Properties

Label 192.4.j.a.145.12
Level $192$
Weight $4$
Character 192.145
Analytic conductor $11.328$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,4,Mod(49,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.49"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 192.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3283667211\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 145.12
Character \(\chi\) \(=\) 192.145
Dual form 192.4.j.a.49.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.12132 + 2.12132i) q^{3} +(11.7911 - 11.7911i) q^{5} -12.5754i q^{7} +9.00000i q^{9} +(17.0042 - 17.0042i) q^{11} +(-49.2384 - 49.2384i) q^{13} +50.0252 q^{15} -51.8247 q^{17} +(11.6655 + 11.6655i) q^{19} +(26.6763 - 26.6763i) q^{21} -74.5524i q^{23} -153.058i q^{25} +(-19.0919 + 19.0919i) q^{27} +(211.183 + 211.183i) q^{29} +326.094 q^{31} +72.1427 q^{33} +(-148.277 - 148.277i) q^{35} +(110.757 - 110.757i) q^{37} -208.901i q^{39} -348.225i q^{41} +(-205.838 + 205.838i) q^{43} +(106.120 + 106.120i) q^{45} -254.983 q^{47} +184.861 q^{49} +(-109.937 - 109.937i) q^{51} +(-225.602 + 225.602i) q^{53} -400.995i q^{55} +49.4924i q^{57} +(-285.442 + 285.442i) q^{59} +(286.952 + 286.952i) q^{61} +113.178 q^{63} -1161.15 q^{65} +(627.335 + 627.335i) q^{67} +(158.150 - 158.150i) q^{69} +274.784i q^{71} -298.190i q^{73} +(324.686 - 324.686i) q^{75} +(-213.834 - 213.834i) q^{77} +175.664 q^{79} -81.0000 q^{81} +(-125.254 - 125.254i) q^{83} +(-611.068 + 611.068i) q^{85} +895.973i q^{87} +900.271i q^{89} +(-619.190 + 619.190i) q^{91} +(691.750 + 691.750i) q^{93} +275.096 q^{95} +5.27858 q^{97} +(153.038 + 153.038i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 40 q^{11} - 120 q^{15} - 24 q^{19} + 400 q^{29} + 744 q^{31} + 456 q^{35} + 16 q^{37} - 1240 q^{43} - 1176 q^{49} - 744 q^{51} + 752 q^{53} + 1376 q^{59} - 912 q^{61} + 504 q^{63} + 976 q^{65} + 2256 q^{67}+ \cdots + 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.12132 + 2.12132i 0.408248 + 0.408248i
\(4\) 0 0
\(5\) 11.7911 11.7911i 1.05462 1.05462i 0.0562056 0.998419i \(-0.482100\pi\)
0.998419 0.0562056i \(-0.0179002\pi\)
\(6\) 0 0
\(7\) 12.5754i 0.679005i −0.940605 0.339503i \(-0.889741\pi\)
0.940605 0.339503i \(-0.110259\pi\)
\(8\) 0 0
\(9\) 9.00000i 0.333333i
\(10\) 0 0
\(11\) 17.0042 17.0042i 0.466087 0.466087i −0.434557 0.900644i \(-0.643095\pi\)
0.900644 + 0.434557i \(0.143095\pi\)
\(12\) 0 0
\(13\) −49.2384 49.2384i −1.05048 1.05048i −0.998656 0.0518270i \(-0.983496\pi\)
−0.0518270 0.998656i \(-0.516504\pi\)
\(14\) 0 0
\(15\) 50.0252 0.861098
\(16\) 0 0
\(17\) −51.8247 −0.739372 −0.369686 0.929157i \(-0.620535\pi\)
−0.369686 + 0.929157i \(0.620535\pi\)
\(18\) 0 0
\(19\) 11.6655 + 11.6655i 0.140855 + 0.140855i 0.774018 0.633163i \(-0.218244\pi\)
−0.633163 + 0.774018i \(0.718244\pi\)
\(20\) 0 0
\(21\) 26.6763 26.6763i 0.277203 0.277203i
\(22\) 0 0
\(23\) 74.5524i 0.675881i −0.941168 0.337940i \(-0.890270\pi\)
0.941168 0.337940i \(-0.109730\pi\)
\(24\) 0 0
\(25\) 153.058i 1.22447i
\(26\) 0 0
\(27\) −19.0919 + 19.0919i −0.136083 + 0.136083i
\(28\) 0 0
\(29\) 211.183 + 211.183i 1.35227 + 1.35227i 0.883122 + 0.469143i \(0.155437\pi\)
0.469143 + 0.883122i \(0.344563\pi\)
\(30\) 0 0
\(31\) 326.094 1.88930 0.944648 0.328084i \(-0.106403\pi\)
0.944648 + 0.328084i \(0.106403\pi\)
\(32\) 0 0
\(33\) 72.1427 0.380558
\(34\) 0 0
\(35\) −148.277 148.277i −0.716096 0.716096i
\(36\) 0 0
\(37\) 110.757 110.757i 0.492117 0.492117i −0.416855 0.908973i \(-0.636868\pi\)
0.908973 + 0.416855i \(0.136868\pi\)
\(38\) 0 0
\(39\) 208.901i 0.857716i
\(40\) 0 0
\(41\) 348.225i 1.32643i −0.748430 0.663214i \(-0.769192\pi\)
0.748430 0.663214i \(-0.230808\pi\)
\(42\) 0 0
\(43\) −205.838 + 205.838i −0.729998 + 0.729998i −0.970619 0.240621i \(-0.922649\pi\)
0.240621 + 0.970619i \(0.422649\pi\)
\(44\) 0 0
\(45\) 106.120 + 106.120i 0.351542 + 0.351542i
\(46\) 0 0
\(47\) −254.983 −0.791342 −0.395671 0.918392i \(-0.629488\pi\)
−0.395671 + 0.918392i \(0.629488\pi\)
\(48\) 0 0
\(49\) 184.861 0.538952
\(50\) 0 0
\(51\) −109.937 109.937i −0.301848 0.301848i
\(52\) 0 0
\(53\) −225.602 + 225.602i −0.584694 + 0.584694i −0.936189 0.351496i \(-0.885673\pi\)
0.351496 + 0.936189i \(0.385673\pi\)
\(54\) 0 0
\(55\) 400.995i 0.983094i
\(56\) 0 0
\(57\) 49.4924i 0.115007i
\(58\) 0 0
\(59\) −285.442 + 285.442i −0.629854 + 0.629854i −0.948031 0.318177i \(-0.896929\pi\)
0.318177 + 0.948031i \(0.396929\pi\)
\(60\) 0 0
\(61\) 286.952 + 286.952i 0.602301 + 0.602301i 0.940923 0.338621i \(-0.109961\pi\)
−0.338621 + 0.940923i \(0.609961\pi\)
\(62\) 0 0
\(63\) 113.178 0.226335
\(64\) 0 0
\(65\) −1161.15 −2.21573
\(66\) 0 0
\(67\) 627.335 + 627.335i 1.14390 + 1.14390i 0.987731 + 0.156168i \(0.0499141\pi\)
0.156168 + 0.987731i \(0.450086\pi\)
\(68\) 0 0
\(69\) 158.150 158.150i 0.275927 0.275927i
\(70\) 0 0
\(71\) 274.784i 0.459308i 0.973272 + 0.229654i \(0.0737595\pi\)
−0.973272 + 0.229654i \(0.926241\pi\)
\(72\) 0 0
