Properties

Label 48.4.j.a.13.12
Level $48$
Weight $4$
Character 48.13
Analytic conductor $2.832$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [48,4,Mod(13,48)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(48, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("48.13"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 48.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.83209168028\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 13.12
Character \(\chi\) \(=\) 48.13
Dual form 48.4.j.a.37.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.70307 + 0.832707i) q^{2} +(-2.12132 - 2.12132i) q^{3} +(6.61320 + 4.50173i) q^{4} +(11.7911 - 11.7911i) q^{5} +(-3.96764 - 7.50052i) q^{6} +12.5754i q^{7} +(14.1273 + 17.6754i) q^{8} +9.00000i q^{9} +(41.6906 - 22.0536i) q^{10} +(-17.0042 + 17.0042i) q^{11} +(-4.47910 - 23.5783i) q^{12} +(-49.2384 - 49.2384i) q^{13} +(-10.4716 + 33.9921i) q^{14} -50.0252 q^{15} +(23.4688 + 59.5417i) q^{16} -51.8247 q^{17} +(-7.49436 + 24.3277i) q^{18} +(-11.6655 - 11.6655i) q^{19} +(131.057 - 24.8964i) q^{20} +(26.6763 - 26.6763i) q^{21} +(-60.1231 + 31.8041i) q^{22} +74.5524i q^{23} +(7.52650 - 67.4637i) q^{24} -153.058i q^{25} +(-92.0939 - 174.096i) q^{26} +(19.0919 - 19.0919i) q^{27} +(-56.6109 + 83.1633i) q^{28} +(211.183 + 211.183i) q^{29} +(-135.222 - 41.6564i) q^{30} -326.094 q^{31} +(13.8571 + 180.488i) q^{32} +72.1427 q^{33} +(-140.086 - 43.1547i) q^{34} +(148.277 + 148.277i) q^{35} +(-40.5156 + 59.5188i) q^{36} +(110.757 - 110.757i) q^{37} +(-21.8187 - 41.2465i) q^{38} +208.901i q^{39} +(374.988 + 41.8350i) q^{40} -348.225i q^{41} +(94.3217 - 49.8945i) q^{42} +(205.838 - 205.838i) q^{43} +(-189.000 + 35.9038i) q^{44} +(106.120 + 106.120i) q^{45} +(-62.0803 + 201.521i) q^{46} +254.983 q^{47} +(76.5222 - 176.092i) q^{48} +184.861 q^{49} +(127.453 - 413.728i) q^{50} +(109.937 + 109.937i) q^{51} +(-103.965 - 547.282i) q^{52} +(-225.602 + 225.602i) q^{53} +(67.5047 - 35.7088i) q^{54} +400.995i q^{55} +(-222.274 + 177.656i) q^{56} +49.4924i q^{57} +(394.989 + 746.696i) q^{58} +(285.442 - 285.442i) q^{59} +(-330.827 - 225.200i) q^{60} +(286.952 + 286.952i) q^{61} +(-881.456 - 271.541i) q^{62} -113.178 q^{63} +(-112.837 + 499.411i) q^{64} -1161.15 q^{65} +(195.007 + 60.0737i) q^{66} +(-627.335 - 627.335i) q^{67} +(-342.727 - 233.301i) q^{68} +(158.150 - 158.150i) q^{69} +(277.332 + 524.274i) q^{70} -274.784i q^{71} +(-159.078 + 127.146i) q^{72} -298.190i q^{73} +(391.612 - 207.156i) q^{74} +(-324.686 + 324.686i) q^{75} +(-24.6312 - 129.661i) q^{76} +(-213.834 - 213.834i) q^{77} +(-173.953 + 564.674i) q^{78} -175.664 q^{79} +(978.782 + 425.338i) q^{80} -81.0000 q^{81} +(289.969 - 941.276i) q^{82} +(125.254 + 125.254i) q^{83} +(296.506 - 56.3262i) q^{84} +(-611.068 + 611.068i) q^{85} +(727.796 - 384.991i) q^{86} -895.973i q^{87} +(-540.779 - 60.3313i) q^{88} +900.271i q^{89} +(198.482 + 375.215i) q^{90} +(619.190 - 619.190i) q^{91} +(-335.615 + 493.030i) q^{92} +(691.750 + 691.750i) q^{93} +(689.237 + 212.326i) q^{94} -275.096 q^{95} +(353.478 - 412.269i) q^{96} +5.27858 q^{97} +(499.691 + 153.935i) q^{98} +(-153.038 - 153.038i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 20 q^{4} + 84 q^{8} + 72 q^{10} - 40 q^{11} - 24 q^{12} - 348 q^{14} + 120 q^{15} - 192 q^{16} - 36 q^{18} + 24 q^{19} + 80 q^{20} + 704 q^{22} + 228 q^{24} - 20 q^{26} - 344 q^{28} + 400 q^{29}+ \cdots - 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(31\) \(37\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.70307 + 0.832707i 0.955680 + 0.294406i
\(3\) −2.12132 2.12132i −0.408248 0.408248i
\(4\) 6.61320 + 4.50173i 0.826650 + 0.562717i
\(5\) 11.7911 11.7911i 1.05462 1.05462i 0.0562056 0.998419i \(-0.482100\pi\)
0.998419 0.0562056i \(-0.0179002\pi\)
\(6\) −3.96764 7.50052i −0.269964 0.510346i
\(7\) 12.5754i 0.679005i 0.940605 + 0.339503i \(0.110259\pi\)
−0.940605 + 0.339503i \(0.889741\pi\)
\(8\) 14.1273 + 17.6754i 0.624346 + 0.781148i
\(9\) 9.00000i 0.333333i
\(10\) 41.6906 22.0536i 1.31837 0.697396i
\(11\) −17.0042 + 17.0042i −0.466087 + 0.466087i −0.900644 0.434557i \(-0.856905\pi\)
0.434557 + 0.900644i \(0.356905\pi\)
\(12\) −4.47910 23.5783i −0.107750 0.567206i
\(13\) −49.2384 49.2384i −1.05048 1.05048i −0.998656 0.0518270i \(-0.983496\pi\)
−0.0518270 0.998656i \(-0.516504\pi\)
\(14\) −10.4716 + 33.9921i −0.199903 + 0.648912i
\(15\) −50.0252 −0.861098
\(16\) 23.4688 + 59.5417i 0.366700 + 0.930339i
\(17\) −51.8247 −0.739372 −0.369686 0.929157i \(-0.620535\pi\)
−0.369686 + 0.929157i \(0.620535\pi\)
\(18\) −7.49436 + 24.3277i −0.0981354 + 0.318560i
\(19\) −11.6655 11.6655i −0.140855 0.140855i 0.633163 0.774018i \(-0.281756\pi\)
−0.774018 + 0.633163i \(0.781756\pi\)
\(20\) 131.057 24.8964i 1.46526 0.278351i
\(21\) 26.6763 26.6763i 0.277203 0.277203i
\(22\) −60.1231 + 31.8041i −0.582649 + 0.308211i
\(23\) 74.5524i 0.675881i 0.941168 + 0.337940i \(0.109730\pi\)
−0.941168 + 0.337940i \(0.890270\pi\)
\(24\) 7.52650 67.4637i 0.0640142 0.573790i
\(25\) 153.058i 1.22447i
\(26\) −92.0939 174.096i −0.694657 1.31319i
\(27\) 19.0919 19.0919i 0.136083 0.136083i
\(28\) −56.6109 + 83.1633i −0.382087 + 0.561300i
\(29\) 211.183 + 211.183i 1.35227 + 1.35227i 0.883122 + 0.469143i \(0.155437\pi\)
0.469143 + 0.883122i \(0.344563\pi\)
\(30\) −135.222 41.6564i −0.822934 0.253512i
\(31\) −326.094 −1.88930 −0.944648 0.328084i \(-0.893597\pi\)
−0.944648 + 0.328084i \(0.893597\pi\)
\(32\) 13.8571 + 180.488i 0.0765506 + 0.997066i
\(33\) 72.1427 0.380558
\(34\) −140.086 43.1547i −0.706604 0.217676i
\(35\) 148.277 + 148.277i 0.716096 + 0.716096i
\(36\) −40.5156 + 59.5188i −0.187572 + 0.275550i
\(37\) 110.757 110.757i 0.492117 0.492117i −0.416855 0.908973i \(-0.636868\pi\)
0.908973 + 0.416855i \(0.136868\pi\)
\(38\) −21.8187 41.2465i −0.0931436 0.176081i
\(39\) 208.901i 0.857716i
\(40\) 374.988 + 41.8350i 1.48227 + 0.165367i
\(41\) 348.225i 1.32643i −0.748430 0.663214i \(-0.769192\pi\)
0.748430 0.663214i \(-0.230808\pi\)
\(42\) 94.3217 49.8945i 0.346527 0.183307i
\(43\) 205.838 205.838i 0.729998 0.729998i −0.240621 0.970619i \(-0.577351\pi\)
0.970619 + 0.240621i \(0.0773511\pi\)
\(44\) −189.000 + 35.9038i −0.647566 + 0.123016i
\(45\) 106.120 + 106.120i 0.351542 + 0.351542i
\(46\) −62.0803 + 201.521i −0.198984 + 0.645926i
\(47\) 254.983 0.791342 0.395671 0.918392i \(-0.370512\pi\)
0.395671 + 0.918392i \(0.370512\pi\)
\(48\) 76.5222 176.092i 0.230105 0.529514i
\(49\) 184.861 0.538952
\(50\) 127.453 413.728i 0.360491 1.17020i
\(51\) 109.937 + 109.937i 0.301848 + 0.301848i
\(52\) −103.965 547.282i −0.277258 1.45951i
\(53\) −225.602 + 225.602i −0.584694 + 0.584694i −0.936189 0.351496i \(-0.885673\pi\)
0.351496 + 0.936189i \(0.385673\pi\)
\(54\) 67.5047 35.7088i 0.170115 0.0899880i
\(55\) 400.995i 0.983094i
\(56\) −222.274 + 177.656i −0.530404 + 0.423934i
\(57\) 49.4924i 0.115007i
\(58\) 394.989 + 746.696i 0.894218 + 1.69045i
\(59\) 285.442 285.442i 0.629854 0.629854i −0.318177 0.948031i \(-0.603071\pi\)
0.948031 + 0.318177i \(0.103071\pi\)
\(60\) −330.827 225.200i −0.711826 0.484554i
\(61\) 286.952 + 286.952i 0.602301 + 0.602301i 0.940923 0.338621i \(-0.109961\pi\)
−0.338621 + 0.940923i \(0.609961\pi\)
\(62\) −881.456 271.541i −1.80556 0.556221i
\(63\) −113.178 −0.226335
\(64\) −112.837 + 499.411i −0.220385 + 0.975413i
\(65\) −1161.15 −2.21573
