| L(s) = 1 | + (2.12 − 2.12i)3-s + (11.7 + 11.7i)5-s + 12.5i·7-s − 8.99i·9-s + (17.0 + 17.0i)11-s + (−49.2 + 49.2i)13-s + 50.0·15-s − 51.8·17-s + (11.6 − 11.6i)19-s + (26.6 + 26.6i)21-s + 74.5i·23-s + 153. i·25-s + (−19.0 − 19.0i)27-s + (211. − 211. i)29-s + 326.·31-s + ⋯ |
| L(s) = 1 | + (0.408 − 0.408i)3-s + (1.05 + 1.05i)5-s + 0.679i·7-s − 0.333i·9-s + (0.466 + 0.466i)11-s + (−1.05 + 1.05i)13-s + 0.861·15-s − 0.739·17-s + (0.140 − 0.140i)19-s + (0.277 + 0.277i)21-s + 0.675i·23-s + 1.22i·25-s + (−0.136 − 0.136i)27-s + (1.35 − 1.35i)29-s + 1.88·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.548 - 0.836i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.548 - 0.836i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.95374 + 1.05514i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.95374 + 1.05514i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-2.12 + 2.12i)T \) |
| good | 5 | \( 1 + (-11.7 - 11.7i)T + 125iT^{2} \) |
| 7 | \( 1 - 12.5iT - 343T^{2} \) |
| 11 | \( 1 + (-17.0 - 17.0i)T + 1.33e3iT^{2} \) |
| 13 | \( 1 + (49.2 - 49.2i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 + 51.8T + 4.91e3T^{2} \) |
| 19 | \( 1 + (-11.6 + 11.6i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 - 74.5iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (-211. + 211. i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 - 326.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (-110. - 110. i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 - 348. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + (205. + 205. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 + 254.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (225. + 225. i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (285. + 285. i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (-286. + 286. i)T - 2.26e5iT^{2} \) |
| 67 | \( 1 + (-627. + 627. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 + 274. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 298. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 175.T + 4.93e5T^{2} \) |
| 83 | \( 1 + (125. - 125. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + 900. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 5.27T + 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.14099348003019710502152479304, −11.43256324539062900601732522113, −9.886577766138382758770204366235, −9.548249635960234583438526607039, −8.184984798370553220561693206902, −6.76619762644681858108798032270, −6.35489469005762221691143333513, −4.69605970852984043579943392620, −2.78614834408316577496201886430, −1.96586802836019182818933582634,
0.974896262582260585158975970089, 2.70999735016914728561708016160, 4.41955137338626121544336522831, 5.31746384633685278186098184505, 6.65514723651836978241727462845, 8.136838306980607099274879020892, 8.968444996374917979992151472858, 9.943368751380713204552154003515, 10.59231896566191947011361705918, 12.13550840411295932494645252255