\(73\) 298.190i 0.478089i −0.971009 0.239044i \(-0.923166\pi\)
0.971009 0.239044i \(-0.0768341\pi\)
\(74\) 0 0
\(75\) 324.686 324.686i 0.499887 0.499887i
\(76\) 0 0
\(77\) −213.834 213.834i −0.316475 0.316475i
\(78\) 0 0
\(79\) 175.664 0.250174 0.125087 0.992146i \(-0.460079\pi\)
0.125087 + 0.992146i \(0.460079\pi\)
\(80\) 0 0
\(81\) −81.0000 −0.111111
\(82\) 0 0
\(83\) −125.254 125.254i −0.165644 0.165644i 0.619418 0.785062i \(-0.287369\pi\)
−0.785062 + 0.619418i \(0.787369\pi\)
\(84\) 0 0
\(85\) −611.068 + 611.068i −0.779760 + 0.779760i
\(86\) 0 0
\(87\) 895.973i 1.10412i
\(88\) 0 0
\(89\) 900.271i 1.07223i 0.844145 + 0.536116i \(0.180109\pi\)
−0.844145 + 0.536116i \(0.819891\pi\)
\(90\) 0 0
\(91\) −619.190 + 619.190i −0.713283 + 0.713283i
\(92\) 0 0
\(93\) 691.750 + 691.750i 0.771302 + 0.771302i
\(94\) 0 0
\(95\) 275.096 0.297098
\(96\) 0 0
\(97\) 5.27858 0.00552534 0.00276267 0.999996i \(-0.499121\pi\)
0.00276267 + 0.999996i \(0.499121\pi\)
\(98\) 0 0
\(99\) 153.038 + 153.038i 0.155362 + 0.155362i
\(100\) 0 0
\(101\) −459.109 + 459.109i −0.452307 + 0.452307i −0.896120 0.443812i \(-0.853626\pi\)
0.443812 + 0.896120i \(0.353626\pi\)
\(102\) 0 0
\(103\) 791.173i 0.756860i −0.925630 0.378430i \(-0.876464\pi\)
0.925630 0.378430i \(-0.123536\pi\)
\(104\) 0 0
\(105\) 629.085i 0.584690i
\(106\) 0 0
\(107\) −1525.81 + 1525.81i −1.37855 + 1.37855i −0.531487 + 0.847067i \(0.678366\pi\)
−0.847067 + 0.531487i \(0.821634\pi\)
\(108\) 0 0
\(109\) −413.307 413.307i −0.363189 0.363189i 0.501796 0.864986i \(-0.332673\pi\)
−0.864986 + 0.501796i \(0.832673\pi\)
\(110\) 0 0
\(111\) 469.902 0.401812
\(112\) 0 0
\(113\) 210.248 0.175031 0.0875154 0.996163i \(-0.472107\pi\)
0.0875154 + 0.996163i \(0.472107\pi\)
\(114\) 0 0
\(115\) −879.053 879.053i −0.712801 0.712801i
\(116\) 0 0
\(117\) 443.146 443.146i 0.350161 0.350161i
\(118\) 0 0
\(119\) 651.714i 0.502038i
\(120\) 0 0
\(121\) 752.715i 0.565526i
\(122\) 0 0
\(123\) 738.696 738.696i 0.541512 0.541512i
\(124\) 0 0
\(125\) −330.838 330.838i −0.236729 0.236729i
\(126\) 0 0
\(127\) −177.367 −0.123927 −0.0619637 0.998078i \(-0.519736\pi\)
−0.0619637 + 0.998078i \(0.519736\pi\)
\(128\) 0 0
\(129\) −873.295 −0.596041
\(130\) 0 0
\(131\) −938.828 938.828i −0.626151 0.626151i 0.320946 0.947097i \(-0.395999\pi\)
−0.947097 + 0.320946i \(0.895999\pi\)
\(132\) 0 0
\(133\) 146.697 146.697i 0.0956411 0.0956411i
\(134\) 0 0
\(135\) 450.227i 0.287033i
\(136\) 0 0
\(137\) 307.429i 0.191718i 0.995395 + 0.0958592i \(0.0305598\pi\)
−0.995395 + 0.0958592i \(0.969440\pi\)
\(138\) 0 0
\(139\) 1253.43 1253.43i 0.764852 0.764852i −0.212343 0.977195i \(-0.568109\pi\)
0.977195 + 0.212343i \(0.0681095\pi\)
\(140\) 0 0
\(141\) −540.901 540.901i −0.323064 0.323064i
\(142\) 0 0
\(143\) −1674.52 −0.979233
\(144\) 0 0
\(145\) 4980.14 2.85226
\(146\) 0 0
\(147\) 392.148 + 392.148i 0.220026 + 0.220026i
\(148\) 0 0
\(149\) 1686.80 1686.80i 0.927436 0.927436i −0.0701033 0.997540i \(-0.522333\pi\)
0.997540 + 0.0701033i \(0.0223329\pi\)
\(150\) 0 0
\(151\) 1682.23i 0.906611i −0.891355 0.453306i \(-0.850245\pi\)
0.891355 0.453306i \(-0.149755\pi\)
\(152\) 0 0
\(153\) 466.422i 0.246457i
\(154\) 0 0
\(155\) 3844.99 3844.99i 1.99250 1.99250i
\(156\) 0 0
\(157\) −1066.81 1066.81i −0.542300 0.542300i 0.381903 0.924202i \(-0.375269\pi\)
−0.924202 + 0.381903i \(0.875269\pi\)
\(158\) 0 0
\(159\) −957.147 −0.477400
\(160\) 0 0
\(161\) −937.523 −0.458927
\(162\) 0 0
\(163\) 2379.54 + 2379.54i 1.14343 + 1.14343i 0.987817 + 0.155618i \(0.0497367\pi\)
0.155618 + 0.987817i \(0.450263\pi\)
\(164\) 0 0
\(165\) 850.639 850.639i 0.401346 0.401346i
\(166\) 0 0
\(167\) 839.991i 0.389224i 0.980880 + 0.194612i \(0.0623448\pi\)
−0.980880 + 0.194612i \(0.937655\pi\)
\(168\) 0 0
\(169\) 2651.84i 1.20703i
\(170\) 0 0
\(171\) −104.989 + 104.989i −0.0469516 + 0.0469516i
\(172\) 0 0
\(173\) −450.278 450.278i −0.197885 0.197885i 0.601208 0.799093i \(-0.294686\pi\)
−0.799093 + 0.601208i \(0.794686\pi\)
\(174\) 0 0
\(175\) −1924.76 −0.831419
\(176\) 0 0
\(177\) −1211.03 −0.514274
\(178\) 0 0
\(179\) 647.759 + 647.759i 0.270479 + 0.270479i 0.829293 0.558814i \(-0.188743\pi\)
−0.558814 + 0.829293i \(0.688743\pi\)
\(180\) 0 0
\(181\) −755.750 + 755.750i −0.310356 + 0.310356i −0.845047 0.534691i \(-0.820428\pi\)
0.534691 + 0.845047i \(0.320428\pi\)
\(182\) 0 0
\(183\) 1217.43i 0.491777i
\(184\) 0 0
\(185\) 2611.89i 1.03800i
\(186\) 0 0
\(187\) −881.237 + 881.237i −0.344612 + 0.344612i
\(188\) 0 0
\(189\) 240.087 + 240.087i 0.0924009 + 0.0924009i
\(190\) 0 0
\(191\) −760.485 −0.288098 −0.144049 0.989571i \(-0.546012\pi\)
−0.144049 + 0.989571i \(0.546012\pi\)
\(192\) 0 0
\(193\) 2184.99 0.814915 0.407458 0.913224i \(-0.366415\pi\)
0.407458 + 0.913224i \(0.366415\pi\)
\(194\) 0 0
\(195\) −2463.16 2463.16i −0.904568 0.904568i
\(196\) 0 0
\(197\) 83.4121 83.4121i 0.0301668 0.0301668i −0.691862 0.722029i \(-0.743210\pi\)
0.722029 + 0.691862i \(0.243210\pi\)
\(198\) 0 0