\(66\) 195.007 + 60.0737i 0.363692 + 0.112039i
\(67\) −627.335 627.335i −1.14390 1.14390i −0.987731 0.156168i \(-0.950086\pi\)
−0.156168 0.987731i \(-0.549914\pi\)
\(68\) −342.727 233.301i −0.611202 0.416057i
\(69\) 158.150 158.150i 0.275927 0.275927i
\(70\) 277.332 + 524.274i 0.473536 + 0.895182i
\(71\) 274.784i 0.459308i −0.973272 0.229654i \(-0.926241\pi\)
0.973272 0.229654i \(-0.0737595\pi\)
\(72\) −159.078 + 127.146i −0.260383 + 0.208115i
\(73\) 298.190i 0.478089i −0.971009 0.239044i \(-0.923166\pi\)
0.971009 0.239044i \(-0.0768341\pi\)
\(74\) 391.612 207.156i 0.615189 0.325424i
\(75\) −324.686 + 324.686i −0.499887 + 0.499887i
\(76\) −24.6312 129.661i −0.0371763 0.195699i
\(77\) −213.834 213.834i −0.316475 0.316475i
\(78\) −173.953 + 564.674i −0.252517 + 0.819702i
\(79\) −175.664 −0.250174 −0.125087 0.992146i \(-0.539921\pi\)
−0.125087 + 0.992146i \(0.539921\pi\)
\(80\) 978.782 + 425.338i 1.36789 + 0.594428i
\(81\) −81.0000 −0.111111
\(82\) 289.969 941.276i 0.390509 1.26764i
\(83\) 125.254 + 125.254i 0.165644 + 0.165644i 0.785062 0.619418i \(-0.212631\pi\)
−0.619418 + 0.785062i \(0.712631\pi\)
\(84\) 296.506 56.3262i 0.385136 0.0731631i
\(85\) −611.068 + 611.068i −0.779760 + 0.779760i
\(86\) 727.796 384.991i 0.912561 0.482729i
\(87\) 895.973i 1.10412i
\(88\) −540.779 60.3313i −0.655082 0.0730834i
\(89\) 900.271i 1.07223i 0.844145 + 0.536116i \(0.180109\pi\)
−0.844145 + 0.536116i \(0.819891\pi\)
\(90\) 198.482 + 375.215i 0.232465 + 0.439457i
\(91\) 619.190 619.190i 0.713283 0.713283i
\(92\) −335.615 + 493.030i −0.380329 + 0.558717i
\(93\) 691.750 + 691.750i 0.771302 + 0.771302i
\(94\) 689.237 + 212.326i 0.756270 + 0.232976i
\(95\) −275.096 −0.297098
\(96\) 353.478 412.269i 0.375799 0.438302i
\(97\) 5.27858 0.00552534 0.00276267 0.999996i \(-0.499121\pi\)
0.00276267 + 0.999996i \(0.499121\pi\)
\(98\) 499.691 + 153.935i 0.515066 + 0.158671i
\(99\) −153.038 153.038i −0.155362 0.155362i
\(100\) 689.028 1012.21i 0.689028 1.01221i
\(101\) −459.109 + 459.109i −0.452307 + 0.452307i −0.896120 0.443812i \(-0.853626\pi\)
0.443812 + 0.896120i \(0.353626\pi\)
\(102\) 205.622 + 388.712i 0.199604 + 0.377336i
\(103\) 791.173i 0.756860i 0.925630 + 0.378430i \(0.123536\pi\)
−0.925630 + 0.378430i \(0.876464\pi\)
\(104\) 174.699 1565.91i 0.164718 1.47645i
\(105\) 629.085i 0.584690i
\(106\) −797.678 + 421.958i −0.730918 + 0.386643i
\(107\) 1525.81 1525.81i 1.37855 1.37855i 0.531487 0.847067i \(-0.321634\pi\)
0.847067 0.531487i \(-0.178366\pi\)
\(108\) 212.205 40.3119i 0.189069 0.0359168i
\(109\) −413.307 413.307i −0.363189 0.363189i 0.501796 0.864986i \(-0.332673\pi\)
−0.864986 + 0.501796i \(0.832673\pi\)
\(110\) −333.911 + 1083.92i −0.289429 + 0.939523i
\(111\) −469.902 −0.401812
\(112\) −748.758 + 295.129i −0.631705 + 0.248991i
\(113\) 210.248 0.175031 0.0875154 0.996163i \(-0.472107\pi\)
0.0875154 + 0.996163i \(0.472107\pi\)
\(114\) −41.2126 + 133.781i −0.0338589 + 0.109910i
\(115\) 879.053 + 879.053i 0.712801 + 0.712801i
\(116\) 445.906 + 2347.28i 0.356908 + 1.87879i
\(117\) 443.146 443.146i 0.350161 0.350161i
\(118\) 1009.26 533.881i 0.787372 0.416506i
\(119\) 651.714i 0.502038i
\(120\) −706.723 884.214i −0.537623 0.672645i
\(121\) 752.715i 0.565526i
\(122\) 536.704 + 1014.60i 0.398286 + 0.752929i
\(123\) −738.696 + 738.696i −0.541512 + 0.541512i
\(124\) −2156.52 1467.99i −1.56179 1.06314i
\(125\) −330.838 330.838i −0.236729 0.236729i
\(126\) −305.929 94.2442i −0.216304 0.0666345i
\(127\) 177.367 0.123927 0.0619637 0.998078i \(-0.480264\pi\)
0.0619637 + 0.998078i \(0.480264\pi\)
\(128\) −720.869 + 1255.99i −0.497785 + 0.867301i
\(129\) −873.295 −0.596041
\(130\) −3138.66 966.895i −2.11753 0.652325i
\(131\) 938.828 + 938.828i 0.626151 + 0.626151i 0.947097 0.320946i \(-0.104001\pi\)
−0.320946 + 0.947097i \(0.604001\pi\)
\(132\) 477.094 + 324.767i 0.314589 + 0.214146i
\(133\) 146.697 146.697i 0.0956411 0.0956411i
\(134\) −1173.35 2218.12i −0.756430 1.42997i
\(135\) 450.227i 0.287033i
\(136\) −732.145 916.020i −0.461624 0.577559i
\(137\) 307.429i 0.191718i 0.995395 + 0.0958592i \(0.0305598\pi\)
−0.995395 + 0.0958592i \(0.969440\pi\)
\(138\) 559.182 295.798i 0.344933 0.182464i
\(139\) −1253.43 + 1253.43i −0.764852 + 0.764852i −0.977195 0.212343i \(-0.931891\pi\)
0.212343 + 0.977195i \(0.431891\pi\)
\(140\) 313.082 + 1648.09i 0.189002 + 0.994919i
\(141\) −540.901 540.901i −0.323064 0.323064i
\(142\) 228.815 742.761i 0.135223 0.438952i
\(143\) 1674.52 0.979233
\(144\) −535.875 + 211.219i −0.310113 + 0.122233i
\(145\) 4980.14 2.85226
\(146\) 248.305 806.028i 0.140752 0.456900i
\(147\) −392.148 392.148i −0.220026 0.220026i
\(148\) 1231.06 233.860i 0.683731 0.129886i
\(149\) 1686.80 1686.80i 0.927436 0.927436i −0.0701033 0.997540i \(-0.522333\pi\)
0.997540 + 0.0701033i \(0.0223329\pi\)
\(150\) −1148.02 + 607.281i −0.624902 + 0.330562i
\(151\) 1682.23i 0.906611i 0.891355 + 0.453306i \(0.149755\pi\)
−0.891355 + 0.453306i \(0.850245\pi\)
\(152\) 41.3894 370.993i 0.0220863 0.197971i
\(153\) 466.422i 0.246457i
\(154\) −399.947 756.069i −0.209277 0.395622i
\(155\) −3844.99 + 3844.99i −1.99250 + 1.99250i
\(156\) −940.416 + 1381.50i −0.482651 + 0.709031i
\(157\) −1066.81 1066.81i −0.542300 0.542300i 0.381903 0.924202i \(-0.375269\pi\)
−0.924202 + 0.381903i \(0.875269\pi\)
\(158\) −474.833 146.277i −0.239087 0.0736529i
\(159\) 957.147 0.477400
\(160\) 2291.54 + 1964.76i 1.13226 + 0.970798i
\(161\) −937.523 −0.458927
\(162\) −218.949 67.4492i −0.106187 0.0327118i
\(163\) −2379.54 2379.54i −1.14343 1.14343i −0.987817 0.155618i \(-0.950263\pi\)
−0.155618 0.987817i \(-0.549737\pi\)
\(164\) 1567.61 2302.88i 0.746403 1.09649i
\(165\) 850.639 850.639i 0.401346 0.401346i
\(166\) 234.271 + 442.871i 0.109536 + 0.207069i
\(167\) 839.991i 0.389224i −0.980880 0.194612i \(-0.937655\pi\)
0.980880 0.194612i \(-0.0623448\pi\)
\(168\) 848.380 + 94.6484i 0.389607 + 0.0434660i
\(169\) 2651.84i 1.20703i
\(170\) −2160.60 + 1142.92i −0.974768 + 0.515635i
\(171\) 104.989 104.989i 0.0469516 0.0469516i
\(172\) 2287.87 434.619i 1.01424 0.192671i
\(173\) −450.278 450.278i −0.197885 0.197885i 0.601208 0.799093i \(-0.294686\pi\)
−0.799093 + 0.601208i \(0.794686\pi\)
\(174\) 746.083 2421.88i 0.325060 1.05519i
\(175\) 1924.76 0.831419
\(176\) −1411.53 613.390i −0.604533 0.262705i
\(177\) −1211.03 −0.514274
\(178\) −749.662 + 2433.50i −0.315672 + 1.02471i
\(179\) −647.759 647.759i −0.270479 0.270479i 0.558814 0.829293i \(-0.311257\pi\)
−0.829293 + 0.558814i \(0.811257\pi\)
\(180\) 224.068 + 1179.51i 0.0927836 + 0.488420i
\(181\) −755.750 + 755.750i −0.310356 + 0.310356i −0.845047 0.534691i \(-0.820428\pi\)
0.534691 + 0.845047i \(0.320428\pi\)
\(182\) 2189.32 1158.11i 0.891666 0.471676i
\(183\) 1217.43i 0.491777i
\(184\) −1317.74 + 1053.23i −0.527963 + 0.421983i
\(185\) 2611.89i 1.03800i
\(186\) 1293.82 + 2445.87i 0.510042 + 0.964195i
\(187\) 881.237 881.237i 0.344612 0.344612i
\(188\) 1686.25 + 1147.86i 0.654163 + 0.445301i
\(189\) 240.087 + 240.087i 0.0924009 + 0.0924009i
\(190\) −743.605 229.075i −0.283931 0.0874675i
\(191\) 760.485 0.288098 0.144049 0.989571i \(-0.453988\pi\)
0.144049 + 0.989571i \(0.453988\pi\)
\(192\) 1298.77 820.049i 0.488182 0.308239i
\(193\) 2184.99 0.814915 0.407458 0.913224i \(-0.366415\pi\)
0.407458 + 0.913224i \(0.366415\pi\)
\(194\) 14.2684 + 4.39551i 0.00528046 + 0.00162670i
\(195\) 2463.16 + 2463.16i 0.904568 + 0.904568i
