L(s) = 1 | + (2.12 + 2.12i)3-s + (11.7 − 11.7i)5-s − 12.5i·7-s + 8.99i·9-s + (17.0 − 17.0i)11-s + (−49.2 − 49.2i)13-s + 50.0·15-s − 51.8·17-s + (11.6 + 11.6i)19-s + (26.6 − 26.6i)21-s − 74.5i·23-s − 153. i·25-s + (−19.0 + 19.0i)27-s + (211. + 211. i)29-s + 326.·31-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (1.05 − 1.05i)5-s − 0.679i·7-s + 0.333i·9-s + (0.466 − 0.466i)11-s + (−1.05 − 1.05i)13-s + 0.861·15-s − 0.739·17-s + (0.140 + 0.140i)19-s + (0.277 − 0.277i)21-s − 0.675i·23-s − 1.22i·25-s + (−0.136 + 0.136i)27-s + (1.35 + 1.35i)29-s + 1.88·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.548 + 0.836i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.548 + 0.836i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.95374 - 1.05514i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.95374 - 1.05514i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-2.12 - 2.12i)T \) |
good | 5 | \( 1 + (-11.7 + 11.7i)T - 125iT^{2} \) |
| 7 | \( 1 + 12.5iT - 343T^{2} \) |
| 11 | \( 1 + (-17.0 + 17.0i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (49.2 + 49.2i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + 51.8T + 4.91e3T^{2} \) |
| 19 | \( 1 + (-11.6 - 11.6i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 + 74.5iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (-211. - 211. i)T + 2.43e4iT^{2} \) |
| 31 | \( 1 - 326.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (-110. + 110. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 + 348. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + (205. - 205. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + 254.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (225. - 225. i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (285. - 285. i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (-286. - 286. i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (-627. - 627. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 - 274. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 298. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 175.T + 4.93e5T^{2} \) |
| 83 | \( 1 + (125. + 125. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 - 900. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 5.27T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.13550840411295932494645252255, −10.59231896566191947011361705918, −9.943368751380713204552154003515, −8.968444996374917979992151472858, −8.136838306980607099274879020892, −6.65514723651836978241727462845, −5.31746384633685278186098184505, −4.41955137338626121544336522831, −2.70999735016914728561708016160, −0.974896262582260585158975970089,
1.96586802836019182818933582634, 2.78614834408316577496201886430, 4.69605970852984043579943392620, 6.35489469005762221691143333513, 6.76619762644681858108798032270, 8.184984798370553220561693206902, 9.548249635960234583438526607039, 9.886577766138382758770204366235, 11.43256324539062900601732522113, 12.14099348003019710502152479304