(-0.133663\pi\)
\(264\) 0 0
\(265\) 5320.17i 1.23327i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3773.37 + 3773.37i −0.855266 + 0.855266i −0.990776 0.135510i \(-0.956733\pi\)
0.135510 + 0.990776i \(0.456733\pi\)
\(270\) 0 0
\(271\) −8007.09 −1.79482 −0.897410 0.441198i \(-0.854554\pi\)
−0.897410 + 0.441198i \(0.854554\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2602.63 2602.63i 0.570708 0.570708i
\(276\) 0 0
\(277\) 4550.73 + 4550.73i 0.987101 + 0.987101i 0.999918 0.0128173i \(-0.00407998\pi\)
−0.0128173 + 0.999918i \(0.504080\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3333.05i 0.707592i 0.935323 + 0.353796i \(0.115109\pi\)
−0.935323 + 0.353796i \(0.884891\pi\)
\(282\) 0 0
\(283\) −6242.23 6242.23i −1.31117 1.31117i −0.920552 0.390621i \(-0.872260\pi\)
−0.390621 0.920552i \(-0.627740\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4379.05 0.900651
\(288\) 0 0
\(289\) −2227.20 −0.453329
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2458.24 + 2458.24i 0.490143 + 0.490143i 0.908351 0.418208i \(-0.137342\pi\)
−0.418208 + 0.908351i \(0.637342\pi\)
\(294\) 0 0
\(295\) 6731.33i 1.32852i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3670.84 + 3670.84i 0.710001 + 0.710001i
\(300\) 0 0
\(301\) 2588.48 2588.48i 0.495673 0.495673i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −6766.93 −1.27040
\(306\) 0 0
\(307\) 3008.49 3008.49i 0.559295 0.559295i −0.369812 0.929107i \(-0.620578\pi\)
0.929107 + 0.369812i \(0.120578\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4507.09i 0.821779i −0.911685 0.410890i \(-0.865218\pi\)
0.911685 0.410890i \(-0.134782\pi\)
\(312\) 0 0
\(313\) 5237.61i 0.945837i 0.881106 + 0.472919i \(0.156800\pi\)
−0.881106 + 0.472919i \(0.843200\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 989.530 989.530i 0.175323 0.175323i −0.613990 0.789314i \(-0.710437\pi\)
0.789314 + 0.613990i \(0.210437\pi\)
\(318\) 0 0
\(319\) 7181.99 1.26055
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 604.559 604.559i 0.104144 0.104144i
\(324\) 0 0
\(325\) −7536.35 7536.35i −1.28628 1.28628i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3206.50i 0.537325i
\(330\) 0 0
\(331\) 5652.55 + 5652.55i 0.938647 + 0.938647i 0.998224 0.0595765i \(-0.0189750\pi\)
−0.0595765 + 0.998224i \(0.518975\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −14793.9 −2.41277
\(336\) 0 0
\(337\) 291.315 0.0470888 0.0235444 0.999723i \(-0.492505\pi\)
0.0235444 + 0.999723i \(0.492505\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5544.96 5544.96i −0.880577 0.880577i
\(342\) 0 0
\(343\) 6638.03i 1.04496i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6530.87 + 6530.87i 1.01036 + 1.01036i 0.999946 + 0.0104158i \(0.00331552\pi\)
0.0104158 + 0.999946i \(0.496684\pi\)
\(348\) 0 0
\(349\) 7267.79 7267.79i 1.11472 1.11472i 0.122213 0.992504i \(-0.461001\pi\)
0.992504 0.122213i \(-0.0389990\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8253.63 1.24447 0.622233 0.782832i \(-0.286226\pi\)
0.622233 + 0.782832i \(0.286226\pi\)
\(354\) 0 0
\(355\) 3240.00 3240.00i 0.484398 0.484398i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4827.70i 0.709738i −0.934916 0.354869i \(-0.884525\pi\)
0.934916 0.354869i \(-0.115475\pi\)
\(360\) 0 0
\(361\) 6586.83i 0.960320i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3515.97 3515.97i 0.504204 0.504204i
\(366\) 0 0
\(367\) 2556.37 0.363600 0.181800 0.983336i \(-0.441808\pi\)
0.181800 + 0.983336i \(0.441808\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2837.02 + 2837.02i −0.397010 + 0.397010i