\(196\) 1222.52 + 832.193i 0.445525 + 0.303277i
\(197\) 83.4121 83.4121i 0.0301668 0.0301668i −0.691862 0.722029i \(-0.743210\pi\)
0.722029 + 0.691862i \(0.243210\pi\)
\(198\) −286.236 541.108i −0.102737 0.194216i
\(199\) 1734.18i 0.617754i 0.951102 + 0.308877i \(0.0999531\pi\)
−0.951102 + 0.308877i \(0.900047\pi\)
\(200\) 2705.36 2162.31i 0.956490 0.764491i
\(201\) 2661.56i 0.933989i
\(202\) −1623.31 + 858.701i −0.565423 + 0.299099i
\(203\) −2655.70 + 2655.70i −0.918195 + 0.918195i
\(204\) 232.128 + 1221.94i 0.0796676 + 0.419377i
\(205\) −4105.94 4105.94i −1.39888 1.39888i
\(206\) −658.815 + 2138.60i −0.222824 + 0.723316i
\(207\) −670.972 −0.225294
\(208\) 1776.17 4087.31i 0.592093 1.36252i
\(209\) 396.723 0.131301
\(210\) 523.843 1700.46i 0.172136 0.558776i
\(211\) −365.900 365.900i −0.119382 0.119382i 0.644892 0.764274i \(-0.276902\pi\)
−0.764274 + 0.644892i \(0.776902\pi\)
\(212\) −2507.55 + 476.350i −0.812354 + 0.154320i
\(213\) −582.905 + 582.905i −0.187512 + 0.187512i
\(214\) 5394.91 2853.81i 1.72331 0.911602i
\(215\) 4854.09i 1.53975i
\(216\) 607.173 + 67.7385i 0.191263 + 0.0213381i
\(217\) 4100.75i 1.28284i
\(218\) −773.035 1461.36i −0.240168 0.454018i
\(219\) −632.556 + 632.556i −0.195179 + 0.195179i
\(220\) −1805.17 + 2651.86i −0.553203 + 0.812674i
\(221\) 2551.77 + 2551.77i 0.776698 + 0.776698i
\(222\) −1270.18 391.291i −0.384004 0.118296i
\(223\) −4037.17 −1.21233 −0.606164 0.795340i \(-0.707292\pi\)
−0.606164 + 0.795340i \(0.707292\pi\)
\(224\) −2269.70 + 174.258i −0.677013 + 0.0519782i
\(225\) 1377.53 0.408156
\(226\) 568.316 + 175.075i 0.167274 + 0.0515302i
\(227\) −1502.81 1502.81i −0.439407 0.439407i 0.452406 0.891812i \(-0.350566\pi\)
−0.891812 + 0.452406i \(0.850566\pi\)
\(228\) −222.801 + 327.303i −0.0647166 + 0.0950709i
\(229\) −3443.65 + 3443.65i −0.993723 + 0.993723i −0.999980 0.00625772i \(-0.998008\pi\)
0.00625772 + 0.999980i \(0.498008\pi\)
\(230\) 1644.15 + 3108.14i 0.471357 + 0.891063i
\(231\) 907.219i 0.258401i
\(232\) −749.283 + 6716.19i −0.212038 + 1.90060i
\(233\) 1139.00i 0.320250i 0.987097 + 0.160125i \(0.0511898\pi\)
−0.987097 + 0.160125i \(0.948810\pi\)
\(234\) 1566.87 828.845i 0.437732 0.231552i
\(235\) 3006.52 3006.52i 0.834569 0.834569i
\(236\) 3172.67 602.702i 0.875098 0.166240i
\(237\) 372.640 + 372.640i 0.102133 + 0.102133i
\(238\) 542.686 1761.63i 0.147803 0.479788i
\(239\) −4603.80 −1.24600 −0.623002 0.782220i \(-0.714087\pi\)
−0.623002 + 0.782220i \(0.714087\pi\)
\(240\) −1174.03 2978.59i −0.315765 0.801113i
\(241\) −4681.58 −1.25132 −0.625658 0.780097i \(-0.715170\pi\)
−0.625658 + 0.780097i \(0.715170\pi\)
\(242\) −626.791 + 2034.64i −0.166494 + 0.540462i
\(243\) 171.827 + 171.827i 0.0453609 + 0.0453609i
\(244\) 605.889 + 3189.45i 0.158967 + 0.836817i
\(245\) 2179.70 2179.70i 0.568392 0.568392i
\(246\) −2611.86 + 1381.63i −0.676937 + 0.358088i
\(247\) 1148.78i 0.295931i
\(248\) −4606.84 5763.83i −1.17957 1.47582i
\(249\) 531.408i 0.135248i
\(250\) −618.788 1169.77i −0.156542 0.295931i
\(251\) −476.440 + 476.440i −0.119811 + 0.119811i −0.764470 0.644659i \(-0.776999\pi\)
0.644659 + 0.764470i \(0.276999\pi\)
\(252\) −748.470 509.498i −0.187100 0.127362i
\(253\) −1267.70 1267.70i −0.315019 0.315019i
\(254\) 479.436 + 147.695i 0.118435 + 0.0364850i
\(255\) 2592.54 0.636672
\(256\) −2994.43 + 2794.75i −0.731062 + 0.682311i
\(257\) 925.326 0.224592 0.112296 0.993675i \(-0.464179\pi\)
0.112296 + 0.993675i \(0.464179\pi\)
\(258\) −2360.58 727.198i −0.569625 0.175478i
\(259\) 1392.81 + 1392.81i 0.334150 + 0.334150i
\(260\) −7678.89 5227.17i −1.83163 1.24683i
\(261\) −1900.65 + 1900.65i −0.450755 + 0.450755i
\(262\) 1755.95 + 3319.49i 0.414058 + 0.782743i
\(263\) 3477.65i 0.815365i 0.913124 + 0.407683i \(0.133663\pi\)
−0.913124 + 0.407683i \(0.866337\pi\)
\(264\) 1019.18 + 1275.15i 0.237600 + 0.297272i
\(265\) 5320.17i 1.23327i
\(266\) 518.689 274.378i 0.119560 0.0632450i
\(267\) 1909.76 1909.76i 0.437737 0.437737i
\(268\) −1324.60 6972.79i −0.301913 1.58929i
\(269\) 3773.37 + 3773.37i 0.855266 + 0.855266i 0.990776 0.135510i \(-0.0432673\pi\)
−0.135510 + 0.990776i \(0.543267\pi\)
\(270\) 374.907 1217.00i 0.0845042 0.274311i
\(271\) 8007.09 1.79482 0.897410 0.441198i \(-0.145446\pi\)
0.897410 + 0.441198i \(0.145446\pi\)
\(272\) −1216.26 3085.73i −0.271128 0.687867i
\(273\) −2627.00 −0.582394
\(274\) −255.998 + 831.002i −0.0564431 + 0.183221i
\(275\) 2602.63 + 2602.63i 0.570708 + 0.570708i
\(276\) 1757.82 333.928i 0.383364 0.0728264i
\(277\) 4550.73 4550.73i 0.987101 0.987101i −0.0128173 0.999918i \(-0.504080\pi\)
0.999918 + 0.0128173i \(0.00407998\pi\)
\(278\) −4431.85 + 2344.37i −0.956131 + 0.505777i
\(279\) 2934.85i 0.629766i
\(280\) −526.090 + 4715.60i −0.112285 + 1.00647i
\(281\) 3333.05i 0.707592i 0.935323 + 0.353796i \(0.115109\pi\)
−0.935323 + 0.353796i \(0.884891\pi\)
\(282\) −1011.68 1912.50i −0.213634 0.403858i
\(283\) 6242.23 6242.23i 1.31117 1.31117i 0.390621 0.920552i \(-0.372260\pi\)
0.920552 0.390621i \(-0.127740\pi\)
\(284\) 1237.00 1817.20i 0.258460 0.379687i
\(285\) 583.568 + 583.568i 0.121290 + 0.121290i
\(286\) 4526.35 + 1394.38i 0.935834 + 0.288292i
\(287\) 4379.05 0.900651
\(288\) −1624.39 + 124.714i −0.332355 + 0.0255169i
\(289\) −2227.20 −0.453329
\(290\) 13461.7 + 4147.00i 2.72585 + 0.839725i
\(291\) −11.1976 11.1976i −0.00225571 0.00225571i
\(292\) 1342.37 1971.99i 0.269028 0.395212i
\(293\) −2458.24 + 2458.24i −0.490143 + 0.490143i −0.908351 0.418208i \(-0.862658\pi\)
0.418208 + 0.908351i \(0.362658\pi\)
\(294\) −733.461 1386.55i −0.145498 0.275052i
\(295\) 6731.33i 1.32852i
\(296\) 3522.37 + 392.969i 0.691668 + 0.0771651i
\(297\) 649.284i 0.126853i
\(298\) 5964.15 3154.93i 1.15938 0.613290i
\(299\) 3670.84 3670.84i 0.710001 0.710001i
\(300\) −3608.86 + 685.564i −0.694526 + 0.131937i
\(301\) 2588.48 + 2588.48i 0.495673 + 0.495673i
\(302\) −1400.81 + 4547.20i −0.266912 + 0.866431i
\(303\) 1947.83 0.369307
\(304\) 420.807 968.356i 0.0793912 0.182694i
\(305\) 6766.93 1.27040
\(306\) 388.393 1260.77i 0.0725586 0.235535i
\(307\) −3008.49 3008.49i −0.559295 0.559295i 0.369812 0.929107i \(-0.379422\pi\)
−0.929107 + 0.369812i \(0.879422\pi\)
\(308\) −451.503 2376.75i −0.0835284 0.439700i
\(309\) 1678.33 1678.33i 0.308987 0.308987i
\(310\) −13595.1 + 7191.55i −2.49080 + 1.31759i
\(311\) 4507.09i 0.821779i 0.911685 + 0.410890i \(0.134782\pi\)
−0.911685 + 0.410890i \(0.865218\pi\)
\(312\) −3692.40 + 2951.21i −0.670003 + 0.535511i
\(313\) 5237.61i 0.945837i −0.881106 0.472919i \(-0.843200\pi\)
0.881106 0.472919i \(-0.156800\pi\)
\(314\) −1995.33 3772.02i −0.358609 0.677922i
\(315\) −1334.49 + 1334.49i −0.238699 + 0.238699i
\(316\) −1161.70 790.794i −0.206807 0.140777i
\(317\) −989.530 989.530i −0.175323 0.175323i 0.613990 0.789314i \(-0.289563\pi\)
−0.789314 + 0.613990i \(0.789563\pi\)
\(318\) 2587.24 + 797.022i 0.456242 + 0.140550i
\(319\) −7181.99 −1.26055
\(320\) 4558.13 + 7219.06i 0.796272 + 1.26112i
\(321\) −6473.45 −1.12558
\(322\) −2534.19 780.682i −0.438587 0.135111i
\(323\) 604.559 + 604.559i 0.104144 + 0.104144i
\(324\) −535.669 364.640i −0.0918500 0.0625241i
\(325\) −7536.35 + 7536.35i −1.28628 + 1.28628i
\(326\) −4450.61 8413.52i −0.756124 1.42939i
\(327\) 1753.51i 0.296543i
\(328\) 6154.99 4919.48i 1.03614 0.828150i
\(329\) 3206.50i 0.537325i
\(330\) 3007.67 1591.01i 0.501718 0.265400i
