Properties

Label 14.50.a.c
Level $14$
Weight $50$
Character orbit 14.a
Self dual yes
Analytic conductor $212.893$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [14,50,Mod(1,14)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 50, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("14.1"); S:= CuspForms(chi, 50); N := Newforms(S);
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 50 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,100663296] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(212.892687139\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} + \cdots + 43\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{36}\cdot 3^{12}\cdot 5^{6}\cdot 7^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 16777216 q^{2} + ( - \beta_1 + 100048090081) q^{3} + 281474976710656 q^{4} + (\beta_{2} - 77095 \beta_1 + 39\!\cdots\!76) q^{5} + ( - 16777216 \beta_1 + 16\!\cdots\!96) q^{6} - 19\!\cdots\!01 q^{7}+ \cdots + ( - 15\!\cdots\!54 \beta_{5} + \cdots - 38\!\cdots\!08) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 100663296 q^{2} + 600288540488 q^{3} + 16\!\cdots\!36 q^{4} + 23\!\cdots\!44 q^{5} + 10\!\cdots\!08 q^{6} - 11\!\cdots\!06 q^{7} + 28\!\cdots\!76 q^{8} + 24\!\cdots\!58 q^{9} + 39\!\cdots\!04 q^{10}+ \cdots - 23\!\cdots\!84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2 x^{5} + \cdots + 43\!\cdots\!00 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 67\!\cdots\!27 \nu^{5} + \cdots - 54\!\cdots\!80 ) / 52\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 14\!\cdots\!61 \nu^{5} + \cdots - 64\!\cdots\!00 ) / 21\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 16\!\cdots\!73 \nu^{5} + \cdots + 16\!\cdots\!00 ) / 17\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 80\!\cdots\!23 \nu^{5} + \cdots - 23\!\cdots\!00 ) / 26\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 38\beta_{5} + 10\beta_{4} + 7\beta_{3} + 797080\beta_{2} + 50492114262\beta _1 + 270900902078175922139419 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 2196588358129 \beta_{5} - 8324804170631 \beta_{4} - 15716888531501 \beta_{3} + \cdots + 13\!\cdots\!63 ) / 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 23\!\cdots\!97 \beta_{5} + \cdots + 13\!\cdots\!26 ) / 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 54\!\cdots\!24 \beta_{5} + \cdots - 36\!\cdots\!37 ) / 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.67400e11
2.90602e11
−6.28029e9
−1.10241e11
−1.52153e11
−3.89328e11
1.67772e7 −6.34751e11 2.81475e14 1.14301e17 −1.06494e19 −1.91581e20 4.72237e21 1.63610e23 1.91765e24
1.2 1.67772e7 −4.81157e11 2.81475e14 −9.77002e16 −8.07247e18 −1.91581e20 4.72237e21 −7.78761e21 −1.63914e24
1.3 1.67772e7 1.12609e11 2.81475e14 −1.14808e16 1.88926e18 −1.91581e20 4.72237e21 −2.26619e23 −1.92616e23
1.4 1.67772e7 3.20530e11 2.81475e14 −1.37317e17 5.37760e18 −1.91581e20 4.72237e21 −1.36560e23 −2.30380e24
1.5 1.67772e7 4.04355e11 2.81475e14 2.21202e17 6.78395e18 −1.91581e20 4.72237e21 −7.57966e22 3.71115e24
1.6 1.67772e7 8.78703e11 2.81475e14 1.48490e17 1.47422e19 −1.91581e20 4.72237e21 5.32820e23 2.49126e24
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 14.50.a.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.50.a.c 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} - 600288540488 T_{3}^{5} + \cdots + 39\!\cdots\!00 \) acting on \(S_{50}^{\mathrm{new}}(\Gamma_0(14))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 16777216)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots + 39\!\cdots\!00 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots - 57\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( (T + 19\!\cdots\!01)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 95\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 69\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 85\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 26\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 15\!\cdots\!24 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 45\!\cdots\!96 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 43\!\cdots\!16 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 89\!\cdots\!64 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 97\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 20\!\cdots\!04 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 37\!\cdots\!56 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 11\!\cdots\!24 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 16\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 28\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 84\!\cdots\!24 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 38\!\cdots\!84 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 18\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 34\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 64\!\cdots\!00 \) Copy content Toggle raw display
show more
show less