Defining parameters
Level: | \( N \) | \(=\) | \( 14 = 2 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 50 \) |
Character orbit: | \([\chi]\) | \(=\) | 14.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(100\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{50}(\Gamma_0(14))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 100 | 24 | 76 |
Cusp forms | 96 | 24 | 72 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(24\) | \(6\) | \(18\) | \(23\) | \(6\) | \(17\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(26\) | \(7\) | \(19\) | \(25\) | \(7\) | \(18\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(25\) | \(6\) | \(19\) | \(24\) | \(6\) | \(18\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(25\) | \(5\) | \(20\) | \(24\) | \(5\) | \(19\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(49\) | \(11\) | \(38\) | \(47\) | \(11\) | \(36\) | \(2\) | \(0\) | \(2\) | ||||
Minus space | \(-\) | \(51\) | \(13\) | \(38\) | \(49\) | \(13\) | \(36\) | \(2\) | \(0\) | \(2\) |
Trace form
Decomposition of \(S_{50}^{\mathrm{new}}(\Gamma_0(14))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 7 | |||||||
14.50.a.a | $5$ | $212.893$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(83886080\) | \(-117348111612\) | \(96\!\cdots\!50\) | \(95\!\cdots\!05\) | $-$ | $-$ | \(q+2^{24}q^{2}+(-23469622322+\beta _{1}+\cdots)q^{3}+\cdots\) | |
14.50.a.b | $6$ | $212.893$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(-100663296\) | \(-147499349592\) | \(43\!\cdots\!60\) | \(-11\!\cdots\!06\) | $+$ | $+$ | \(q-2^{24}q^{2}+(-24583224932-\beta _{1}+\cdots)q^{3}+\cdots\) | |
14.50.a.c | $6$ | $212.893$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(100663296\) | \(600288540488\) | \(23\!\cdots\!44\) | \(-11\!\cdots\!06\) | $-$ | $+$ | \(q+2^{24}q^{2}+(100048090081-\beta _{1}+\cdots)q^{3}+\cdots\) | |
14.50.a.d | $7$ | $212.893$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(-117440512\) | \(-300276928730\) | \(-12\!\cdots\!80\) | \(13\!\cdots\!07\) | $+$ | $-$ | \(q-2^{24}q^{2}+(-42896704104-\beta _{1}+\cdots)q^{3}+\cdots\) |
Decomposition of \(S_{50}^{\mathrm{old}}(\Gamma_0(14))\) into lower level spaces
\( S_{50}^{\mathrm{old}}(\Gamma_0(14)) \simeq \) \(S_{50}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{50}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{50}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)