\(331\) −5652.55 + 5652.55i −0.938647 + 0.938647i −0.998224 0.0595765i \(-0.981025\pi\)
0.0595765 + 0.998224i \(0.481025\pi\)
\(332\) 264.470 + 1392.19i 0.0437189 + 0.230140i
\(333\) 996.813 + 996.813i 0.164039 + 0.164039i
\(334\) 699.466 2270.56i 0.114590 0.371974i
\(335\) −14793.9 −2.41277
\(336\) 2214.42 + 962.293i 0.359543 + 0.156242i
\(337\) 291.315 0.0470888 0.0235444 0.999723i \(-0.492505\pi\)
0.0235444 + 0.999723i \(0.492505\pi\)
\(338\) −2208.21 + 7168.13i −0.355357 + 1.15353i
\(339\) −446.004 446.004i −0.0714560 0.0714560i
\(340\) −6791.98 + 1290.25i −1.08337 + 0.205805i
\(341\) 5544.96 5544.96i 0.880577 0.880577i
\(342\) 371.218 196.368i 0.0586936 0.0310479i
\(343\) 6638.03i 1.04496i
\(344\) 6546.19 + 730.317i 1.02601 + 0.114465i
\(345\) 3729.50i 0.581999i
\(346\) −842.185 1592.08i −0.130856 0.247373i
\(347\) 6530.87 6530.87i 1.01036 1.01036i 0.0104158 0.999946i \(-0.496684\pi\)
0.999946 0.0104158i \(-0.00331552\pi\)
\(348\) 4033.43 5925.25i 0.621307 0.912721i
\(349\) 7267.79 + 7267.79i 1.11472 + 1.11472i 0.992504 + 0.122213i \(0.0389990\pi\)
0.122213 + 0.992504i \(0.461001\pi\)
\(350\) 5202.77 + 1602.76i 0.794571 + 0.244775i
\(351\) −1880.11 −0.285905
\(352\) −3304.68 2833.43i −0.500399 0.429040i
\(353\) −8253.63 −1.24447 −0.622233 0.782832i \(-0.713774\pi\)
−0.622233 + 0.782832i \(0.713774\pi\)
\(354\) −3273.50 1008.43i −0.491481 0.151405i
\(355\) −3240.00 3240.00i −0.484398 0.484398i
\(356\) −4052.78 + 5953.67i −0.603362 + 0.886360i
\(357\) −1382.49 + 1382.49i −0.204956 + 0.204956i
\(358\) −1211.55 2290.33i −0.178861 0.338122i
\(359\) 4827.70i 0.709738i 0.934916 + 0.354869i \(0.115475\pi\)
−0.934916 + 0.354869i \(0.884525\pi\)
\(360\) −376.515 + 3374.89i −0.0551225 + 0.494090i
\(361\) 6586.83i 0.960320i
\(362\) −2672.16 + 1413.53i −0.387972 + 0.205230i
\(363\) 1596.75 1596.75i 0.230875 0.230875i
\(364\) 6882.26 1307.40i 0.991012 0.188259i
\(365\) −3515.97 3515.97i −0.504204 0.504204i
\(366\) 1013.76 3290.81i 0.144782 0.469982i
\(367\) −2556.37 −0.363600 −0.181800 0.983336i \(-0.558192\pi\)
−0.181800 + 0.983336i \(0.558192\pi\)
\(368\) −4438.98 + 1749.66i −0.628798 + 0.247846i
\(369\) 3134.02 0.442143
\(370\) 2174.93 7060.12i 0.305593 0.991995i
\(371\) −2837.02 2837.02i −0.397010 0.397010i
\(372\) 1460.61 + 7688.75i 0.203572 + 1.07162i
\(373\) 1141.57 1141.57i 0.158468 0.158468i −0.623420 0.781887i \(-0.714257\pi\)
0.781887 + 0.623420i \(0.214257\pi\)
\(374\) 3115.86 1648.23i 0.430795 0.227883i
\(375\) 1403.63i 0.193288i
\(376\) 3602.23 + 4506.92i 0.494071 + 0.618155i
\(377\) 20796.6i 2.84106i
\(378\) 449.051 + 848.895i 0.0611023 + 0.115509i
\(379\) −2602.11 + 2602.11i −0.352668 + 0.352668i −0.861101 0.508433i \(-0.830225\pi\)
0.508433 + 0.861101i \(0.330225\pi\)
\(380\) −1819.27 1238.41i −0.245596 0.167182i
\(381\) −376.252 376.252i −0.0505931 0.0505931i
\(382\) 2055.65 + 633.261i 0.275330 + 0.0848179i
\(383\) −370.858 −0.0494777 −0.0247388 0.999694i \(-0.507875\pi\)
−0.0247388 + 0.999694i \(0.507875\pi\)
\(384\) 4193.54 1135.15i 0.557294 0.150854i
\(385\) −5042.65 −0.667526
\(386\) 5906.17 + 1819.45i 0.778799 + 0.239916i
\(387\) 1852.54 + 1852.54i 0.243333 + 0.243333i
\(388\) 34.9083 + 23.7627i 0.00456752 + 0.00310920i
\(389\) −6457.55 + 6457.55i −0.841673 + 0.841673i −0.989077 0.147403i \(-0.952909\pi\)
0.147403 + 0.989077i \(0.452909\pi\)
\(390\) 4607.02 + 8709.20i 0.598168 + 1.13079i
\(391\) 3863.66i 0.499728i
\(392\) 2611.59 + 3267.48i 0.336492 + 0.421001i
\(393\) 3983.11i 0.511250i
\(394\) 294.927 156.011i 0.0377112 0.0199486i
\(395\) −2071.27 + 2071.27i −0.263840 + 0.263840i
\(396\) −323.134 1701.00i −0.0410053 0.215855i
\(397\) −232.353 232.353i −0.0293739 0.0293739i 0.692267 0.721641i \(-0.256612\pi\)
−0.721641 + 0.692267i \(0.756612\pi\)
\(398\) −1444.07 + 4687.62i −0.181871 + 0.590375i
\(399\) −622.384 −0.0780906
\(400\) 9113.36 3592.10i 1.13917 0.449012i
\(401\) −119.615 −0.0148960 −0.00744801 0.999972i \(-0.502371\pi\)
−0.00744801 + 0.999972i \(0.502371\pi\)
\(402\) −2216.30 + 7194.38i −0.274972 + 0.892595i
\(403\) 16056.4 + 16056.4i 1.98467 + 1.98467i
\(404\) −5102.96 + 969.393i −0.628421 + 0.119379i
\(405\) −955.076 + 955.076i −0.117181 + 0.117181i
\(406\) −9389.97 + 4967.13i −1.14782 + 0.607179i
\(407\) 3766.67i 0.458739i
\(408\) −390.059 + 3496.28i −0.0473303 + 0.424245i
\(409\) 626.952i 0.0757965i −0.999282 0.0378983i \(-0.987934\pi\)
0.999282 0.0378983i \(-0.0120663\pi\)
\(410\) −7679.60 14517.7i −0.925045 1.74873i
\(411\) 652.155 652.155i 0.0782687 0.0782687i
\(412\) −3561.65 + 5232.18i −0.425897 + 0.625658i
\(413\) 3589.54 + 3589.54i 0.427674 + 0.427674i
\(414\) −1813.69 558.723i −0.215309 0.0663278i
\(415\) 2953.76 0.349384
\(416\) 8204.65 9569.26i 0.966986 1.12782i
\(417\) 5317.85 0.624499
\(418\) 1072.37 + 330.354i 0.125482 + 0.0386559i
\(419\) −4981.58 4981.58i −0.580826 0.580826i 0.354304 0.935130i \(-0.384718\pi\)
−0.935130 + 0.354304i \(0.884718\pi\)
\(420\) 2831.97 4160.27i 0.329015 0.483334i
\(421\) 10770.4 10770.4i 1.24683 1.24683i 0.289723 0.957110i \(-0.406437\pi\)
0.957110 0.289723i \(-0.0935632\pi\)
\(422\) −684.366 1293.74i −0.0789442 0.149238i
\(423\) 2294.85i 0.263781i
\(424\) −7174.74 800.441i −0.821783 0.0916813i
\(425\) 7932.20i 0.905337i
\(426\) −2061.02 + 1090.25i −0.234406 + 0.123997i
\(427\) −3608.52 + 3608.52i −0.408966 + 0.408966i
\(428\) 16959.2 3221.69i 1.91532 0.363846i
\(429\) −3552.19 3552.19i −0.399770 0.399770i
\(430\) 4042.03 13120.9i 0.453312 1.47151i
\(431\) 7546.94 0.843442 0.421721 0.906726i \(-0.361426\pi\)
0.421721 + 0.906726i \(0.361426\pi\)
\(432\) 1584.83 + 688.699i 0.176505 + 0.0767015i
\(433\) 5614.17 0.623094 0.311547 0.950231i \(-0.399153\pi\)
0.311547 + 0.950231i \(0.399153\pi\)
\(434\) 3414.72 11084.6i 0.377677 1.22599i
\(435\) −10564.5 10564.5i −1.16443 1.16443i
\(436\) −872.684 4593.88i −0.0958578 0.504603i
\(437\) 869.689 869.689i 0.0952010 0.0952010i
\(438\) −2236.58 + 1183.11i −0.243990 + 0.129067i
\(439\) 7198.92i 0.782656i 0.920251 + 0.391328i \(0.127984\pi\)
−0.920251 + 0.391328i \(0.872016\pi\)
\(440\) −7087.73 + 5664.99i −0.767942 + 0.613790i
\(441\) 1663.74i 0.179651i
\(442\) 4772.73 + 9022.48i 0.513610 + 0.970940i
\(443\) −5582.95 + 5582.95i −0.598767 + 0.598767i −0.939984 0.341217i \(-0.889161\pi\)
0.341217 + 0.939984i \(0.389161\pi\)
\(444\) −3107.56 2115.37i −0.332158 0.226106i
\(445\) 10615.2 + 10615.2i 1.13080 + 1.13080i
\(446\) −10912.8 3361.78i −1.15860 0.356917i
\(447\) −7156.49 −0.757249
\(448\) −6280.28 1418.96i −0.662311 0.149642i
\(449\) 1224.53 0.128706 0.0643530 0.997927i \(-0.479502\pi\)
0.0643530 + 0.997927i \(0.479502\pi\)
\(450\) 3723.55 + 1147.07i 0.390066 + 0.120164i
\(451\) 5921.28 + 5921.28i 0.618231 + 0.618231i
\(452\) 1390.41 + 946.481i 0.144689 + 0.0984927i
\(453\) 3568.56 3568.56i 0.370123 0.370123i
\(454\) −2810.81 5313.62i −0.290568 0.549297i
\(455\) 14601.8i 1.50449i
\(456\) −874.795 + 699.195i −0.0898378 + 0.0718044i
\(457\) 11182.3i 1.14461i 0.820040 + 0.572307i \(0.193951\pi\)
−0.820040 + 0.572307i \(0.806049\pi\)
\(458\) −12176.0 + 6440.88i −1.24224 + 0.657123i
\(459\) −989.431 + 989.431i −0.100616 + 0.100616i
\(460\) 1856.09 + 9770.61i 0.188132 + 0.990341i
\(461\) −11334.9 11334.9i −1.14516 1.14516i −0.987492 0.157670i \(-0.949602\pi\)
−0.157670 0.987492i \(-0.550398\pi\)
\(462\) −755.448 + 2452.28i −0.0760749 + 0.246949i