\(372\) 0 0
\(373\) 1141.57 + 1141.57i 0.158468 + 0.158468i 0.781887 0.623420i \(-0.214257\pi\)
−0.623420 + 0.781887i \(0.714257\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20796.6i 2.84106i
\(378\) 0 0
\(379\) 2602.11 + 2602.11i 0.352668 + 0.352668i 0.861101 0.508433i \(-0.169775\pi\)
−0.508433 + 0.861101i \(0.669775\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −370.858 −0.0494777 −0.0247388 0.999694i \(-0.507875\pi\)
−0.0247388 + 0.999694i \(0.507875\pi\)
\(384\) 0 0
\(385\) −5042.65 −0.667526
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6457.55 + 6457.55i 0.841673 + 0.841673i 0.989077 0.147403i \(-0.0470914\pi\)
−0.147403 + 0.989077i \(0.547091\pi\)
\(390\) 0 0
\(391\) 3863.66i 0.499728i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2071.27 2071.27i −0.263840 0.263840i
\(396\) 0 0
\(397\) −232.353 + 232.353i −0.0293739 + 0.0293739i −0.721641 0.692267i \(-0.756612\pi\)
0.692267 + 0.721641i \(0.256612\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 119.615 0.0148960 0.00744801 0.999972i \(-0.497629\pi\)
0.00744801 + 0.999972i \(0.497629\pi\)
\(402\) 0 0
\(403\) −16056.4 + 16056.4i −1.98467 + 1.98467i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3766.67i 0.458739i
\(408\) 0 0
\(409\) 626.952i 0.0757965i 0.999282 + 0.0378983i \(0.0120663\pi\)
−0.999282 + 0.0378983i \(0.987934\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3589.54 + 3589.54i −0.427674 + 0.427674i
\(414\) 0 0
\(415\) −2953.76 −0.349384
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4981.58 + 4981.58i −0.580826 + 0.580826i −0.935130 0.354304i \(-0.884718\pi\)
0.354304 + 0.935130i \(0.384718\pi\)
\(420\) 0 0
\(421\) 10770.4 + 10770.4i 1.24683 + 1.24683i 0.957110 + 0.289723i \(0.0935632\pi\)
0.289723 + 0.957110i \(0.406437\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7932.20i 0.905337i
\(426\) 0 0
\(427\) 3608.52 + 3608.52i 0.408966 + 0.408966i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7546.94 0.843442 0.421721 0.906726i \(-0.361426\pi\)
0.421721 + 0.906726i \(0.361426\pi\)
\(432\) 0 0
\(433\) 5614.17 0.623094 0.311547 0.950231i \(-0.399153\pi\)
0.311547 + 0.950231i \(0.399153\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −869.689 869.689i −0.0952010 0.0952010i
\(438\) 0 0
\(439\) 7198.92i 0.782656i 0.920251 + 0.391328i \(0.127984\pi\)
−0.920251 + 0.391328i \(0.872016\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5582.95 5582.95i −0.598767 0.598767i 0.341217 0.939984i \(-0.389161\pi\)
−0.939984 + 0.341217i \(0.889161\pi\)
\(444\) 0 0
\(445\) 10615.2 10615.2i 1.13080 1.13080i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1224.53 −0.128706 −0.0643530 0.997927i \(-0.520498\pi\)
−0.0643530 + 0.997927i \(0.520498\pi\)
\(450\) 0 0
\(451\) −5921.28 + 5921.28i −0.618231 + 0.618231i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 14601.8i 1.50449i
\(456\) 0 0
\(457\) 11182.3i 1.14461i −0.820040 0.572307i \(-0.806049\pi\)
0.820040 0.572307i \(-0.193951\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11334.9 11334.9i 1.14516 1.14516i 0.157670 0.987492i \(-0.449602\pi\)
0.987492 0.157670i \(-0.0503982\pi\)
\(462\) 0 0
\(463\) −3013.37 −0.302469 −0.151234 0.988498i \(-0.548325\pi\)
−0.151234 + 0.988498i \(0.548325\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −843.917 + 843.917i −0.0836228 + 0.0836228i −0.747681 0.664058i \(-0.768833\pi\)
0.664058 + 0.747681i \(0.268833\pi\)
\(468\) 0 0
\(469\) 7888.96 + 7888.96i 0.776713 + 0.776713i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7000.20i 0.680485i
\(474\) 0 0