\(199\) 1734.18i 0.617754i −0.951102 0.308877i \(-0.900047\pi\)
0.951102 0.308877i \(-0.0999531\pi\)
\(200\) 0 0
\(201\) 2661.56i 0.933989i
\(202\) 0 0
\(203\) 2655.70 2655.70i 0.918195 0.918195i
\(204\) 0 0
\(205\) −4105.94 4105.94i −1.39888 1.39888i
\(206\) 0 0
\(207\) 670.972 0.225294
\(208\) 0 0
\(209\) 396.723 0.131301
\(210\) 0 0
\(211\) 365.900 + 365.900i 0.119382 + 0.119382i 0.764274 0.644892i \(-0.223098\pi\)
−0.644892 + 0.764274i \(0.723098\pi\)
\(212\) 0 0
\(213\) −582.905 + 582.905i −0.187512 + 0.187512i
\(214\) 0 0
\(215\) 4854.09i 1.53975i
\(216\) 0 0
\(217\) 4100.75i 1.28284i
\(218\) 0 0
\(219\) 632.556 632.556i 0.195179 0.195179i
\(220\) 0 0
\(221\) 2551.77 + 2551.77i 0.776698 + 0.776698i
\(222\) 0 0
\(223\) 4037.17 1.21233 0.606164 0.795340i \(-0.292708\pi\)
0.606164 + 0.795340i \(0.292708\pi\)
\(224\) 0 0
\(225\) 1377.53 0.408156
\(226\) 0 0
\(227\) 1502.81 + 1502.81i 0.439407 + 0.439407i 0.891812 0.452406i \(-0.149434\pi\)
−0.452406 + 0.891812i \(0.649434\pi\)
\(228\) 0 0
\(229\) −3443.65 + 3443.65i −0.993723 + 0.993723i −0.999980 0.00625772i \(-0.998008\pi\)
0.00625772 + 0.999980i \(0.498008\pi\)
\(230\) 0 0
\(231\) 907.219i 0.258401i
\(232\) 0 0
\(233\) 1139.00i 0.320250i 0.987097 + 0.160125i \(0.0511898\pi\)
−0.987097 + 0.160125i \(0.948810\pi\)
\(234\) 0 0
\(235\) −3006.52 + 3006.52i −0.834569 + 0.834569i
\(236\) 0 0
\(237\) 372.640 + 372.640i 0.102133 + 0.102133i
\(238\) 0 0
\(239\) 4603.80 1.24600 0.623002 0.782220i \(-0.285913\pi\)
0.623002 + 0.782220i \(0.285913\pi\)
\(240\) 0 0
\(241\) −4681.58 −1.25132 −0.625658 0.780097i \(-0.715170\pi\)
−0.625658 + 0.780097i \(0.715170\pi\)
\(242\) 0 0
\(243\) −171.827 171.827i −0.0453609 0.0453609i
\(244\) 0 0
\(245\) 2179.70 2179.70i 0.568392 0.568392i
\(246\) 0 0
\(247\) 1148.78i 0.295931i
\(248\) 0 0
\(249\) 531.408i 0.135248i
\(250\) 0 0
\(251\) 476.440 476.440i 0.119811 0.119811i −0.644659 0.764470i \(-0.723001\pi\)
0.764470 + 0.644659i \(0.223001\pi\)
\(252\) 0 0
\(253\) −1267.70 1267.70i −0.315019 0.315019i
\(254\) 0 0
\(255\) −2592.54 −0.636672
\(256\) 0 0
\(257\) 925.326 0.224592 0.112296 0.993675i \(-0.464179\pi\)
0.112296 + 0.993675i \(0.464179\pi\)
\(258\) 0 0
\(259\) −1392.81 1392.81i −0.334150 0.334150i
\(260\) 0 0
\(261\) −1900.65 + 1900.65i −0.450755 + 0.450755i
\(262\) 0 0
\(263\) 3477.65i 0.815365i −0.913124 0.407683i \(-0.866337\pi\)
0.913124 0.407683i \(-0.133663\pi\)
\(264\) 0 0
\(265\) 5320.17i 1.23327i
\(266\) 0 0
\(267\) −1909.76 + 1909.76i −0.437737 + 0.437737i
\(268\) 0 0
\(269\) 3773.37 + 3773.37i 0.855266 + 0.855266i 0.990776 0.135510i \(-0.0432673\pi\)
−0.135510 + 0.990776i \(0.543267\pi\)
\(270\) 0 0
\(271\) −8007.09 −1.79482 −0.897410 0.441198i \(-0.854554\pi\)
−0.897410 + 0.441198i \(0.854554\pi\)
\(272\) 0 0
\(273\) −2627.00 −0.582394
\(274\) 0 0
\(275\) −2602.63 2602.63i −0.570708 0.570708i
\(276\) 0 0
\(277\) 4550.73 4550.73i 0.987101 0.987101i −0.0128173 0.999918i \(-0.504080\pi\)
0.999918 + 0.0128173i \(0.00407998\pi\)
\(278\) 0 0
\(279\) 2934.85i 0.629766i
\(280\) 0 0
\(281\) 3333.05i 0.707592i 0.935323 + 0.353796i \(0.115109\pi\)
−0.935323 + 0.353796i \(0.884891\pi\)
\(282\) 0 0
\(283\) −6242.23 + 6242.23i −1.31117 + 1.31117i −0.390621 + 0.920552i \(0.627740\pi\)
−0.920552 + 0.390621i \(0.872260\pi\)
\(284\) 0 0
\(285\) 583.568 + 583.568i 0.121290 + 0.121290i
\(286\) 0 0
\(287\) −4379.05 −0.900651
\(288\) 0 0
\(289\) −2227.20 −0.453329
\(290\) 0 0
\(291\) 11.1976 + 11.1976i 0.00225571 + 0.00225571i
\(292\) 0 0
\(293\) −2458.24 + 2458.24i −0.490143 + 0.490143i −0.908351 0.418208i \(-0.862658\pi\)
0.418208 + 0.908351i \(0.362658\pi\)
\(294\) 0 0
\(295\) 6731.33i 1.32852i
\(296\) 0 0
\(297\) 649.284i 0.126853i
\(298\) 0 0
\(299\) −3670.84 + 3670.84i −0.710001 + 0.710001i
\(300\) 0 0
\(301\) 2588.48 + 2588.48i 0.495673 + 0.495673i
\(302\) 0 0
\(303\) −1947.83 −0.369307
\(304\) 0 0
\(305\) 6766.93 1.27040
\(306\) 0 0
\(307\) 3008.49 + 3008.49i 0.559295 + 0.559295i 0.929107 0.369812i \(-0.120578\pi\)
−0.369812 + 0.929107i \(0.620578\pi\)
\(308\) 0 0
\(309\) 1678.33 1678.33i 0.308987 0.308987i
\(310\) 0 0
\(311\) 4507.09i 0.821779i −0.911685 0.410890i \(-0.865218\pi\)
0.911685 0.410890i \(-0.134782\pi\)
\(312\) 0 0
\(313\) 5237.61i 0.945837i −0.881106 0.472919i \(-0.843200\pi\)
0.881106 0.472919i \(-0.156800\pi\)
\(314\) 0 0
\(315\) 1334.49 1334.49i 0.238699 0.238699i
\(316\) 0 0
\(317\) −989.530 989.530i −0.175323 0.175323i 0.613990 0.789314i \(-0.289563\pi\)
−0.789314 + 0.613990i \(0.789563\pi\)
\(318\) 0 0
\(319\) 7181.99 1.26055
\(320\) 0 0
\(321\) −6473.45 −1.12558
\(322\) 0 0
\(323\) −604.559 604.559i −0.104144 0.104144i
\(324\) 0 0
\(325\) −7536.35 + 7536.35i −1.28628 + 1.28628i
\(326\) 0 0
\(327\) 1753.51i 0.296543i
\(328\) 0 0
\(329\) 3206.50i 0.537325i
\(330\) 0 0
\(331\) 5652.55 5652.55i 0.938647 0.938647i −0.0595765 0.998224i \(-0.518975\pi\)
0.998224 + 0.0595765i \(0.0189750\pi\)
\(332\) 0 0
\(333\) 996.813 + 996.813i 0.164039 + 0.164039i