\(463\) 3013.37 0.302469 0.151234 0.988498i \(-0.451675\pi\)
0.151234 + 0.988498i \(0.451675\pi\)
\(464\) −7617.98 + 17530.4i −0.762189 + 1.75394i
\(465\) 16312.9 1.62687
\(466\) −948.453 + 3078.80i −0.0942837 + 0.306057i
\(467\) −843.917 843.917i −0.0836228 0.0836228i 0.664058 0.747681i \(-0.268833\pi\)
−0.747681 + 0.664058i \(0.768833\pi\)
\(468\) 4925.54 935.688i 0.486502 0.0924192i
\(469\) 7888.96 7888.96i 0.776713 0.776713i
\(470\) 10630.4 5623.29i 1.04328 0.551879i
\(471\) 4526.11i 0.442786i
\(472\) 9077.83 + 1012.76i 0.885256 + 0.0987625i
\(473\) 7000.20i 0.680485i
\(474\) 696.974 + 1317.57i 0.0675381 + 0.127675i
\(475\) −1785.50 + 1785.50i −0.172472 + 0.172472i
\(476\) 2933.84 4309.91i 0.282505 0.415009i
\(477\) −2030.41 2030.41i −0.194898 0.194898i
\(478\) −12444.4 3833.62i −1.19078 0.366832i
\(479\) 10569.4 1.00821 0.504103 0.863644i \(-0.331823\pi\)
0.504103 + 0.863644i \(0.331823\pi\)
\(480\) −693.206 9028.97i −0.0659175 0.858571i
\(481\) −10907.0 −1.03392
\(482\) −12654.7 3898.39i −1.19586 0.368395i
\(483\) 1988.79 + 1988.79i 0.187356 + 0.187356i
\(484\) −3388.52 + 4977.85i −0.318231 + 0.467492i
\(485\) 62.2400 62.2400i 0.00582716 0.00582716i
\(486\) 321.379 + 607.542i 0.0299960 + 0.0567051i
\(487\) 1579.10i 0.146932i −0.997298 0.0734661i \(-0.976594\pi\)
0.997298 0.0734661i \(-0.0234061\pi\)
\(488\) −1018.11 + 9125.83i −0.0944422 + 0.846531i
\(489\) 10095.5i 0.933611i
\(490\) 7706.95 4076.84i 0.710539 0.375863i
\(491\) 8650.50 8650.50i 0.795095 0.795095i −0.187222 0.982318i \(-0.559948\pi\)
0.982318 + 0.187222i \(0.0599485\pi\)
\(492\) −8210.55 + 1559.73i −0.752358 + 0.142923i
\(493\) −10944.5 10944.5i −0.999828 0.999828i
\(494\) −956.595 + 3105.23i −0.0871240 + 0.282816i
\(495\) −3608.95 −0.327698
\(496\) −7653.04 19416.2i −0.692806 1.75769i
\(497\) 3455.51 0.311873
\(498\) 442.507 1436.44i 0.0398177 0.129253i
\(499\) −11942.3 11942.3i −1.07137 1.07137i −0.997250 0.0741168i \(-0.976386\pi\)
−0.0741168 0.997250i \(-0.523614\pi\)
\(500\) −698.554 3677.24i −0.0624806 0.328903i
\(501\) −1781.89 + 1781.89i −0.158900 + 0.158900i
\(502\) −1684.59 + 891.117i −0.149775 + 0.0792281i
\(503\) 3290.09i 0.291646i 0.989311 + 0.145823i \(0.0465830\pi\)
−0.989311 + 0.145823i \(0.953417\pi\)
\(504\) −1598.91 2000.47i −0.141311 0.176801i
\(505\) 10826.8i 0.954029i
\(506\) −2371.07 4482.32i −0.208314 0.393801i
\(507\) 5625.41 5625.41i 0.492768 0.492768i
\(508\) 1172.96 + 798.458i 0.102445 + 0.0697360i
\(509\) 1392.67 + 1392.67i 0.121275 + 0.121275i 0.765140 0.643864i \(-0.222670\pi\)
−0.643864 + 0.765140i \(0.722670\pi\)
\(510\) 7007.83 + 2158.83i 0.608455 + 0.187440i
\(511\) 3749.84 0.324625
\(512\) −10421.4 + 5060.92i −0.899538 + 0.436842i
\(513\) −445.431 −0.0383358
\(514\) 2501.22 + 770.525i 0.214639 + 0.0661214i
\(515\) 9328.77 + 9328.77i 0.798203 + 0.798203i
\(516\) −5775.27 3931.34i −0.492717 0.335402i
\(517\) −4335.78 + 4335.78i −0.368834 + 0.368834i
\(518\) 2605.06 + 4924.66i 0.220965 + 0.417717i
\(519\) 1910.37i 0.161572i
\(520\) −16403.9 20523.7i −1.38338 1.73081i
\(521\) 1175.72i 0.0988661i −0.998777 0.0494331i \(-0.984259\pi\)
0.998777 0.0494331i \(-0.0157414\pi\)
\(522\) −6720.27 + 3554.90i −0.563483 + 0.298073i
\(523\) −9451.05 + 9451.05i −0.790183 + 0.790183i −0.981524 0.191341i \(-0.938716\pi\)
0.191341 + 0.981524i \(0.438716\pi\)
\(524\) 1982.30 + 10435.0i 0.165262 + 0.869953i
\(525\) −4083.04 4083.04i −0.339426 0.339426i
\(526\) −2895.86 + 9400.34i −0.240049 + 0.779228i
\(527\) 16899.7 1.39689
\(528\) 1693.10 + 4295.50i 0.139551 + 0.354048i
\(529\) 6608.93 0.543185
\(530\) −4430.14 + 14380.8i −0.363081 + 1.17861i
\(531\) 2568.98 + 2568.98i 0.209951 + 0.209951i
\(532\) 1630.53 309.747i 0.132881 0.0252429i
\(533\) −17146.0 + 17146.0i −1.39339 + 1.39339i
\(534\) 6752.50 3571.96i 0.547209 0.289464i
\(535\) 35981.7i 2.90771i
\(536\) 2225.80 19951.0i 0.179366 1.60774i
\(537\) 2748.21i 0.220845i
\(538\) 7057.58 + 13341.8i 0.565565 + 1.06916i
\(539\) −3143.40 + 3143.40i −0.251198 + 0.251198i
\(540\) 2026.80 2977.44i 0.161518 0.237275i
\(541\) 2893.97 + 2893.97i 0.229984 + 0.229984i 0.812686 0.582702i \(-0.198004\pi\)
−0.582702 + 0.812686i \(0.698004\pi\)
\(542\) 21643.7 + 6667.56i 1.71527 + 0.528406i
\(543\) 3206.38 0.253405
\(544\) −718.141 9353.74i −0.0565994 0.737203i
\(545\) −9746.66 −0.766057
\(546\) −7100.98 2187.52i −0.556582 0.171460i
\(547\) −956.857 956.857i −0.0747939 0.0747939i 0.668720 0.743514i \(-0.266842\pi\)
−0.743514 + 0.668720i \(0.766842\pi\)
\(548\) −1383.96 + 2033.09i −0.107883 + 0.158484i
\(549\) −2582.56 + 2582.56i −0.200767 + 0.200767i
\(550\) 4867.88 + 9202.34i 0.377394 + 0.713435i
\(551\) 4927.09i 0.380946i
\(552\) 5029.58 + 561.119i 0.387814 + 0.0432660i
\(553\) 2209.04i 0.169870i
\(554\) 16090.4 8511.53i 1.23396 0.652744i
\(555\) −5540.65 + 5540.65i −0.423761 + 0.423761i
\(556\) −13931.8 + 2646.57i −1.06266 + 0.201870i
\(557\) −8482.07 8482.07i −0.645236 0.645236i 0.306602 0.951838i \(-0.400808\pi\)
−0.951838 + 0.306602i \(0.900808\pi\)
\(558\) 2443.87 7933.10i 0.185407 0.601855i
\(559\) −20270.2 −1.53370
\(560\) −5348.77 + 12308.5i −0.403619 + 0.928804i
\(561\) −3738.77 −0.281374
\(562\) −2775.46 + 9009.48i −0.208319 + 0.676232i
\(563\) 9461.78 + 9461.78i 0.708289 + 0.708289i 0.966175 0.257886i \(-0.0830260\pi\)
−0.257886 + 0.966175i \(0.583026\pi\)
\(564\) −1142.09 6012.07i −0.0852674 0.448854i
\(565\) 2479.05 2479.05i 0.184592 0.184592i
\(566\) 22071.1 11675.2i 1.63908 0.867044i
\(567\) 1018.60i 0.0754450i
\(568\) 4856.91 3881.97i 0.358788 0.286767i
\(569\) 7197.61i 0.530298i 0.964207 + 0.265149i \(0.0854211\pi\)
−0.964207 + 0.265149i \(0.914579\pi\)
\(570\) 1091.48 + 2063.37i 0.0802057 + 0.151623i
\(571\) 990.936 990.936i 0.0726259 0.0726259i −0.669861 0.742487i \(-0.733646\pi\)
0.742487 + 0.669861i \(0.233646\pi\)
\(572\) 11073.9 + 7538.24i 0.809483 + 0.551031i
\(573\) −1613.23 1613.23i −0.117616 0.117616i
\(574\) 11836.9 + 3646.46i 0.860735 + 0.265157i
\(575\) 11410.9 0.827594
\(576\) −4494.70 1015.53i −0.325138 0.0734615i
\(577\) −14836.1 −1.07043 −0.535214 0.844717i \(-0.679769\pi\)
−0.535214 + 0.844717i \(0.679769\pi\)
\(578\) −6020.29 1854.61i −0.433237 0.133463i
\(579\) −4635.05 4635.05i −0.332688 0.332688i
\(580\) 32934.7 + 22419.3i 2.35782 + 1.60502i
\(581\) −1575.11 + 1575.11i −0.112473 + 0.112473i
\(582\) −20.9435 39.5921i −0.00149164 0.00281983i
\(583\) 7672.35i 0.545036i
\(584\) 5270.61 4212.63i 0.373458 0.298493i
\(585\) 10450.3i 0.738577i
\(586\) −8691.80 + 4597.81i −0.612721 + 0.324119i
\(587\) 4038.29 4038.29i 0.283949 0.283949i −0.550733 0.834682i \(-0.685652\pi\)
0.834682 + 0.550733i \(0.185652\pi\)
\(588\) −828.009 4358.70i −0.0580723 0.305697i
\(589\) 3804.04 + 3804.04i 0.266116 + 0.266116i
\(590\) 5605.23 18195.3i 0.391125 1.26964i
\(591\) −353.888 −0.0246311
\(592\) 9194.00 + 3995.33i 0.638296 + 0.277376i
\(593\) 11081.1 0.767361 0.383681 0.923466i \(-0.374656\pi\)
0.383681 + 0.923466i \(0.374656\pi\)
\(594\) −540.663 + 1755.06i −0.0373463 + 0.121231i
\(595\) −7684.40 7684.40i −0.529461 0.529461i
\(596\) 18748.7 3561.62i 1.28855 0.244781i
\(597\) 3678.76 3678.76i 0.252197 0.252197i
\(598\) 12979.3 6865.82i 0.887563 0.469506i
\(599\) 7036.50i 0.479973i 0.970776 + 0.239986i \(0.0771430\pi\)
−0.970776 + 0.239986i \(0.922857\pi\)
\(600\) −10325.9 1151.99i −0.702588 0.0783833i
\(601\) 24290.7i 1.64865i −0.566117 0.824325i \(-0.691555\pi\)