\(475\) 1785.50 + 1785.50i 0.172472 + 0.172472i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10569.4 1.00821 0.504103 0.863644i \(-0.331823\pi\)
0.504103 + 0.863644i \(0.331823\pi\)
\(480\) 0 0
\(481\) −10907.0 −1.03392
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −62.2400 62.2400i −0.00582716 0.00582716i
\(486\) 0 0
\(487\) 1579.10i 0.146932i −0.997298 0.0734661i \(-0.976594\pi\)
0.997298 0.0734661i \(-0.0234061\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8650.50 + 8650.50i 0.795095 + 0.795095i 0.982318 0.187222i \(-0.0599485\pi\)
−0.187222 + 0.982318i \(0.559948\pi\)
\(492\) 0 0
\(493\) −10944.5 + 10944.5i −0.999828 + 0.999828i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3455.51 −0.311873
\(498\) 0 0
\(499\) 11942.3 11942.3i 1.07137 1.07137i 0.0741168 0.997250i \(-0.476386\pi\)
0.997250 0.0741168i \(-0.0236137\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3290.09i 0.291646i −0.989311 0.145823i \(-0.953417\pi\)
0.989311 0.145823i \(-0.0465830\pi\)
\(504\) 0 0
\(505\) 10826.8i 0.954029i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1392.67 + 1392.67i −0.121275 + 0.121275i −0.765140 0.643864i \(-0.777330\pi\)
0.643864 + 0.765140i \(0.277330\pi\)
\(510\) 0 0
\(511\) −3749.84 −0.324625
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 9328.77 9328.77i 0.798203 0.798203i
\(516\) 0 0
\(517\) −4335.78 4335.78i −0.368834 0.368834i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1175.72i 0.0988661i −0.998777 0.0494331i \(-0.984259\pi\)
0.998777 0.0494331i \(-0.0157414\pi\)
\(522\) 0 0
\(523\) 9451.05 + 9451.05i 0.790183 + 0.790183i 0.981524 0.191341i \(-0.0612836\pi\)
−0.191341 + 0.981524i \(0.561284\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16899.7 1.39689
\(528\) 0 0
\(529\) 6608.93 0.543185
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 17146.0 + 17146.0i 1.39339 + 1.39339i
\(534\) 0 0
\(535\) 35981.7i 2.90771i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3143.40 3143.40i −0.251198 0.251198i
\(540\) 0 0
\(541\) 2893.97 2893.97i 0.229984 0.229984i −0.582702 0.812686i \(-0.698004\pi\)
0.812686 + 0.582702i \(0.198004\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9746.66 0.766057
\(546\) 0 0
\(547\) 956.857 956.857i 0.0747939 0.0747939i −0.668720 0.743514i \(-0.733158\pi\)
0.743514 + 0.668720i \(0.233158\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4927.09i 0.380946i
\(552\) 0 0
\(553\) 2209.04i 0.169870i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8482.07 8482.07i 0.645236 0.645236i −0.306602 0.951838i \(-0.599192\pi\)
0.951838 + 0.306602i \(0.0991919\pi\)
\(558\) 0 0
\(559\) 20270.2 1.53370
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 9461.78 9461.78i 0.708289 0.708289i −0.257886 0.966175i \(-0.583026\pi\)
0.966175 + 0.257886i \(0.0830260\pi\)
\(564\) 0 0
\(565\) 2479.05 + 2479.05i 0.184592 + 0.184592i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7197.61i 0.530298i 0.964207 + 0.265149i \(0.0854211\pi\)
−0.964207 + 0.265149i \(0.914579\pi\)
\(570\) 0 0
\(571\) −990.936 990.936i −0.0726259 0.0726259i 0.669861 0.742487i \(-0.266354\pi\)
−0.742487 + 0.669861i \(0.766354\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 11410.9 0.827594
\(576\) 0 0
\(577\) −14836.1 −1.07043 −0.535214 0.844717i \(-0.679769\pi\)
−0.535214 + 0.844717i \(0.679769\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1575.11 + 1575.11i 0.112473 + 0.112473i
\(582\) 0 0
\(583\) 7672.35i 0.545036i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4038.29 + 4038.29i 0.283949 + 0.283949i 0.834682 0.550733i \(-0.185652\pi\)