\(334\) 0 0
\(335\) 14793.9 2.41277
\(336\) 0 0
\(337\) 291.315 0.0470888 0.0235444 0.999723i \(-0.492505\pi\)
0.0235444 + 0.999723i \(0.492505\pi\)
\(338\) 0 0
\(339\) 446.004 + 446.004i 0.0714560 + 0.0714560i
\(340\) 0 0
\(341\) 5544.96 5544.96i 0.880577 0.880577i
\(342\) 0 0
\(343\) 6638.03i 1.04496i
\(344\) 0 0
\(345\) 3729.50i 0.581999i
\(346\) 0 0
\(347\) −6530.87 + 6530.87i −1.01036 + 1.01036i −0.0104158 + 0.999946i \(0.503316\pi\)
−0.999946 + 0.0104158i \(0.996684\pi\)
\(348\) 0 0
\(349\) 7267.79 + 7267.79i 1.11472 + 1.11472i 0.992504 + 0.122213i \(0.0389990\pi\)
0.122213 + 0.992504i \(0.461001\pi\)
\(350\) 0 0
\(351\) 1880.11 0.285905
\(352\) 0 0
\(353\) −8253.63 −1.24447 −0.622233 0.782832i \(-0.713774\pi\)
−0.622233 + 0.782832i \(0.713774\pi\)
\(354\) 0 0
\(355\) 3240.00 + 3240.00i 0.484398 + 0.484398i
\(356\) 0 0
\(357\) −1382.49 + 1382.49i −0.204956 + 0.204956i
\(358\) 0 0
\(359\) 4827.70i 0.709738i −0.934916 0.354869i \(-0.884525\pi\)
0.934916 0.354869i \(-0.115475\pi\)
\(360\) 0 0
\(361\) 6586.83i 0.960320i
\(362\) 0 0
\(363\) −1596.75 + 1596.75i −0.230875 + 0.230875i
\(364\) 0 0
\(365\) −3515.97 3515.97i −0.504204 0.504204i
\(366\) 0 0
\(367\) 2556.37 0.363600 0.181800 0.983336i \(-0.441808\pi\)
0.181800 + 0.983336i \(0.441808\pi\)
\(368\) 0 0
\(369\) 3134.02 0.442143
\(370\) 0 0
\(371\) 2837.02 + 2837.02i 0.397010 + 0.397010i
\(372\) 0 0
\(373\) 1141.57 1141.57i 0.158468 0.158468i −0.623420 0.781887i \(-0.714257\pi\)
0.781887 + 0.623420i \(0.214257\pi\)
\(374\) 0 0
\(375\) 1403.63i 0.193288i
\(376\) 0 0
\(377\) 20796.6i 2.84106i
\(378\) 0 0
\(379\) 2602.11 2602.11i 0.352668 0.352668i −0.508433 0.861101i \(-0.669775\pi\)
0.861101 + 0.508433i \(0.169775\pi\)
\(380\) 0 0
\(381\) −376.252 376.252i −0.0505931 0.0505931i
\(382\) 0 0
\(383\) 370.858 0.0494777 0.0247388 0.999694i \(-0.492125\pi\)
0.0247388 + 0.999694i \(0.492125\pi\)
\(384\) 0 0
\(385\) −5042.65 −0.667526
\(386\) 0 0
\(387\) −1852.54 1852.54i −0.243333 0.243333i
\(388\) 0 0
\(389\) −6457.55 + 6457.55i −0.841673 + 0.841673i −0.989077 0.147403i \(-0.952909\pi\)
0.147403 + 0.989077i \(0.452909\pi\)
\(390\) 0 0
\(391\) 3863.66i 0.499728i
\(392\) 0 0
\(393\) 3983.11i 0.511250i
\(394\) 0 0
\(395\) 2071.27 2071.27i 0.263840 0.263840i
\(396\) 0 0
\(397\) −232.353 232.353i −0.0293739 0.0293739i 0.692267 0.721641i \(-0.256612\pi\)
−0.721641 + 0.692267i \(0.756612\pi\)
\(398\) 0 0
\(399\) 622.384 0.0780906
\(400\) 0 0
\(401\) −119.615 −0.0148960 −0.00744801 0.999972i \(-0.502371\pi\)
−0.00744801 + 0.999972i \(0.502371\pi\)
\(402\) 0 0
\(403\) −16056.4 16056.4i −1.98467 1.98467i
\(404\) 0 0
\(405\) −955.076 + 955.076i −0.117181 + 0.117181i
\(406\) 0 0
\(407\) 3766.67i 0.458739i
\(408\) 0 0
\(409\) 626.952i 0.0757965i −0.999282 0.0378983i \(-0.987934\pi\)
0.999282 0.0378983i \(-0.0120663\pi\)
\(410\) 0 0
\(411\) −652.155 + 652.155i −0.0782687 + 0.0782687i
\(412\) 0 0
\(413\) 3589.54 + 3589.54i 0.427674 + 0.427674i
\(414\) 0 0
\(415\) −2953.76 −0.349384
\(416\) 0 0
\(417\) 5317.85 0.624499
\(418\) 0 0
\(419\) 4981.58 + 4981.58i 0.580826 + 0.580826i 0.935130 0.354304i \(-0.115282\pi\)
−0.354304 + 0.935130i \(0.615282\pi\)
\(420\) 0 0
\(421\) 10770.4 10770.4i 1.24683 1.24683i 0.289723 0.957110i \(-0.406437\pi\)
0.957110 0.289723i \(-0.0935632\pi\)
\(422\) 0 0
\(423\) 2294.85i 0.263781i
\(424\) 0 0
\(425\) 7932.20i 0.905337i
\(426\) 0 0
\(427\) 3608.52 3608.52i 0.408966 0.408966i
\(428\) 0 0
\(429\) −3552.19 3552.19i −0.399770 0.399770i
\(430\) 0 0
\(431\) −7546.94 −0.843442 −0.421721 0.906726i \(-0.638574\pi\)
−0.421721 + 0.906726i \(0.638574\pi\)
\(432\) 0 0
\(433\) 5614.17 0.623094 0.311547 0.950231i \(-0.399153\pi\)
0.311547 + 0.950231i \(0.399153\pi\)
\(434\) 0 0
\(435\) 10564.5 + 10564.5i 1.16443 + 1.16443i
\(436\) 0 0
\(437\) 869.689 869.689i 0.0952010 0.0952010i
\(438\) 0 0
\(439\) 7198.92i 0.782656i −0.920251 0.391328i \(-0.872016\pi\)
0.920251 0.391328i \(-0.127984\pi\)
\(440\) 0 0
\(441\) 1663.74i 0.179651i
\(442\) 0 0
\(443\) 5582.95 5582.95i 0.598767 0.598767i −0.341217 0.939984i \(-0.610839\pi\)
0.939984 + 0.341217i \(0.110839\pi\)
\(444\) 0 0
\(445\) 10615.2 + 10615.2i 1.13080 + 1.13080i
\(446\) 0 0
\(447\) 7156.49 0.757249
\(448\) 0 0
\(449\) 1224.53 0.128706 0.0643530 0.997927i \(-0.479502\pi\)
0.0643530 + 0.997927i \(0.479502\pi\)
\(450\) 0 0
\(451\) −5921.28 5921.28i −0.618231 0.618231i
\(452\) 0 0
\(453\) 3568.56 3568.56i 0.370123 0.370123i
\(454\) 0 0
\(455\) 14601.8i 1.50449i
\(456\) 0 0
\(457\) 11182.3i 1.14461i 0.820040 + 0.572307i \(0.193951\pi\)
−0.820040 + 0.572307i \(0.806049\pi\)
\(458\) 0 0
\(459\) 989.431 989.431i 0.100616 0.100616i
\(460\) 0 0
\(461\) −11334.9 11334.9i −1.14516 1.14516i −0.987492 0.157670i \(-0.949602\pi\)
−0.157670 0.987492i \(-0.550398\pi\)
\(462\) 0 0
\(463\) −3013.37 −0.302469 −0.151234 0.988498i \(-0.548325\pi\)
−0.151234 + 0.988498i \(0.548325\pi\)
\(464\) 0 0
\(465\) 16312.9 1.62687
\(466\) 0 0