0.566117 0.824325i \(-0.308445\pi\)
\(602\) 4841.40 + 9152.29i 0.327775 + 0.619634i
\(603\) 5646.02 5646.02i 0.381299 0.381299i
\(604\) −7572.97 + 11125.0i −0.510165 + 0.749450i
\(605\) 8875.31 + 8875.31i 0.596418 + 0.596418i
\(606\) 5265.14 + 1621.97i 0.352940 + 0.108726i
\(607\) 10931.5 0.730967 0.365484 0.930818i \(-0.380904\pi\)
0.365484 + 0.930818i \(0.380904\pi\)
\(608\) 1943.83 2267.13i 0.129659 0.151224i
\(609\) 11267.2 0.749703
\(610\) 18291.5 + 5634.87i 1.21410 + 0.374015i
\(611\) −12555.0 12555.0i −0.831292 0.831292i
\(612\) 2099.71 3084.54i 0.138686 0.203734i
\(613\) −2217.95 + 2217.95i −0.146137 + 0.146137i −0.776390 0.630253i \(-0.782951\pi\)
0.630253 + 0.776390i \(0.282951\pi\)
\(614\) −5626.97 10637.4i −0.369847 0.699167i
\(615\) 17420.0i 1.14218i
\(616\) 758.688 6800.49i 0.0496240 0.444804i
\(617\) 26271.5i 1.71418i 0.515164 + 0.857092i \(0.327731\pi\)
−0.515164 + 0.857092i \(0.672269\pi\)
\(618\) 5934.21 3139.09i 0.386260 0.204325i
\(619\) −11171.8 + 11171.8i −0.725417 + 0.725417i −0.969703 0.244287i \(-0.921446\pi\)
0.244287 + 0.969703i \(0.421446\pi\)
\(620\) −42736.9 + 8118.58i −2.76831 + 0.525887i
\(621\) 1423.35 + 1423.35i 0.0919757 + 0.0919757i
\(622\) −3753.08 + 12183.0i −0.241937 + 0.785358i
\(623\) −11321.2 −0.728050
\(624\) −12438.3 + 4902.66i −0.797967 + 0.314525i
\(625\) 11330.4 0.725148
\(626\) 4361.39 14157.6i 0.278460 0.903918i
\(627\) −841.578 841.578i −0.0536035 0.0536035i
\(628\) −2252.54 11857.6i −0.143131 0.753453i
\(629\) −5739.95 + 5739.95i −0.363858 + 0.363858i
\(630\) −4718.47 + 2495.99i −0.298394 + 0.157845i
\(631\) 17415.1i 1.09871i −0.835590 0.549354i \(-0.814874\pi\)
0.835590 0.549354i \(-0.185126\pi\)
\(632\) −2481.67 3104.93i −0.156195 0.195423i
\(633\) 1552.38i 0.0974749i
\(634\) −1850.78 3498.76i −0.115937 0.219169i
\(635\) 2091.34 2091.34i 0.130697 0.130697i
\(636\) 6329.80 + 4308.82i 0.394643 + 0.268641i
\(637\) −9102.24 9102.24i −0.566160 0.566160i
\(638\) −19413.4 5980.49i −1.20468 0.371113i
\(639\) 2473.06 0.153103
\(640\) 6309.59 + 23309.2i 0.389700 + 1.43965i
\(641\) −2727.28 −0.168051 −0.0840257 0.996464i \(-0.526778\pi\)
−0.0840257 + 0.996464i \(0.526778\pi\)
\(642\) −17498.2 5390.48i −1.07570 0.331379i
\(643\) 11681.7 + 11681.7i 0.716458 + 0.716458i 0.967878 0.251420i \(-0.0808975\pi\)
−0.251420 + 0.967878i \(0.580897\pi\)
\(644\) −6200.03 4220.48i −0.379372 0.258246i
\(645\) −10297.1 + 10297.1i −0.628600 + 0.628600i
\(646\) 1130.75 + 2137.59i 0.0688678 + 0.130189i
\(647\) 4399.67i 0.267340i 0.991026 + 0.133670i \(0.0426762\pi\)
−0.991026 + 0.133670i \(0.957324\pi\)
\(648\) −1144.31 1431.70i −0.0693718 0.0867942i
\(649\) 9707.43i 0.587134i
\(650\) −26646.9 + 14095.7i −1.60796 + 0.850585i
\(651\) −8699.00 + 8699.00i −0.523718 + 0.523718i
\(652\) −5024.32 26448.4i −0.301791 1.58865i
\(653\) −22924.8 22924.8i −1.37384 1.37384i −0.854673 0.519167i \(-0.826242\pi\)
−0.519167 0.854673i \(-0.673758\pi\)
\(654\) −1460.16 + 4739.87i −0.0873041 + 0.283400i
\(655\) 22139.6 1.32071
\(656\) 20733.9 8172.42i 1.23403 0.486401i
\(657\) 2683.71 0.159363
\(658\) −2670.07 + 8667.40i −0.158192 + 0.513511i
\(659\) −11508.4 11508.4i −0.680276 0.680276i 0.279786 0.960062i \(-0.409736\pi\)
−0.960062 + 0.279786i \(0.909736\pi\)
\(660\) 9454.79 1796.10i 0.557617 0.105929i
\(661\) 10207.0 10207.0i 0.600615 0.600615i −0.339861 0.940476i \(-0.610380\pi\)
0.940476 + 0.339861i \(0.110380\pi\)
\(662\) −19986.2 + 10572.3i −1.17339 + 0.620703i
\(663\) 10826.2i 0.634171i
\(664\) −444.405 + 3983.42i −0.0259733 + 0.232811i
\(665\) 3459.43i 0.201731i
\(666\) 1864.41 + 3524.51i 0.108475 + 0.205063i
\(667\) −15744.2 + 15744.2i −0.913970 + 0.913970i
\(668\) 3781.42 5555.03i 0.219023 0.321752i
\(669\) 8564.13 + 8564.13i 0.494930 + 0.494930i
\(670\) −39989.0 12319.0i −2.30583 0.710334i
\(671\) −9758.76 −0.561450
\(672\) 5184.42 + 4445.11i 0.297609 + 0.255169i
\(673\) −23908.4 −1.36939 −0.684695 0.728830i \(-0.740065\pi\)
−0.684695 + 0.728830i \(0.740065\pi\)
\(674\) 787.445 + 242.580i 0.0450019 + 0.0138632i
\(675\) −2922.17 2922.17i −0.166629 0.166629i
\(676\) −11937.9 + 17537.2i −0.679215 + 0.997791i
\(677\) 10411.1 10411.1i 0.591035 0.591035i −0.346876 0.937911i \(-0.612758\pi\)
0.937911 + 0.346876i \(0.112758\pi\)
\(678\) −834.190 1576.97i −0.0472520 0.0893262i
\(679\) 66.3800i 0.00375174i
\(680\) −19433.6 2168.09i −1.09595 0.122268i
\(681\) 6375.90i 0.358774i
\(682\) 19605.8 10371.1i 1.10080 0.582303i
\(683\) 11126.8 11126.8i 0.623358 0.623358i −0.323030 0.946389i \(-0.604702\pi\)
0.946389 + 0.323030i \(0.104702\pi\)
\(684\) 1166.95 221.681i 0.0652330 0.0123921i
\(685\) 3624.91 + 3624.91i 0.202191 + 0.202191i
\(686\) −5527.53 + 17943.1i −0.307642 + 0.998644i
\(687\) 14610.2 0.811371
\(688\) 17086.7 + 7425.15i 0.946836 + 0.411455i
\(689\) 22216.5 1.22842
\(690\) 3105.58 10081.1i 0.171344 0.556205i
\(691\) 2722.85 + 2722.85i 0.149901 + 0.149901i 0.778074 0.628173i \(-0.216197\pi\)
−0.628173 + 0.778074i \(0.716197\pi\)
\(692\) −950.748 5004.81i −0.0522283 0.274934i
\(693\) 1924.50 1924.50i 0.105492 0.105492i
\(694\) 23091.7 12215.1i 1.26304 0.668126i
\(695\) 29558.5i 1.61326i
\(696\) 15836.7 12657.7i 0.862481 0.689353i
\(697\) 18046.6i 0.980724i
\(698\) 13593.4 + 25697.3i 0.737133 + 1.39349i
\(699\) 2416.18 2416.18i 0.130742 0.130742i
\(700\) 12728.8 + 8664.77i 0.687293 + 0.467853i
\(701\) 2736.38 + 2736.38i 0.147435 + 0.147435i 0.776971 0.629536i \(-0.216755\pi\)
−0.629536 + 0.776971i \(0.716755\pi\)
\(702\) −5082.07 1565.58i −0.273234 0.0841723i
\(703\) −2584.06 −0.138634
\(704\) −6573.39 10410.8i −0.351909 0.557346i
\(705\) −12755.6 −0.681423
\(706\) −22310.1 6872.85i −1.18931 0.366378i
\(707\) −5773.45 5773.45i −0.307119 0.307119i
\(708\) −8008.77 5451.73i −0.425124 0.289390i
\(709\) −783.090 + 783.090i −0.0414803 + 0.0414803i −0.727543 0.686062i \(-0.759338\pi\)
0.686062 + 0.727543i \(0.259338\pi\)
\(710\) −6059.98 11455.9i −0.320320 0.605539i
\(711\) 1580.98i 0.0833915i
\(712\) −15912.6 + 12718.4i −0.837571 + 0.669443i
\(713\) 24311.1i 1.27694i
\(714\) −4888.19 + 2585.77i −0.256213 + 0.135532i
\(715\) 19744.4 19744.4i 1.03272 1.03272i
\(716\) −1367.72 7199.79i −0.0713885 0.375795i
\(717\) 9766.14 + 9766.14i 0.508679 + 0.508679i
\(718\) −4020.06 + 13049.6i −0.208951 + 0.678283i
\(719\) −11021.5 −0.571671 −0.285835 0.958279i \(-0.592271\pi\)
−0.285835 + 0.958279i \(0.592271\pi\)
\(720\) −3828.04 + 8809.04i −0.198143 + 0.455963i
\(721\) −9949.27 −0.513912
\(722\) 5484.90 17804.7i 0.282724 0.917759i
\(723\) 9931.14 + 9931.14i 0.510848 + 0.510848i
\(724\) −8400.11 + 1595.74i −0.431198 + 0.0819133i
\(725\) 32323.3 32323.3i 1.65580 1.65580i
\(726\) 5645.75 2986.51i 0.288614 0.152672i
\(727\) 21740.4i 1.10909i 0.832154 + 0.554544i \(0.187107\pi\)
−0.832154 + 0.554544i \(0.812893\pi\)
\(728\) 19691.9 + 2196.91i 1.00252 + 0.111844i
\(729\) 729.000i 0.0370370i
\(730\) −6576.16 12431.7i −0.333417 0.630299i
\(731\) −10667.5 + 10667.5i −0.539741 + 0.539741i
\(732\) 5480.55 8051.12i 0.276731 0.406527i
\(733\) 13194.8 + 13194.8i 0.664886 + 0.664886i 0.956528 0.291642i \(-0.0942015\pi\)
−0.291642 + 0.956528i \(0.594202\pi\)
\(734\) −6910.04 2128.70i −0.347485 0.107046i
\(735\) −9247.69 −0.464090
\(736\) −13455.8 + 1033.08i −0.673898 + 0.0517391i
\(737\) 21334.7 1.06631
\(738\) 8471.48 + 2609.72i 0.422547 + 0.130170i