−0.550733 + 0.834682i \(0.685652\pi\)
\(588\) 0 0
\(589\) 3804.04 3804.04i 0.266116 0.266116i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −11081.1 −0.767361 −0.383681 0.923466i \(-0.625344\pi\)
−0.383681 + 0.923466i \(0.625344\pi\)
\(594\) 0 0
\(595\) 7684.40 7684.40i 0.529461 0.529461i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7036.50i 0.479973i −0.970776 0.239986i \(-0.922857\pi\)
0.970776 0.239986i \(-0.0771430\pi\)
\(600\) 0 0
\(601\) 24290.7i 1.64865i 0.566117 + 0.824325i \(0.308445\pi\)
−0.566117 + 0.824325i \(0.691555\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −8875.31 + 8875.31i −0.596418 + 0.596418i
\(606\) 0 0
\(607\) −10931.5 −0.730967 −0.365484 0.930818i \(-0.619096\pi\)
−0.365484 + 0.930818i \(0.619096\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12555.0 + 12555.0i −0.831292 + 0.831292i
\(612\) 0 0
\(613\) −2217.95 2217.95i −0.146137 0.146137i 0.630253 0.776390i \(-0.282951\pi\)
−0.776390 + 0.630253i \(0.782951\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 26271.5i 1.71418i 0.515164 + 0.857092i \(0.327731\pi\)
−0.515164 + 0.857092i \(0.672269\pi\)
\(618\) 0 0
\(619\) 11171.8 + 11171.8i 0.725417 + 0.725417i 0.969703 0.244287i \(-0.0785538\pi\)
−0.244287 + 0.969703i \(0.578554\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −11321.2 −0.728050
\(624\) 0 0
\(625\) 11330.4 0.725148
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5739.95 + 5739.95i 0.363858 + 0.363858i
\(630\) 0 0
\(631\) 17415.1i 1.09871i −0.835590 0.549354i \(-0.814874\pi\)
0.835590 0.549354i \(-0.185126\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2091.34 + 2091.34i 0.130697 + 0.130697i
\(636\) 0 0
\(637\) −9102.24 + 9102.24i −0.566160 + 0.566160i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2727.28 0.168051 0.0840257 0.996464i \(-0.473222\pi\)
0.0840257 + 0.996464i \(0.473222\pi\)
\(642\) 0 0
\(643\) −11681.7 + 11681.7i −0.716458 + 0.716458i −0.967878 0.251420i \(-0.919103\pi\)
0.251420 + 0.967878i \(0.419103\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4399.67i 0.267340i −0.991026 0.133670i \(-0.957324\pi\)
0.991026 0.133670i \(-0.0426762\pi\)
\(648\) 0 0
\(649\) 9707.43i 0.587134i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22924.8 22924.8i 1.37384 1.37384i 0.519167 0.854673i \(-0.326242\pi\)
0.854673 0.519167i \(-0.173758\pi\)
\(654\) 0 0
\(655\) −22139.6 −1.32071
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −11508.4 + 11508.4i −0.680276 + 0.680276i −0.960062 0.279786i \(-0.909736\pi\)
0.279786 + 0.960062i \(0.409736\pi\)
\(660\) 0 0
\(661\) 10207.0 + 10207.0i 0.600615 + 0.600615i 0.940476 0.339861i \(-0.110380\pi\)
−0.339861 + 0.940476i \(0.610380\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3459.43i 0.201731i
\(666\) 0 0
\(667\) 15744.2 + 15744.2i 0.913970 + 0.913970i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −9758.76 −0.561450
\(672\) 0 0
\(673\) −23908.4 −1.36939 −0.684695 0.728830i \(-0.740065\pi\)
−0.684695 + 0.728830i \(0.740065\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10411.1 10411.1i −0.591035 0.591035i 0.346876 0.937911i \(-0.387242\pi\)
−0.937911 + 0.346876i \(0.887242\pi\)
\(678\) 0 0
\(679\) 66.3800i 0.00375174i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 11126.8 + 11126.8i 0.623358 + 0.623358i 0.946389 0.323030i \(-0.104702\pi\)
−0.323030 + 0.946389i \(0.604702\pi\)
\(684\) 0 0
\(685\) 3624.91 3624.91i 0.202191 0.202191i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −22216.5 −1.22842
\(690\) 0 0