\(467\) 843.917 + 843.917i 0.0836228 + 0.0836228i 0.747681 0.664058i \(-0.231167\pi\)
−0.664058 + 0.747681i \(0.731167\pi\)
\(468\) 0 0
\(469\) 7888.96 7888.96i 0.776713 0.776713i
\(470\) 0 0
\(471\) 4526.11i 0.442786i
\(472\) 0 0
\(473\) 7000.20i 0.680485i
\(474\) 0 0
\(475\) 1785.50 1785.50i 0.172472 0.172472i
\(476\) 0 0
\(477\) −2030.41 2030.41i −0.194898 0.194898i
\(478\) 0 0
\(479\) −10569.4 −1.00821 −0.504103 0.863644i \(-0.668177\pi\)
−0.504103 + 0.863644i \(0.668177\pi\)
\(480\) 0 0
\(481\) −10907.0 −1.03392
\(482\) 0 0
\(483\) −1988.79 1988.79i −0.187356 0.187356i
\(484\) 0 0
\(485\) 62.2400 62.2400i 0.00582716 0.00582716i
\(486\) 0 0
\(487\) 1579.10i 0.146932i 0.997298 + 0.0734661i \(0.0234061\pi\)
−0.997298 + 0.0734661i \(0.976594\pi\)
\(488\) 0 0
\(489\) 10095.5i 0.933611i
\(490\) 0 0
\(491\) −8650.50 + 8650.50i −0.795095 + 0.795095i −0.982318 0.187222i \(-0.940052\pi\)
0.187222 + 0.982318i \(0.440052\pi\)
\(492\) 0 0
\(493\) −10944.5 10944.5i −0.999828 0.999828i
\(494\) 0 0
\(495\) 3608.95 0.327698
\(496\) 0 0
\(497\) 3455.51 0.311873
\(498\) 0 0
\(499\) 11942.3 + 11942.3i 1.07137 + 1.07137i 0.997250 + 0.0741168i \(0.0236137\pi\)
0.0741168 + 0.997250i \(0.476386\pi\)
\(500\) 0 0
\(501\) −1781.89 + 1781.89i −0.158900 + 0.158900i
\(502\) 0 0
\(503\) 3290.09i 0.291646i −0.989311 0.145823i \(-0.953417\pi\)
0.989311 0.145823i \(-0.0465830\pi\)
\(504\) 0 0
\(505\) 10826.8i 0.954029i
\(506\) 0 0
\(507\) −5625.41 + 5625.41i −0.492768 + 0.492768i
\(508\) 0 0
\(509\) 1392.67 + 1392.67i 0.121275 + 0.121275i 0.765140 0.643864i \(-0.222670\pi\)
−0.643864 + 0.765140i \(0.722670\pi\)
\(510\) 0 0
\(511\) −3749.84 −0.324625
\(512\) 0 0
\(513\) −445.431 −0.0383358
\(514\) 0 0
\(515\) −9328.77 9328.77i −0.798203 0.798203i
\(516\) 0 0
\(517\) −4335.78 + 4335.78i −0.368834 + 0.368834i
\(518\) 0 0
\(519\) 1910.37i 0.161572i
\(520\) 0 0
\(521\) 1175.72i 0.0988661i −0.998777 0.0494331i \(-0.984259\pi\)
0.998777 0.0494331i \(-0.0157414\pi\)
\(522\) 0 0
\(523\) 9451.05 9451.05i 0.790183 0.790183i −0.191341 0.981524i \(-0.561284\pi\)
0.981524 + 0.191341i \(0.0612836\pi\)
\(524\) 0 0
\(525\) −4083.04 4083.04i −0.339426 0.339426i
\(526\) 0 0
\(527\) −16899.7 −1.39689
\(528\) 0 0
\(529\) 6608.93 0.543185
\(530\) 0 0
\(531\) −2568.98 2568.98i −0.209951 0.209951i
\(532\) 0 0
\(533\) −17146.0 + 17146.0i −1.39339 + 1.39339i
\(534\) 0 0
\(535\) 35981.7i 2.90771i
\(536\) 0 0
\(537\) 2748.21i 0.220845i
\(538\) 0 0
\(539\) 3143.40 3143.40i 0.251198 0.251198i
\(540\) 0 0
\(541\) 2893.97 + 2893.97i 0.229984 + 0.229984i 0.812686 0.582702i \(-0.198004\pi\)
−0.582702 + 0.812686i \(0.698004\pi\)
\(542\) 0 0
\(543\) −3206.38 −0.253405
\(544\) 0 0
\(545\) −9746.66 −0.766057
\(546\) 0 0
\(547\) 956.857 + 956.857i 0.0747939 + 0.0747939i 0.743514 0.668720i \(-0.233158\pi\)
−0.668720 + 0.743514i \(0.733158\pi\)
\(548\) 0 0
\(549\) −2582.56 + 2582.56i −0.200767 + 0.200767i
\(550\) 0 0
\(551\) 4927.09i 0.380946i
\(552\) 0 0
\(553\) 2209.04i 0.169870i
\(554\) 0 0
\(555\) 5540.65 5540.65i 0.423761 0.423761i
\(556\) 0 0
\(557\) −8482.07 8482.07i −0.645236 0.645236i 0.306602 0.951838i \(-0.400808\pi\)
−0.951838 + 0.306602i \(0.900808\pi\)
\(558\) 0 0
\(559\) 20270.2 1.53370
\(560\) 0 0
\(561\) −3738.77 −0.281374
\(562\) 0 0
\(563\) −9461.78 9461.78i −0.708289 0.708289i 0.257886 0.966175i \(-0.416974\pi\)
−0.966175 + 0.257886i \(0.916974\pi\)
\(564\) 0 0
\(565\) 2479.05 2479.05i 0.184592 0.184592i
\(566\) 0 0
\(567\) 1018.60i 0.0754450i
\(568\) 0 0
\(569\) 7197.61i 0.530298i 0.964207 + 0.265149i \(0.0854211\pi\)
−0.964207 + 0.265149i \(0.914579\pi\)
\(570\) 0 0
\(571\) −990.936 + 990.936i −0.0726259 + 0.0726259i −0.742487 0.669861i \(-0.766354\pi\)
0.669861 + 0.742487i \(0.266354\pi\)
\(572\) 0 0
\(573\) −1613.23 1613.23i −0.117616 0.117616i
\(574\) 0 0
\(575\) −11410.9 −0.827594
\(576\) 0 0
\(577\) −14836.1 −1.07043 −0.535214 0.844717i \(-0.679769\pi\)
−0.535214 + 0.844717i \(0.679769\pi\)
\(578\) 0 0
\(579\) 4635.05 + 4635.05i 0.332688 + 0.332688i
\(580\) 0 0
\(581\) −1575.11 + 1575.11i −0.112473 + 0.112473i
\(582\) 0 0
\(583\) 7672.35i 0.545036i
\(584\) 0 0
\(585\) 10450.3i 0.738577i
\(586\) 0 0
\(587\) −4038.29 + 4038.29i −0.283949 + 0.283949i −0.834682 0.550733i \(-0.814348\pi\)
0.550733 + 0.834682i \(0.314348\pi\)
\(588\) 0 0
\(589\) 3804.04 + 3804.04i 0.266116 + 0.266116i
\(590\) 0 0
\(591\) 353.888 0.0246311
\(592\) 0 0
\(593\) 11081.1 0.767361 0.383681 0.923466i \(-0.374656\pi\)
0.383681 + 0.923466i \(0.374656\pi\)
\(594\) 0 0
\(595\) 7684.40 + 7684.40i 0.529461 + 0.529461i
\(596\) 0 0
\(597\) 3678.76 3678.76i 0.252197 0.252197i
\(598\) 0 0
\(599\) 7036.50i 0.479973i −0.970776 0.239986i \(-0.922857\pi\)
0.970776 0.239986i \(-0.0771430\pi\)
\(600\) 0 0
\(601\) 24290.7i 1.64865i −0.566117 0.824325i \(-0.691555\pi\)
0.566117 0.824325i \(-0.308445\pi\)
\(602\) 0 0
\(603\) −5646.02 + 5646.02i −0.381299 + 0.381299i
\(604\) 0 0
\(605\) 8875.31 + 8875.31i 0.596418 + 0.596418i
