Properties

Label 144.4
Level 144
Weight 4
Dimension 749
Nonzero newspaces 8
Newform subspaces 26
Sturm bound 4608
Trace bound 2

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 26 \)
Sturm bound: \(4608\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(144))\).

Total New Old
Modular forms 1840 790 1050
Cusp forms 1616 749 867
Eisenstein series 224 41 183

Trace form

\( 749q - 6q^{2} - 6q^{3} + 4q^{4} - 7q^{5} - 8q^{6} + 9q^{7} - 48q^{8} - 22q^{9} + O(q^{10}) \) \( 749q - 6q^{2} - 6q^{3} + 4q^{4} - 7q^{5} - 8q^{6} + 9q^{7} - 48q^{8} - 22q^{9} - 84q^{10} - 75q^{11} - 8q^{12} - 57q^{13} + 120q^{14} - 27q^{15} - 252q^{16} - 116q^{17} - 148q^{18} + 122q^{19} + 416q^{20} + 289q^{21} + 416q^{22} + 319q^{23} + 728q^{24} + 675q^{25} + 820q^{26} - 384q^{27} + 408q^{28} - 287q^{29} - 508q^{30} + 111q^{31} - 996q^{32} - 63q^{33} - 960q^{34} - 558q^{35} + 756q^{36} - 960q^{37} + 1172q^{38} - 231q^{39} - 764q^{40} - 117q^{41} - 688q^{42} + 1477q^{43} - 2216q^{44} - 273q^{45} - 1828q^{46} + 3813q^{47} - 2452q^{48} + 1477q^{49} - 3606q^{50} + 1954q^{51} - 1968q^{52} - 626q^{53} - 228q^{54} - 2006q^{55} + 2880q^{56} + 1148q^{57} + 2260q^{58} - 4345q^{59} + 7924q^{60} - 1161q^{61} + 4728q^{62} - 2547q^{63} + 1576q^{64} - 1899q^{65} - 4928q^{66} + 2843q^{67} - 3440q^{68} - 2863q^{69} + 3468q^{70} + 1784q^{71} - 7960q^{72} + 5862q^{73} - 4096q^{74} - 530q^{75} + 1216q^{76} - 5323q^{77} - 524q^{78} - 1159q^{79} + 6688q^{80} - 494q^{81} + 3432q^{82} - 1521q^{83} + 9544q^{84} - 5330q^{85} + 8800q^{86} - 249q^{87} - 4812q^{88} + 804q^{89} + 1144q^{90} - 5370q^{91} - 12500q^{92} + 861q^{93} - 12116q^{94} - 1372q^{95} - 6468q^{96} + 2545q^{97} - 14474q^{98} - 1575q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(144))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
144.4.a \(\chi_{144}(1, \cdot)\) 144.4.a.a 1 1
144.4.a.b 1
144.4.a.c 1
144.4.a.d 1
144.4.a.e 1
144.4.a.f 1
144.4.a.g 1
144.4.c \(\chi_{144}(143, \cdot)\) 144.4.c.a 2 1
144.4.c.b 4
144.4.d \(\chi_{144}(73, \cdot)\) None 0 1
144.4.f \(\chi_{144}(71, \cdot)\) None 0 1
144.4.i \(\chi_{144}(49, \cdot)\) 144.4.i.a 2 2
144.4.i.b 4
144.4.i.c 4
144.4.i.d 6
144.4.i.e 8
144.4.i.f 10
144.4.k \(\chi_{144}(37, \cdot)\) 144.4.k.a 10 2
144.4.k.b 24
144.4.k.c 24
144.4.l \(\chi_{144}(35, \cdot)\) 144.4.l.a 48 2
144.4.p \(\chi_{144}(23, \cdot)\) None 0 2
144.4.r \(\chi_{144}(25, \cdot)\) None 0 2
144.4.s \(\chi_{144}(47, \cdot)\) 144.4.s.a 2 2
144.4.s.b 2
144.4.s.c 10
144.4.s.d 10
144.4.s.e 12
144.4.u \(\chi_{144}(11, \cdot)\) 144.4.u.a 280 4
144.4.x \(\chi_{144}(13, \cdot)\) 144.4.x.a 280 4

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(144))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(144)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 2}\)