\(691\) −2722.85 + 2722.85i −0.149901 + 0.149901i −0.778074 0.628173i \(-0.783803\pi\)
0.628173 + 0.778074i \(0.283803\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 29558.5i 1.61326i
\(696\) 0 0
\(697\) 18046.6i 0.980724i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2736.38 + 2736.38i −0.147435 + 0.147435i −0.776971 0.629536i \(-0.783245\pi\)
0.629536 + 0.776971i \(0.283245\pi\)
\(702\) 0 0
\(703\) 2584.06 0.138634
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5773.45 + 5773.45i −0.307119 + 0.307119i
\(708\) 0 0
\(709\) −783.090 783.090i −0.0414803 0.0414803i 0.686062 0.727543i \(-0.259338\pi\)
−0.727543 + 0.686062i \(0.759338\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 24311.1i 1.27694i
\(714\) 0 0
\(715\) −19744.4 19744.4i −1.03272 1.03272i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −11021.5 −0.571671 −0.285835 0.958279i \(-0.592271\pi\)
−0.285835 + 0.958279i \(0.592271\pi\)
\(720\) 0 0
\(721\) −9949.27 −0.513912
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −32323.3 32323.3i −1.65580 1.65580i
\(726\) 0 0
\(727\) 21740.4i 1.10909i 0.832154 + 0.554544i \(0.187107\pi\)
−0.832154 + 0.554544i \(0.812893\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −10667.5 10667.5i −0.539741 0.539741i
\(732\) 0 0
\(733\) 13194.8 13194.8i 0.664886 0.664886i −0.291642 0.956528i \(-0.594202\pi\)
0.956528 + 0.291642i \(0.0942015\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −21334.7 −1.06631
\(738\) 0 0
\(739\) −21786.6 + 21786.6i −1.08448 + 1.08448i −0.0883973 + 0.996085i \(0.528175\pi\)
−0.996085 + 0.0883973i \(0.971825\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7418.24i 0.366284i 0.983086 + 0.183142i \(0.0586268\pi\)
−0.983086 + 0.183142i \(0.941373\pi\)
\(744\) 0 0
\(745\) 39778.3i 1.95619i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −19187.5 + 19187.5i −0.936045 + 0.936045i
\(750\) 0 0
\(751\) 9320.68 0.452885 0.226442 0.974025i \(-0.427291\pi\)
0.226442 + 0.974025i \(0.427291\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 19835.3 19835.3i 0.956135 0.956135i
\(756\) 0 0
\(757\) 2105.29 + 2105.29i 0.101081 + 0.101081i 0.755839 0.654758i \(-0.227229\pi\)
−0.654758 + 0.755839i \(0.727229\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 13011.0i 0.619776i −0.950773 0.309888i \(-0.899708\pi\)
0.950773 0.309888i \(-0.100292\pi\)
\(762\) 0 0
\(763\) −5197.48 5197.48i −0.246607 0.246607i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −28109.4 −1.32330
\(768\) 0 0
\(769\) 26438.9 1.23981 0.619904 0.784677i \(-0.287171\pi\)
0.619904 + 0.784677i \(0.287171\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 21614.3 + 21614.3i 1.00571 + 1.00571i 0.999984 + 0.00572318i \(0.00182175\pi\)
0.00572318 + 0.999984i \(0.498178\pi\)
\(774\) 0 0
\(775\) 49911.4i 2.31338i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4062.20 4062.20i −0.186834 0.186834i
\(780\) 0 0
\(781\) 4672.48 4672.48i 0.214077 0.214077i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 25157.8 1.14385
\(786\) 0 0
\(787\) 20949.4 20949.4i 0.948874 0.948874i −0.0498808 0.998755i \(-0.515884\pi\)
0.998755 + 0.0498808i \(0.0158842\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2643.94i 0.118847i
\(792\) 0 0
\(793\) 28258.1i 1.26541i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1576.38 + 1576.38i −0.0700603 + 0.0700603i −0.741269 0.671208i \(-0.765776\pi\)
0.671208 + 0.741269i \(0.265776\pi\)
\(798\) 0 0
\(799\) 13214.4 0.585097
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5070.48 5070.48i 0.222831 0.222831i
\(804\) 0 0