\(739\) 21786.6 + 21786.6i 1.08448 + 1.08448i 0.996085 + 0.0883973i \(0.0281745\pi\)
0.0883973 + 0.996085i \(0.471825\pi\)
\(740\) 11758.0 17272.9i 0.584099 0.858061i
\(741\) 2436.93 2436.93i 0.120813 0.120813i
\(742\) −5306.26 10031.1i −0.262532 0.496297i
\(743\) 7418.24i 0.366284i −0.983086 0.183142i \(-0.941373\pi\)
0.983086 0.183142i \(-0.0586268\pi\)
\(744\) −2454.35 + 21999.5i −0.120942 + 1.08406i
\(745\) 39778.3i 1.95619i
\(746\) 4036.35 2135.16i 0.198098 0.104790i
\(747\) −1127.29 + 1127.29i −0.0552146 + 0.0552146i
\(748\) 9794.89 1860.70i 0.478792 0.0909546i
\(749\) 19187.5 + 19187.5i 0.936045 + 0.936045i
\(750\) −1168.81 + 3794.11i −0.0569052 + 0.184722i
\(751\) −9320.68 −0.452885 −0.226442 0.974025i \(-0.572709\pi\)
−0.226442 + 0.974025i \(0.572709\pi\)
\(752\) 5984.15 + 15182.1i 0.290185 + 0.736217i
\(753\) 2021.36 0.0978255
\(754\) 17317.5 56214.8i 0.836427 2.71515i
\(755\) 19835.3 + 19835.3i 0.956135 + 0.956135i
\(756\) 506.936 + 2668.55i 0.0243877 + 0.128379i
\(757\) 2105.29 2105.29i 0.101081 0.101081i −0.654758 0.755839i \(-0.727229\pi\)
0.755839 + 0.654758i \(0.227229\pi\)
\(758\) −9200.47 + 4866.89i −0.440866 + 0.233210i
\(759\) 5378.41i 0.257212i
\(760\) −3886.38 4862.43i −0.185492 0.232077i
\(761\) 13011.0i 0.619776i −0.950773 0.309888i \(-0.899708\pi\)
0.950773 0.309888i \(-0.100292\pi\)
\(762\) −703.729 1330.34i −0.0334559 0.0632458i
\(763\) 5197.48 5197.48i 0.246607 0.246607i
\(764\) 5029.24 + 3423.50i 0.238156 + 0.162118i
\(765\) −5499.61 5499.61i −0.259920 0.259920i
\(766\) −1002.46 308.816i −0.0472849 0.0145665i
\(767\) −28109.4 −1.32330
\(768\) 12280.7 + 423.592i 0.577007 + 0.0199024i
\(769\) 26438.9 1.23981 0.619904 0.784677i \(-0.287171\pi\)
0.619904 + 0.784677i \(0.287171\pi\)
\(770\) −13630.7 4199.05i −0.637941 0.196524i
\(771\) −1962.91 1962.91i −0.0916895 0.0916895i
\(772\) 14449.7 + 9836.22i 0.673650 + 0.458566i
\(773\) −21614.3 + 21614.3i −1.00571 + 1.00571i −0.00572318 + 0.999984i \(0.501822\pi\)
−0.999984 + 0.00572318i \(0.998178\pi\)
\(774\) 3464.92 + 6550.16i 0.160910 + 0.304187i
\(775\) 49911.4i 2.31338i
\(776\) 74.5722 + 93.3007i 0.00344972 + 0.00431611i
\(777\) 5909.19i 0.272833i
\(778\) −22832.5 + 12078.0i −1.05216 + 0.556577i
\(779\) −4062.20 + 4062.20i −0.186834 + 0.186834i
\(780\) 5200.89 + 27377.9i 0.238746 + 1.25678i
\(781\) 4672.48 + 4672.48i 0.214077 + 0.214077i
\(782\) 3217.29 10443.7i 0.147123 0.477580i
\(783\) 8063.76 0.368040
\(784\) 4338.46 + 11006.9i 0.197634 + 0.501408i
\(785\) −25157.8 −1.14385
\(786\) 3316.76 10766.6i 0.150515 0.488592i
\(787\) −20949.4 20949.4i −0.948874 0.948874i 0.0498808 0.998755i \(-0.484116\pi\)
−0.998755 + 0.0498808i \(0.984116\pi\)
\(788\) 927.120 176.122i 0.0419128 0.00796204i
\(789\) 7377.21 7377.21i 0.332871 0.332871i
\(790\) −7323.55 + 3874.03i −0.329823 + 0.174471i
\(791\) 2643.94i 0.118847i
\(792\) 542.982 4867.01i 0.0243611 0.218361i
\(793\) 28258.1i 1.26541i
\(794\) −434.584 821.548i −0.0194242 0.0367199i
\(795\) 11285.8 11285.8i 0.503478 0.503478i
\(796\) −7806.83 + 11468.5i −0.347620 + 0.510666i
\(797\) 1576.38 + 1576.38i 0.0700603 + 0.0700603i 0.741269 0.671208i \(-0.234224\pi\)
−0.671208 + 0.741269i \(0.734224\pi\)
\(798\) −1682.35 518.263i −0.0746297 0.0229904i
\(799\) −13214.4 −0.585097
\(800\) 27625.2 2120.95i 1.22087 0.0937336i
\(801\) −8102.44 −0.357410
\(802\) −323.329 99.6044i −0.0142358 0.00438548i
\(803\) 5070.48 + 5070.48i 0.222831 + 0.222831i
\(804\) −11981.6 + 17601.4i −0.525571 + 0.772082i
\(805\) −11054.4 + 11054.4i −0.483995 + 0.483995i
\(806\) 30031.2 + 56771.7i 1.31241 + 2.48101i
\(807\) 16009.1i 0.698322i
\(808\) −14600.9 1628.93i −0.635715 0.0709228i
\(809\) 8102.89i 0.352142i −0.984378 0.176071i \(-0.943661\pi\)
0.984378 0.176071i \(-0.0563388\pi\)
\(810\) −3376.94 + 1786.34i −0.146486 + 0.0774885i
\(811\) 20649.6 20649.6i 0.894090 0.894090i −0.100816 0.994905i \(-0.532145\pi\)
0.994905 + 0.100816i \(0.0321452\pi\)
\(812\) −29517.9 + 5607.42i −1.27571 + 0.242342i
\(813\) −16985.6 16985.6i −0.732732 0.732732i
\(814\) −3136.53 + 10181.6i −0.135056 + 0.438408i
\(815\) −56114.6 −2.41179
\(816\) −3965.74 + 9125.91i −0.170133 + 0.391508i
\(817\) −4802.38 −0.205647
\(818\) 522.067 1694.70i 0.0223150 0.0724373i
\(819\) 5572.71 + 5572.71i 0.237761 + 0.237761i
\(820\) −8669.55 45637.2i −0.369212 1.94356i
\(821\) 13405.1 13405.1i 0.569844 0.569844i −0.362240 0.932085i \(-0.617988\pi\)
0.932085 + 0.362240i \(0.117988\pi\)
\(822\) 2305.88 1219.77i 0.0978426 0.0517571i
\(823\) 17203.4i 0.728643i −0.931273 0.364321i \(-0.881301\pi\)
0.931273 0.364321i \(-0.118699\pi\)
\(824\) −13984.3 + 11177.2i −0.591219 + 0.472542i
\(825\) 11042.0i 0.465981i
\(826\) 6713.74 + 12691.8i 0.282810 + 0.534630i
\(827\) −11127.2 + 11127.2i −0.467872 + 0.467872i −0.901224 0.433353i \(-0.857330\pi\)
0.433353 + 0.901224i \(0.357330\pi\)
\(828\) −4437.27 3020.54i −0.186239 0.126776i
\(829\) −5752.09 5752.09i −0.240987 0.240987i 0.576271 0.817259i \(-0.304507\pi\)
−0.817259 + 0.576271i \(0.804507\pi\)
\(830\) 7984.23 + 2459.61i 0.333899 + 0.102861i
\(831\) −19307.1 −0.805964
\(832\) 30146.1 19034.3i 1.25617 0.793145i
\(833\) −9580.34 −0.398486
\(834\) 14374.5 + 4428.21i 0.596821 + 0.183856i
\(835\) −9904.39 9904.39i −0.410486 0.410486i
\(836\) 2623.61 + 1785.94i 0.108540 + 0.0738853i
\(837\) −6225.75 + 6225.75i −0.257101 + 0.257101i
\(838\) −9317.38 17613.8i −0.384086 0.726083i
\(839\) 45875.9i 1.88774i −0.330318 0.943870i \(-0.607156\pi\)
0.330318 0.943870i \(-0.392844\pi\)
\(840\) 11119.3 8887.30i 0.456729 0.365049i
\(841\) 64807.5i 2.65724i
\(842\) 38081.7 20144.6i 1.55865 0.824499i
\(843\) 7070.47 7070.47i 0.288873 0.288873i
\(844\) −772.585 4066.95i −0.0315089 0.165865i
\(845\) 31268.1 + 31268.1i 1.27296 + 1.27296i
\(846\) −1910.93 + 6203.14i −0.0776587 + 0.252090i
\(847\) −9465.66 −0.383995
\(848\) −18727.3 8138.10i −0.758371 0.329556i
\(849\) −26483.5 −1.07057
\(850\) −6605.20 + 21441.3i −0.266537 + 0.865213i
\(851\) 8257.21 + 8257.21i 0.332613 + 0.332613i
\(852\) −6478.95 + 1230.78i −0.260522 + 0.0494906i
\(853\) −27266.2 + 27266.2i −1.09446 + 1.09446i −0.0994157 + 0.995046i \(0.531697\pi\)
−0.995046 + 0.0994157i \(0.968303\pi\)
\(854\) −12758.9 + 6749.24i −0.511243 + 0.270438i
\(855\) 2475.87i 0.0990326i
\(856\) 48524.7 + 5413.60i 1.93755 + 0.216160i
\(857\) 28960.0i 1.15432i −0.816629 0.577162i \(-0.804160\pi\)
0.816629 0.577162i \(-0.195840\pi\)
\(858\) −6643.90 12559.8i −0.264358 0.499747i
\(859\) 17255.5 17255.5i 0.685388 0.685388i −0.275821 0.961209i \(-0.588950\pi\)
0.961209 + 0.275821i \(0.0889496\pi\)
\(860\) 21851.8 32101.0i 0.866442 1.27283i
\(861\) −9289.36 9289.36i −0.367689 0.367689i
\(862\) 20399.9 + 6284.39i 0.806061 + 0.248314i
\(863\) 39885.9 1.57327 0.786635 0.617418i \(-0.211821\pi\)
0.786635 + 0.617418i \(0.211821\pi\)
\(864\) 3710.42 + 3181.30i 0.146101 + 0.125266i
\(865\) −10618.5 −0.417388
\(866\) 15175.5 + 4674.95i 0.595478 + 0.183443i
\(867\) 4724.61 + 4724.61i 0.185071 + 0.185071i
\(868\) 18460.5 27119.1i 0.721877 1.06046i
\(869\) 2987.03 2987.03i 0.116603 0.116603i
\(870\) −19759.4 37353.7i −0.770009 1.45564i
\(871\) 61778.0i 2.40329i
\(872\) 1466.43 13144.3i 0.0569489 0.510460i
\(873\) 47.5072i 0.00184178i
\(874\) 3075.03 1626.64i 0.119010 0.0629540i
\(875\) 4160.41 4160.41i 0.160740 0.160740i
\(876\) −7030.82 + 1335.62i −0.271175 + 0.0515142i