\(606\) 0 0
\(607\) −10931.5 −0.730967 −0.365484 0.930818i \(-0.619096\pi\)
−0.365484 + 0.930818i \(0.619096\pi\)
\(608\) 0 0
\(609\) 11267.2 0.749703
\(610\) 0 0
\(611\) 12555.0 + 12555.0i 0.831292 + 0.831292i
\(612\) 0 0
\(613\) −2217.95 + 2217.95i −0.146137 + 0.146137i −0.776390 0.630253i \(-0.782951\pi\)
0.630253 + 0.776390i \(0.282951\pi\)
\(614\) 0 0
\(615\) 17420.0i 1.14218i
\(616\) 0 0
\(617\) 26271.5i 1.71418i 0.515164 + 0.857092i \(0.327731\pi\)
−0.515164 + 0.857092i \(0.672269\pi\)
\(618\) 0 0
\(619\) 11171.8 11171.8i 0.725417 0.725417i −0.244287 0.969703i \(-0.578554\pi\)
0.969703 + 0.244287i \(0.0785538\pi\)
\(620\) 0 0
\(621\) 1423.35 + 1423.35i 0.0919757 + 0.0919757i
\(622\) 0 0
\(623\) 11321.2 0.728050
\(624\) 0 0
\(625\) 11330.4 0.725148
\(626\) 0 0
\(627\) 841.578 + 841.578i 0.0536035 + 0.0536035i
\(628\) 0 0
\(629\) −5739.95 + 5739.95i −0.363858 + 0.363858i
\(630\) 0 0
\(631\) 17415.1i 1.09871i 0.835590 + 0.549354i \(0.185126\pi\)
−0.835590 + 0.549354i \(0.814874\pi\)
\(632\) 0 0
\(633\) 1552.38i 0.0974749i
\(634\) 0 0
\(635\) −2091.34 + 2091.34i −0.130697 + 0.130697i
\(636\) 0 0
\(637\) −9102.24 9102.24i −0.566160 0.566160i
\(638\) 0 0
\(639\) −2473.06 −0.153103
\(640\) 0 0
\(641\) −2727.28 −0.168051 −0.0840257 0.996464i \(-0.526778\pi\)
−0.0840257 + 0.996464i \(0.526778\pi\)
\(642\) 0 0
\(643\) −11681.7 11681.7i −0.716458 0.716458i 0.251420 0.967878i \(-0.419103\pi\)
−0.967878 + 0.251420i \(0.919103\pi\)
\(644\) 0 0
\(645\) −10297.1 + 10297.1i −0.628600 + 0.628600i
\(646\) 0 0
\(647\) 4399.67i 0.267340i −0.991026 0.133670i \(-0.957324\pi\)
0.991026 0.133670i \(-0.0426762\pi\)
\(648\) 0 0
\(649\) 9707.43i 0.587134i
\(650\) 0 0
\(651\) 8699.00 8699.00i 0.523718 0.523718i
\(652\) 0 0
\(653\) −22924.8 22924.8i −1.37384 1.37384i −0.854673 0.519167i \(-0.826242\pi\)
−0.519167 0.854673i \(-0.673758\pi\)
\(654\) 0 0
\(655\) −22139.6 −1.32071
\(656\) 0 0
\(657\) 2683.71 0.159363
\(658\) 0 0
\(659\) 11508.4 + 11508.4i 0.680276 + 0.680276i 0.960062 0.279786i \(-0.0902636\pi\)
−0.279786 + 0.960062i \(0.590264\pi\)
\(660\) 0 0
\(661\) 10207.0 10207.0i 0.600615 0.600615i −0.339861 0.940476i \(-0.610380\pi\)
0.940476 + 0.339861i \(0.110380\pi\)
\(662\) 0 0
\(663\) 10826.2i 0.634171i
\(664\) 0 0
\(665\) 3459.43i 0.201731i
\(666\) 0 0
\(667\) 15744.2 15744.2i 0.913970 0.913970i
\(668\) 0 0
\(669\) 8564.13 + 8564.13i 0.494930 + 0.494930i
\(670\) 0 0
\(671\) 9758.76 0.561450
\(672\) 0 0
\(673\) −23908.4 −1.36939 −0.684695 0.728830i \(-0.740065\pi\)
−0.684695 + 0.728830i \(0.740065\pi\)
\(674\) 0 0
\(675\) 2922.17 + 2922.17i 0.166629 + 0.166629i
\(676\) 0 0
\(677\) 10411.1 10411.1i 0.591035 0.591035i −0.346876 0.937911i \(-0.612758\pi\)
0.937911 + 0.346876i \(0.112758\pi\)
\(678\) 0 0
\(679\) 66.3800i 0.00375174i
\(680\) 0 0
\(681\) 6375.90i 0.358774i
\(682\) 0 0
\(683\) −11126.8 + 11126.8i −0.623358 + 0.623358i −0.946389 0.323030i \(-0.895298\pi\)
0.323030 + 0.946389i \(0.395298\pi\)
\(684\) 0 0
\(685\) 3624.91 + 3624.91i 0.202191 + 0.202191i
\(686\) 0 0
\(687\) −14610.2 −0.811371
\(688\) 0 0
\(689\) 22216.5 1.22842
\(690\) 0 0
\(691\) −2722.85 2722.85i −0.149901 0.149901i 0.628173 0.778074i \(-0.283803\pi\)
−0.778074 + 0.628173i \(0.783803\pi\)
\(692\) 0 0
\(693\) 1924.50 1924.50i 0.105492 0.105492i
\(694\) 0 0
\(695\) 29558.5i 1.61326i
\(696\) 0 0
\(697\) 18046.6i 0.980724i
\(698\) 0 0
\(699\) −2416.18 + 2416.18i −0.130742 + 0.130742i
\(700\) 0 0
\(701\) 2736.38 + 2736.38i 0.147435 + 0.147435i 0.776971 0.629536i \(-0.216755\pi\)
−0.629536 + 0.776971i \(0.716755\pi\)
\(702\) 0 0
\(703\) 2584.06 0.138634
\(704\) 0 0
\(705\) −12755.6 −0.681423
\(706\) 0 0
\(707\) 5773.45 + 5773.45i 0.307119 + 0.307119i
\(708\) 0 0
\(709\) −783.090 + 783.090i −0.0414803 + 0.0414803i −0.727543 0.686062i \(-0.759338\pi\)
0.686062 + 0.727543i \(0.259338\pi\)
\(710\) 0 0
\(711\) 1580.98i 0.0833915i
\(712\) 0 0
\(713\) 24311.1i 1.27694i
\(714\) 0 0
\(715\) −19744.4 + 19744.4i −1.03272 + 1.03272i
\(716\) 0 0
\(717\) 9766.14 + 9766.14i 0.508679 + 0.508679i
\(718\) 0 0
\(719\) 11021.5 0.571671 0.285835 0.958279i \(-0.407729\pi\)
0.285835 + 0.958279i \(0.407729\pi\)
\(720\) 0 0
\(721\) −9949.27 −0.513912
\(722\) 0 0
\(723\) −9931.14 9931.14i −0.510848 0.510848i
\(724\) 0 0
\(725\) 32323.3 32323.3i 1.65580 1.65580i
\(726\) 0 0
\(727\) 21740.4i 1.10909i −0.832154 0.554544i \(-0.812893\pi\)
0.832154 0.554544i \(-0.187107\pi\)
\(728\) 0 0
\(729\) 729.000i 0.0370370i
\(730\) 0 0
\(731\) 10667.5 10667.5i 0.539741 0.539741i
\(732\) 0 0
\(733\) 13194.8 + 13194.8i 0.664886 + 0.664886i 0.956528 0.291642i \(-0.0942015\pi\)
−0.291642 + 0.956528i \(0.594202\pi\)
\(734\) 0 0
\(735\) 9247.69 0.464090
\(736\) 0 0
\(737\) 21334.7 1.06631
\(738\) 0 0
\(739\) −21786.6 21786.6i −1.08448 1.08448i −0.996085 0.0883973i \(-0.971825\pi\)
−0.0883973 0.996085i \(-0.528175\pi\)
\(740\) 0 0
\(741\) 2436.93 2436.93i 0.120813 0.120813i
\(742\) 0 0