\(805\) −11054.4 11054.4i −0.483995 0.483995i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 8102.89i 0.352142i −0.984378 0.176071i \(-0.943661\pi\)
0.984378 0.176071i \(-0.0563388\pi\)
\(810\) 0 0
\(811\) −20649.6 20649.6i −0.894090 0.894090i 0.100816 0.994905i \(-0.467855\pi\)
−0.994905 + 0.100816i \(0.967855\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −56114.6 −2.41179
\(816\) 0 0
\(817\) −4802.38 −0.205647
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −13405.1 13405.1i −0.569844 0.569844i 0.362240 0.932085i \(-0.382012\pi\)
−0.932085 + 0.362240i \(0.882012\pi\)
\(822\) 0 0
\(823\) 17203.4i 0.728643i −0.931273 0.364321i \(-0.881301\pi\)
0.931273 0.364321i \(-0.118699\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −11127.2 11127.2i −0.467872 0.467872i 0.433353 0.901224i \(-0.357330\pi\)
−0.901224 + 0.433353i \(0.857330\pi\)
\(828\) 0 0
\(829\) −5752.09 + 5752.09i −0.240987 + 0.240987i −0.817259 0.576271i \(-0.804507\pi\)
0.576271 + 0.817259i \(0.304507\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 9580.34 0.398486
\(834\) 0 0
\(835\) 9904.39 9904.39i 0.410486 0.410486i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 45875.9i 1.88774i 0.330318 + 0.943870i \(0.392844\pi\)
−0.330318 + 0.943870i \(0.607156\pi\)
\(840\) 0 0
\(841\) 64807.5i 2.65724i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −31268.1 + 31268.1i −1.27296 + 1.27296i
\(846\) 0 0
\(847\) 9465.66 0.383995
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8257.21 8257.21i 0.332613 0.332613i
\(852\) 0 0
\(853\) −27266.2 27266.2i −1.09446 1.09446i −0.995046 0.0994157i \(-0.968303\pi\)
−0.0994157 0.995046i \(-0.531697\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 28960.0i 1.15432i −0.816629 0.577162i \(-0.804160\pi\)
0.816629 0.577162i \(-0.195840\pi\)
\(858\) 0 0
\(859\) −17255.5 17255.5i −0.685388 0.685388i 0.275821 0.961209i \(-0.411050\pi\)
−0.961209 + 0.275821i \(0.911050\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 39885.9 1.57327 0.786635 0.617418i \(-0.211821\pi\)
0.786635 + 0.617418i \(0.211821\pi\)
\(864\) 0 0
\(865\) −10618.5 −0.417388
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2987.03 2987.03i −0.116603 0.116603i
\(870\) 0 0
\(871\) 61778.0i 2.40329i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4160.41 + 4160.41i 0.160740 + 0.160740i
\(876\) 0 0
\(877\) 8855.51 8855.51i 0.340968 0.340968i −0.515763 0.856731i \(-0.672491\pi\)
0.856731 + 0.515763i \(0.172491\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 43343.8 1.65753 0.828767 0.559593i \(-0.189043\pi\)
0.828767 + 0.559593i \(0.189043\pi\)
\(882\) 0 0
\(883\) −11229.3 + 11229.3i −0.427968 + 0.427968i −0.887936 0.459968i \(-0.847861\pi\)
0.459968 + 0.887936i \(0.347861\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 36912.9i 1.39731i −0.715459 0.698655i \(-0.753782\pi\)
0.715459 0.698655i \(-0.246218\pi\)
\(888\) 0 0
\(889\) 2230.45i 0.0841473i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2974.49 2974.49i 0.111464 0.111464i
\(894\) 0 0
\(895\) 15275.5 0.570508
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −68865.5 + 68865.5i −2.55483 + 2.55483i
\(900\) 0 0
\(901\) 11691.7 + 11691.7i 0.432306 + 0.432306i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 17822.2i 0.654618i
\(906\) 0 0
\(907\) −14588.0 14588.0i −0.534053 0.534053i 0.387723 0.921776i \(-0.373262\pi\)
−0.921776 + 0.387723i \(0.873262\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 50418.8 1.83365 0.916823 0.399295i \(-0.130745\pi\)
0.916823 + 0.399295i \(0.130745\pi\)
\(912\) 0 0
\(913\) −4259.69 −0.154409