\(877\) 8855.51 + 8855.51i 0.340968 + 0.340968i 0.856731 0.515763i \(-0.172491\pi\)
−0.515763 + 0.856731i \(0.672491\pi\)
\(878\) −5994.59 + 19459.2i −0.230419 + 0.747969i
\(879\) 10429.4 0.400200
\(880\) −23875.9 + 9410.88i −0.914611 + 0.360501i
\(881\) −43343.8 −1.65753 −0.828767 0.559593i \(-0.810957\pi\)
−0.828767 + 0.559593i \(0.810957\pi\)
\(882\) −1385.41 + 4497.22i −0.0528903 + 0.171689i
\(883\) 11229.3 + 11229.3i 0.427968 + 0.427968i 0.887936 0.459968i \(-0.152139\pi\)
−0.459968 + 0.887936i \(0.652139\pi\)
\(884\) 5387.97 + 28362.7i 0.204997 + 1.07912i
\(885\) −14279.3 + 14279.3i −0.542366 + 0.542366i
\(886\) −19740.1 + 10442.2i −0.748511 + 0.395949i
\(887\) 36912.9i 1.39731i 0.715459 + 0.698655i \(0.246218\pi\)
−0.715459 + 0.698655i \(0.753782\pi\)
\(888\) −6638.47 8305.69i −0.250870 0.313875i
\(889\) 2230.45i 0.0841473i
\(890\) 19854.2 + 37532.8i 0.747770 + 1.41360i
\(891\) 1377.34 1377.34i 0.0517874 0.0517874i
\(892\) −26698.6 18174.3i −1.00217 0.682197i
\(893\) −2974.49 2974.49i −0.111464 0.111464i
\(894\) −19344.5 5959.25i −0.723688 0.222939i
\(895\) −15275.5 −0.570508
\(896\) −15794.5 9065.19i −0.588902 0.337998i
\(897\) −15574.1 −0.579714
\(898\) 3309.98 + 1019.67i 0.123002 + 0.0378918i
\(899\) −68865.5 68865.5i −2.55483 2.55483i
\(900\) 9109.85 + 6201.25i 0.337402 + 0.229676i
\(901\) 11691.7 11691.7i 0.432306 0.432306i
\(902\) 11075.0 + 20936.3i 0.408820 + 0.772842i
\(903\) 10982.0i 0.404715i
\(904\) 2970.25 + 3716.21i 0.109280 + 0.136725i
\(905\) 17822.2i 0.654618i
\(906\) 12617.6 6674.51i 0.462685 0.244752i
\(907\) 14588.0 14588.0i 0.534053 0.534053i −0.387723 0.921776i \(-0.626738\pi\)
0.921776 + 0.387723i \(0.126738\pi\)
\(908\) −3173.14 16703.7i −0.115974 0.610497i
\(909\) −4131.98 4131.98i −0.150769 0.150769i
\(910\) 12159.0 39469.8i 0.442932 1.43781i
\(911\) 50418.8 1.83365 0.916823 0.399295i \(-0.130745\pi\)
0.916823 + 0.399295i \(0.130745\pi\)
\(912\) −2946.86 + 1161.53i −0.106996 + 0.0421733i
\(913\) −4259.69 −0.154409
\(914\) −9311.61 + 30226.7i −0.336981 + 1.09388i
\(915\) −14354.8 14354.8i −0.518640 0.518640i
\(916\) −38275.9 + 7271.14i −1.38064 + 0.262277i
\(917\) −11806.1 + 11806.1i −0.425160 + 0.425160i
\(918\) −3498.41 + 1850.60i −0.125779 + 0.0665346i
\(919\) 53290.4i 1.91283i −0.292018 0.956413i \(-0.594327\pi\)
0.292018 0.956413i \(-0.405673\pi\)
\(920\) −3118.90 + 27956.2i −0.111769 + 1.00184i
\(921\) 12763.9i 0.456662i
\(922\) −21200.4 40077.8i −0.757266 1.43155i
\(923\) −13529.9 + 13529.9i −0.482495 + 0.482495i
\(924\) −4084.06 + 5999.62i −0.145407 + 0.213607i
\(925\) −16952.3 16952.3i −0.602581 0.602581i
\(926\) 8145.35 + 2509.25i 0.289064 + 0.0890488i
\(927\) −7120.55 −0.252287
\(928\) −35189.6 + 41042.4i −1.24478 + 1.45181i
\(929\) 44859.2 1.58427 0.792133 0.610349i \(-0.208971\pi\)
0.792133 + 0.610349i \(0.208971\pi\)
\(930\) 44095.0 + 13583.9i 1.55477 + 0.478960i
\(931\) −2156.48 2156.48i −0.0759140 0.0759140i
\(932\) −5127.47 + 7532.43i −0.180210 + 0.264735i
\(933\) 9560.97 9560.97i 0.335490 0.335490i
\(934\) −1578.43 2983.91i −0.0552976 0.104536i
\(935\) 20781.4i 0.726872i
\(936\) 14093.2 + 1572.29i 0.492149 + 0.0549060i
\(937\) 22463.9i 0.783204i 0.920135 + 0.391602i \(0.128079\pi\)
−0.920135 + 0.391602i \(0.871921\pi\)
\(938\) 27893.6 14755.2i 0.970958 0.513620i
\(939\) −11110.6 + 11110.6i −0.386136 + 0.386136i
\(940\) 33417.3 6348.17i 1.15952 0.220271i
\(941\) 20653.7 + 20653.7i 0.715507 + 0.715507i 0.967682 0.252175i \(-0.0811458\pi\)
−0.252175 + 0.967682i \(0.581146\pi\)
\(942\) −3768.92 + 12234.4i −0.130359 + 0.423162i
\(943\) 25961.0 0.896507
\(944\) 23694.7 + 10296.7i 0.816946 + 0.355010i
\(945\) 5661.77 0.194897
\(946\) −5829.11 + 18922.0i −0.200339 + 0.650326i
\(947\) 33123.2 + 33123.2i 1.13660 + 1.13660i 0.989055 + 0.147544i \(0.0471368\pi\)
0.147544 + 0.989055i \(0.452863\pi\)
\(948\) 786.818 + 4141.87i 0.0269564 + 0.141901i
\(949\) −14682.4 + 14682.4i −0.502224 + 0.502224i
\(950\) −6313.12 + 3339.53i −0.215605 + 0.114051i
\(951\) 4198.22i 0.143151i
\(952\) 11519.3 9206.97i 0.392166 0.313445i
\(953\) 10871.9i 0.369544i −0.982781 0.184772i \(-0.940845\pi\)
0.982781 0.184772i \(-0.0591546\pi\)
\(954\) −3797.62 7179.10i −0.128881 0.243639i
\(955\) 8966.93 8966.93i 0.303836 0.303836i
\(956\) −30445.9 20725.1i −1.03001 0.701147i
\(957\) 15235.3 + 15235.3i 0.514616 + 0.514616i
\(958\) 28570.0 + 8801.25i 0.963522 + 0.296822i
\(959\) −3866.02 −0.130178
\(960\) 5644.69 24983.2i 0.189773 0.839926i
\(961\) 76546.3 2.56944
\(962\) −29482.4 9082.33i −0.988099 0.304393i
\(963\) 13732.3 + 13732.3i 0.459518 + 0.459518i
\(964\) −30960.2 21075.2i −1.03440 0.704137i
\(965\) 25763.3 25763.3i 0.859430 0.859430i
\(966\) 3719.76 + 7031.91i 0.123894 + 0.234211i
\(967\) 6501.58i 0.216212i −0.994139 0.108106i \(-0.965521\pi\)
0.994139 0.108106i \(-0.0344786\pi\)
\(968\) −13304.5 + 10633.9i −0.441759 + 0.353084i
\(969\) 2564.93i 0.0850333i
\(970\) 220.067 116.412i 0.00728446 0.00385335i
\(971\) −16761.7 + 16761.7i −0.553975 + 0.553975i −0.927586 0.373611i \(-0.878120\pi\)
0.373611 + 0.927586i \(0.378120\pi\)
\(972\) 362.807 + 1909.84i 0.0119723 + 0.0630229i
\(973\) −15762.3 15762.3i −0.519338 0.519338i
\(974\) 1314.93 4268.43i 0.0432578 0.140420i
\(975\) 31974.0 1.05024
\(976\) −10351.2 + 23820.0i −0.339480 + 0.781208i
\(977\) −7407.34 −0.242561 −0.121280 0.992618i \(-0.538700\pi\)
−0.121280 + 0.992618i \(0.538700\pi\)
\(978\) −8406.61 + 27288.9i −0.274861 + 0.892233i
\(979\) −15308.4 15308.4i −0.499753 0.499753i
\(980\) 24227.2 4602.37i 0.789705 0.150018i
\(981\) 3719.76 3719.76i 0.121063 0.121063i
\(982\) 30586.3 16179.6i 0.993938 0.525776i
\(983\) 35694.8i 1.15818i −0.815265 0.579088i \(-0.803409\pi\)
0.815265 0.579088i \(-0.196591\pi\)
\(984\) −23492.5 2620.91i −0.761092 0.0849102i
\(985\) 1967.04i 0.0636294i
\(986\) −20470.2 38697.3i −0.661160 1.24987i
\(987\) 6802.01 6802.01i 0.219362 0.219362i
\(988\) −5171.49 + 7597.10i −0.166525 + 0.244631i
\(989\) 15345.7 + 15345.7i 0.493392 + 0.493392i
\(990\) −9755.27 3005.20i −0.313174 0.0964763i
\(991\) 46662.2 1.49573 0.747867 0.663849i \(-0.231078\pi\)
0.747867 + 0.663849i \(0.231078\pi\)
\(992\) −4518.73 58856.1i −0.144627 1.88375i
\(993\) 23981.7 0.766402
\(994\) 9340.48 + 2877.42i 0.298050 + 0.0918172i
\(995\) 20447.9 + 20447.9i 0.651498 + 0.651498i
\(996\) 2392.26 3514.31i 0.0761060 0.111802i
\(997\) −22390.7 + 22390.7i −0.711255 + 0.711255i −0.966798 0.255543i \(-0.917746\pi\)
0.255543 + 0.966798i \(0.417746\pi\)
\(998\) −22336.5 42225.4i −0.708467 1.33930i
\(999\) 4229.12i 0.133937i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 48.4.j.a.13.12 24
3.2 odd 2 144.4.k.b.109.1 24
4.3 odd 2 192.4.j.a.145.12 24
8.3 odd 2 384.4.j.a.289.6 24
8.5 even 2 384.4.j.b.289.7 24
12.11 even 2 576.4.k.b.145.2 24
16.3 odd 4 384.4.j.a.97.6 24
16.5 even 4 inner 48.4.j.a.37.12 yes 24
16.11 odd 4 192.4.j.a.49.12 24
16.13 even 4 384.4.j.b.97.7 24
48.5 odd 4 144.4.k.b.37.1 24
48.11 even 4 576.4.k.b.433.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.j.a.13.12 24 1.1 even 1 trivial
48.4.j.a.37.12 yes 24 16.5 even 4 inner
144.4.k.b.37.1 24 48.5 odd 4
144.4.k.b.109.1 24 3.2 odd 2
192.4.j.a.49.12 24 16.11 odd 4
192.4.j.a.145.12 24 4.3 odd 2
384.4.j.a.97.6 24 16.3 odd 4
384.4.j.a.289.6 24 8.3 odd 2
384.4.j.b.97.7 24 16.13 even 4
384.4.j.b.289.7 24 8.5 even 2
576.4.k.b.145.2 24 12.11 even 2
576.4.k.b.433.2 24 48.11 even 4