\(743\) 7418.24i 0.366284i 0.983086 + 0.183142i \(0.0586268\pi\)
−0.983086 + 0.183142i \(0.941373\pi\)
\(744\) 0 0
\(745\) 39778.3i 1.95619i
\(746\) 0 0
\(747\) 1127.29 1127.29i 0.0552146 0.0552146i
\(748\) 0 0
\(749\) 19187.5 + 19187.5i 0.936045 + 0.936045i
\(750\) 0 0
\(751\) 9320.68 0.452885 0.226442 0.974025i \(-0.427291\pi\)
0.226442 + 0.974025i \(0.427291\pi\)
\(752\) 0 0
\(753\) 2021.36 0.0978255
\(754\) 0 0
\(755\) −19835.3 19835.3i −0.956135 0.956135i
\(756\) 0 0
\(757\) 2105.29 2105.29i 0.101081 0.101081i −0.654758 0.755839i \(-0.727229\pi\)
0.755839 + 0.654758i \(0.227229\pi\)
\(758\) 0 0
\(759\) 5378.41i 0.257212i
\(760\) 0 0
\(761\) 13011.0i 0.619776i −0.950773 0.309888i \(-0.899708\pi\)
0.950773 0.309888i \(-0.100292\pi\)
\(762\) 0 0
\(763\) −5197.48 + 5197.48i −0.246607 + 0.246607i
\(764\) 0 0
\(765\) −5499.61 5499.61i −0.259920 0.259920i
\(766\) 0 0
\(767\) 28109.4 1.32330
\(768\) 0 0
\(769\) 26438.9 1.23981 0.619904 0.784677i \(-0.287171\pi\)
0.619904 + 0.784677i \(0.287171\pi\)
\(770\) 0 0
\(771\) 1962.91 + 1962.91i 0.0916895 + 0.0916895i
\(772\) 0 0
\(773\) −21614.3 + 21614.3i −1.00571 + 1.00571i −0.00572318 + 0.999984i \(0.501822\pi\)
−0.999984 + 0.00572318i \(0.998178\pi\)
\(774\) 0 0
\(775\) 49911.4i 2.31338i
\(776\) 0 0
\(777\) 5909.19i 0.272833i
\(778\) 0 0
\(779\) 4062.20 4062.20i 0.186834 0.186834i
\(780\) 0 0
\(781\) 4672.48 + 4672.48i 0.214077 + 0.214077i
\(782\) 0 0
\(783\) −8063.76 −0.368040
\(784\) 0 0
\(785\) −25157.8 −1.14385
\(786\) 0 0
\(787\) 20949.4 + 20949.4i 0.948874 + 0.948874i 0.998755 0.0498808i \(-0.0158842\pi\)
−0.0498808 + 0.998755i \(0.515884\pi\)
\(788\) 0 0
\(789\) 7377.21 7377.21i 0.332871 0.332871i
\(790\) 0 0
\(791\) 2643.94i 0.118847i
\(792\) 0 0
\(793\) 28258.1i 1.26541i
\(794\) 0 0
\(795\) −11285.8 + 11285.8i −0.503478 + 0.503478i
\(796\) 0 0
\(797\) 1576.38 + 1576.38i 0.0700603 + 0.0700603i 0.741269 0.671208i \(-0.234224\pi\)
−0.671208 + 0.741269i \(0.734224\pi\)
\(798\) 0 0
\(799\) 13214.4 0.585097
\(800\) 0 0
\(801\) −8102.44 −0.357410
\(802\) 0 0
\(803\) −5070.48 5070.48i −0.222831 0.222831i
\(804\) 0 0
\(805\) −11054.4 + 11054.4i −0.483995 + 0.483995i
\(806\) 0 0
\(807\) 16009.1i 0.698322i
\(808\) 0 0
\(809\) 8102.89i 0.352142i −0.984378 0.176071i \(-0.943661\pi\)
0.984378 0.176071i \(-0.0563388\pi\)
\(810\) 0 0
\(811\) −20649.6 + 20649.6i −0.894090 + 0.894090i −0.994905 0.100816i \(-0.967855\pi\)
0.100816 + 0.994905i \(0.467855\pi\)
\(812\) 0 0
\(813\) −16985.6 16985.6i −0.732732 0.732732i
\(814\) 0 0
\(815\) 56114.6 2.41179
\(816\) 0 0
\(817\) −4802.38 −0.205647
\(818\) 0 0
\(819\) −5572.71 5572.71i −0.237761 0.237761i
\(820\) 0 0
\(821\) 13405.1 13405.1i 0.569844 0.569844i −0.362240 0.932085i \(-0.617988\pi\)
0.932085 + 0.362240i \(0.117988\pi\)
\(822\) 0 0
\(823\) 17203.4i 0.728643i 0.931273 + 0.364321i \(0.118699\pi\)
−0.931273 + 0.364321i \(0.881301\pi\)
\(824\) 0 0
\(825\) 11042.0i 0.465981i
\(826\) 0 0
\(827\) 11127.2 11127.2i 0.467872 0.467872i −0.433353 0.901224i \(-0.642670\pi\)
0.901224 + 0.433353i \(0.142670\pi\)
\(828\) 0 0
\(829\) −5752.09 5752.09i −0.240987 0.240987i 0.576271 0.817259i \(-0.304507\pi\)
−0.817259 + 0.576271i \(0.804507\pi\)
\(830\) 0 0
\(831\) 19307.1 0.805964
\(832\) 0 0
\(833\) −9580.34 −0.398486
\(834\) 0 0
\(835\) 9904.39 + 9904.39i 0.410486 + 0.410486i
\(836\) 0 0
\(837\) −6225.75 + 6225.75i −0.257101 + 0.257101i
\(838\) 0 0
\(839\) 45875.9i 1.88774i 0.330318 + 0.943870i \(0.392844\pi\)
−0.330318 + 0.943870i \(0.607156\pi\)
\(840\) 0 0
\(841\) 64807.5i 2.65724i
\(842\) 0 0
\(843\) −7070.47 + 7070.47i −0.288873 + 0.288873i
\(844\) 0 0
\(845\) 31268.1 + 31268.1i 1.27296 + 1.27296i
\(846\) 0 0
\(847\) 9465.66 0.383995
\(848\) 0 0
\(849\) −26483.5 −1.07057
\(850\) 0 0
\(851\) −8257.21 8257.21i −0.332613 0.332613i
\(852\) 0 0
\(853\) −27266.2 + 27266.2i −1.09446 + 1.09446i −0.0994157 + 0.995046i \(0.531697\pi\)
−0.995046 + 0.0994157i \(0.968303\pi\)
\(854\) 0 0
\(855\) 2475.87i 0.0990326i
\(856\) 0 0
\(857\) 28960.0i 1.15432i −0.816629 0.577162i \(-0.804160\pi\)
0.816629 0.577162i \(-0.195840\pi\)
\(858\) 0 0
\(859\) −17255.5 + 17255.5i −0.685388 + 0.685388i −0.961209 0.275821i \(-0.911050\pi\)
0.275821 + 0.961209i \(0.411050\pi\)
\(860\) 0 0
\(861\) −9289.36 9289.36i −0.367689 0.367689i
\(862\) 0 0
\(863\) −39885.9 −1.57327 −0.786635 0.617418i \(-0.788179\pi\)
−0.786635 + 0.617418i \(0.788179\pi\)
\(864\) 0 0
\(865\) −10618.5 −0.417388
\(866\) 0 0
\(867\) −4724.61 4724.61i −0.185071 0.185071i
\(868\) 0 0
\(869\) 2987.03 2987.03i 0.116603 0.116603i
\(870\) 0 0
\(871\) 61778.0i 2.40329i
\(872\) 0 0
\(873\) 47.5072i 0.00184178i
\(874\) 0 0
\(875\) −4160.41 + 4160.41i −0.160740 + 0.160740i
\(876\) 0 0
\(877\) 8855.51 + 8855.51i 0.340968 + 0.340968i 0.856731 0.515763i \(-0.172491\pi\)
−0.515763 + 0.856731i \(0.672491\pi\)
\(878\) 0 0
\(879\) −10429.4 −0.400200
\(880\) 0 0
\(881\) −43343.8 −1.65753 −0.828767 0.559593i \(-0.810957\pi\)
−0.828767 + 0.559593i \(0.810957\pi\)