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 11806.1 + 11806.1i 0.425160 + 0.425160i
\(918\) 0 0
\(919\) 53290.4i 1.91283i −0.292018 0.956413i \(-0.594327\pi\)
0.292018 0.956413i \(-0.405673\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −13529.9 13529.9i −0.482495 0.482495i
\(924\) 0 0
\(925\) −16952.3 + 16952.3i −0.602581 + 0.602581i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −44859.2 −1.58427 −0.792133 0.610349i \(-0.791029\pi\)
−0.792133 + 0.610349i \(0.791029\pi\)
\(930\) 0 0
\(931\) 2156.48 2156.48i 0.0759140 0.0759140i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 20781.4i 0.726872i
\(936\) 0 0
\(937\) 22463.9i 0.783204i −0.920135 0.391602i \(-0.871921\pi\)
0.920135 0.391602i \(-0.128079\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −20653.7 + 20653.7i −0.715507 + 0.715507i −0.967682 0.252175i \(-0.918854\pi\)
0.252175 + 0.967682i \(0.418854\pi\)
\(942\) 0 0
\(943\) −25961.0 −0.896507
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 33123.2 33123.2i 1.13660 1.13660i 0.147544 0.989055i \(-0.452863\pi\)
0.989055 0.147544i \(-0.0471368\pi\)
\(948\) 0 0
\(949\) −14682.4 14682.4i −0.502224 0.502224i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 10871.9i 0.369544i −0.982781 0.184772i \(-0.940845\pi\)
0.982781 0.184772i \(-0.0591546\pi\)
\(954\) 0 0
\(955\) −8966.93 8966.93i −0.303836 0.303836i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3866.02 −0.130178
\(960\) 0 0
\(961\) 76546.3 2.56944
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −25763.3 25763.3i −0.859430 0.859430i
\(966\) 0 0
\(967\) 6501.58i 0.216212i −0.994139 0.108106i \(-0.965521\pi\)
0.994139 0.108106i \(-0.0344786\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −16761.7 16761.7i −0.553975 0.553975i 0.373611 0.927586i \(-0.378120\pi\)
−0.927586 + 0.373611i \(0.878120\pi\)
\(972\) 0 0
\(973\) −15762.3 + 15762.3i −0.519338 + 0.519338i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 7407.34 0.242561 0.121280 0.992618i \(-0.461300\pi\)
0.121280 + 0.992618i \(0.461300\pi\)
\(978\) 0 0
\(979\) 15308.4 15308.4i 0.499753 0.499753i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 35694.8i 1.15818i 0.815265 + 0.579088i \(0.196591\pi\)
−0.815265 + 0.579088i \(0.803409\pi\)
\(984\) 0 0
\(985\) 1967.04i 0.0636294i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −15345.7 + 15345.7i −0.493392 + 0.493392i
\(990\) 0 0
\(991\) −46662.2 −1.49573 −0.747867 0.663849i \(-0.768922\pi\)
−0.747867 + 0.663849i \(0.768922\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 20447.9 20447.9i 0.651498 0.651498i
\(996\) 0 0
\(997\) −22390.7 22390.7i −0.711255 0.711255i 0.255543 0.966798i \(-0.417746\pi\)
−0.966798 + 0.255543i \(0.917746\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.4.k.b.433.2 24
3.2 odd 2 192.4.j.a.49.12 24
4.3 odd 2 144.4.k.b.37.1 24
12.11 even 2 48.4.j.a.37.12 yes 24
16.3 odd 4 144.4.k.b.109.1 24
16.13 even 4 inner 576.4.k.b.145.2 24
24.5 odd 2 384.4.j.a.97.6 24
24.11 even 2 384.4.j.b.97.7 24
48.5 odd 4 384.4.j.a.289.6 24
48.11 even 4 384.4.j.b.289.7 24
48.29 odd 4 192.4.j.a.145.12 24
48.35 even 4 48.4.j.a.13.12 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.j.a.13.12 24 48.35 even 4
48.4.j.a.37.12 yes 24 12.11 even 2
144.4.k.b.37.1 24 4.3 odd 2
144.4.k.b.109.1 24 16.3 odd 4
192.4.j.a.49.12 24 3.2 odd 2
192.4.j.a.145.12 24 48.29 odd 4
384.4.j.a.97.6 24 24.5 odd 2
384.4.j.a.289.6 24 48.5 odd 4
384.4.j.b.97.7 24 24.11 even 2
384.4.j.b.289.7 24 48.11 even 4
576.4.k.b.145.2 24 16.13 even 4 inner
576.4.k.b.433.2 24 1.1 even 1 trivial