\(882\) 0 0
\(883\) −11229.3 11229.3i −0.427968 0.427968i 0.459968 0.887936i \(-0.347861\pi\)
−0.887936 + 0.459968i \(0.847861\pi\)
\(884\) 0 0
\(885\) −14279.3 + 14279.3i −0.542366 + 0.542366i
\(886\) 0 0
\(887\) 36912.9i 1.39731i −0.715459 0.698655i \(-0.753782\pi\)
0.715459 0.698655i \(-0.246218\pi\)
\(888\) 0 0
\(889\) 2230.45i 0.0841473i
\(890\) 0 0
\(891\) −1377.34 + 1377.34i −0.0517874 + 0.0517874i
\(892\) 0 0
\(893\) −2974.49 2974.49i −0.111464 0.111464i
\(894\) 0 0
\(895\) 15275.5 0.570508
\(896\) 0 0
\(897\) −15574.1 −0.579714
\(898\) 0 0
\(899\) 68865.5 + 68865.5i 2.55483 + 2.55483i
\(900\) 0 0
\(901\) 11691.7 11691.7i 0.432306 0.432306i
\(902\) 0 0
\(903\) 10982.0i 0.404715i
\(904\) 0 0
\(905\) 17822.2i 0.654618i
\(906\) 0 0
\(907\) −14588.0 + 14588.0i −0.534053 + 0.534053i −0.921776 0.387723i \(-0.873262\pi\)
0.387723 + 0.921776i \(0.373262\pi\)
\(908\) 0 0
\(909\) −4131.98 4131.98i −0.150769 0.150769i
\(910\) 0 0
\(911\) −50418.8 −1.83365 −0.916823 0.399295i \(-0.869255\pi\)
−0.916823 + 0.399295i \(0.869255\pi\)
\(912\) 0 0
\(913\) −4259.69 −0.154409
\(914\) 0 0
\(915\) 14354.8 + 14354.8i 0.518640 + 0.518640i
\(916\) 0 0
\(917\) −11806.1 + 11806.1i −0.425160 + 0.425160i
\(918\) 0 0
\(919\) 53290.4i 1.91283i 0.292018 + 0.956413i \(0.405673\pi\)
−0.292018 + 0.956413i \(0.594327\pi\)
\(920\) 0 0
\(921\) 12763.9i 0.456662i
\(922\) 0 0
\(923\) 13529.9 13529.9i 0.482495 0.482495i
\(924\) 0 0
\(925\) −16952.3 16952.3i −0.602581 0.602581i
\(926\) 0 0
\(927\) 7120.55 0.252287
\(928\) 0 0
\(929\) 44859.2 1.58427 0.792133 0.610349i \(-0.208971\pi\)
0.792133 + 0.610349i \(0.208971\pi\)
\(930\) 0 0
\(931\) 2156.48 + 2156.48i 0.0759140 + 0.0759140i
\(932\) 0 0
\(933\) 9560.97 9560.97i 0.335490 0.335490i
\(934\) 0 0
\(935\) 20781.4i 0.726872i
\(936\) 0 0
\(937\) 22463.9i 0.783204i 0.920135 + 0.391602i \(0.128079\pi\)
−0.920135 + 0.391602i \(0.871921\pi\)
\(938\) 0 0
\(939\) 11110.6 11110.6i 0.386136 0.386136i
\(940\) 0 0
\(941\) 20653.7 + 20653.7i 0.715507 + 0.715507i 0.967682 0.252175i \(-0.0811458\pi\)
−0.252175 + 0.967682i \(0.581146\pi\)
\(942\) 0 0
\(943\) −25961.0 −0.896507
\(944\) 0 0
\(945\) 5661.77 0.194897
\(946\) 0 0
\(947\) −33123.2 33123.2i −1.13660 1.13660i −0.989055 0.147544i \(-0.952863\pi\)
−0.147544 0.989055i \(-0.547137\pi\)
\(948\) 0 0
\(949\) −14682.4 + 14682.4i −0.502224 + 0.502224i
\(950\) 0 0
\(951\) 4198.22i 0.143151i
\(952\) 0 0
\(953\) 10871.9i 0.369544i −0.982781 0.184772i \(-0.940845\pi\)
0.982781 0.184772i \(-0.0591546\pi\)
\(954\) 0 0
\(955\) −8966.93 + 8966.93i −0.303836 + 0.303836i
\(956\) 0 0
\(957\) 15235.3 + 15235.3i 0.514616 + 0.514616i
\(958\) 0 0
\(959\) 3866.02 0.130178
\(960\) 0 0
\(961\) 76546.3 2.56944
\(962\) 0 0
\(963\) −13732.3 13732.3i −0.459518 0.459518i
\(964\) 0 0
\(965\) 25763.3 25763.3i 0.859430 0.859430i
\(966\) 0 0
\(967\) 6501.58i 0.216212i 0.994139 + 0.108106i \(0.0344786\pi\)
−0.994139 + 0.108106i \(0.965521\pi\)
\(968\) 0 0
\(969\) 2564.93i 0.0850333i
\(970\) 0 0
\(971\) 16761.7 16761.7i 0.553975 0.553975i −0.373611 0.927586i \(-0.621880\pi\)
0.927586 + 0.373611i \(0.121880\pi\)
\(972\) 0 0
\(973\) −15762.3 15762.3i −0.519338 0.519338i
\(974\) 0 0
\(975\) −31974.0 −1.05024
\(976\) 0 0
\(977\) −7407.34 −0.242561 −0.121280 0.992618i \(-0.538700\pi\)
−0.121280 + 0.992618i \(0.538700\pi\)
\(978\) 0 0
\(979\) 15308.4 + 15308.4i 0.499753 + 0.499753i
\(980\) 0 0
\(981\) 3719.76 3719.76i 0.121063 0.121063i
\(982\) 0 0
\(983\) 35694.8i 1.15818i 0.815265 + 0.579088i \(0.196591\pi\)
−0.815265 + 0.579088i \(0.803409\pi\)
\(984\) 0 0
\(985\) 1967.04i 0.0636294i
\(986\) 0 0
\(987\) −6802.01 + 6802.01i −0.219362 + 0.219362i
\(988\) 0 0
\(989\) 15345.7 + 15345.7i 0.493392 + 0.493392i
\(990\) 0 0
\(991\) −46662.2 −1.49573 −0.747867 0.663849i \(-0.768922\pi\)
−0.747867 + 0.663849i \(0.768922\pi\)
\(992\) 0 0
\(993\) 23981.7 0.766402
\(994\) 0 0
\(995\) −20447.9 20447.9i −0.651498 0.651498i
\(996\) 0 0
\(997\) −22390.7 + 22390.7i −0.711255 + 0.711255i −0.966798 0.255543i \(-0.917746\pi\)
0.255543 + 0.966798i \(0.417746\pi\)
\(998\) 0 0
\(999\) 4229.12i 0.133937i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.4.j.a.145.12 24
3.2 odd 2 576.4.k.b.145.2 24
4.3 odd 2 48.4.j.a.13.12 24
8.3 odd 2 384.4.j.b.289.7 24
8.5 even 2 384.4.j.a.289.6 24
12.11 even 2 144.4.k.b.109.1 24
16.3 odd 4 384.4.j.b.97.7 24
16.5 even 4 inner 192.4.j.a.49.12 24
16.11 odd 4 48.4.j.a.37.12 yes 24
16.13 even 4 384.4.j.a.97.6 24
48.5 odd 4 576.4.k.b.433.2 24
48.11 even 4 144.4.k.b.37.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.j.a.13.12 24 4.3 odd 2
48.4.j.a.37.12 yes 24 16.11 odd 4
144.4.k.b.37.1 24 48.11 even 4
144.4.k.b.109.1 24 12.11 even 2
192.4.j.a.49.12 24 16.5 even 4 inner
192.4.j.a.145.12 24 1.1 even 1 trivial
384.4.j.a.97.6 24 16.13 even 4
384.4.j.a.289.6 24 8.5 even 2
384.4.j.b.97.7 24 16.3 odd 4
384.4.j.b.289.7 24 8.3 odd 2
576.4.k.b.145.2 24 3.2 odd 2
576.4.k.b.433.2 24 48.5 odd 4