Properties

Label 14.50.a
Level $14$
Weight $50$
Character orbit 14.a
Rep. character $\chi_{14}(1,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $4$
Sturm bound $100$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 50 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(100\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{50}(\Gamma_0(14))\).

Total New Old
Modular forms 100 24 76
Cusp forms 96 24 72
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(24\)\(6\)\(18\)\(23\)\(6\)\(17\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(26\)\(7\)\(19\)\(25\)\(7\)\(18\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(25\)\(6\)\(19\)\(24\)\(6\)\(18\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(25\)\(5\)\(20\)\(24\)\(5\)\(19\)\(1\)\(0\)\(1\)
Plus space\(+\)\(49\)\(11\)\(38\)\(47\)\(11\)\(36\)\(2\)\(0\)\(2\)
Minus space\(-\)\(51\)\(13\)\(38\)\(49\)\(13\)\(36\)\(2\)\(0\)\(2\)

Trace form

\( 24 q - 33554432 q^{2} + 35164150554 q^{3} + 67\!\cdots\!44 q^{4} + 16\!\cdots\!74 q^{5} + 15\!\cdots\!68 q^{6} - 94\!\cdots\!92 q^{8} + 22\!\cdots\!00 q^{9} + 54\!\cdots\!24 q^{10} - 31\!\cdots\!84 q^{11}+ \cdots - 64\!\cdots\!68 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{50}^{\mathrm{new}}(\Gamma_0(14))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7
14.50.a.a 14.a 1.a $5$ $212.893$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 14.50.a.a \(83886080\) \(-117348111612\) \(96\!\cdots\!50\) \(95\!\cdots\!05\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{24}q^{2}+(-23469622322+\beta _{1}+\cdots)q^{3}+\cdots\)
14.50.a.b 14.a 1.a $6$ $212.893$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 14.50.a.b \(-100663296\) \(-147499349592\) \(43\!\cdots\!60\) \(-11\!\cdots\!06\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{24}q^{2}+(-24583224932-\beta _{1}+\cdots)q^{3}+\cdots\)
14.50.a.c 14.a 1.a $6$ $212.893$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 14.50.a.c \(100663296\) \(600288540488\) \(23\!\cdots\!44\) \(-11\!\cdots\!06\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{24}q^{2}+(100048090081-\beta _{1}+\cdots)q^{3}+\cdots\)
14.50.a.d 14.a 1.a $7$ $212.893$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 14.50.a.d \(-117440512\) \(-300276928730\) \(-12\!\cdots\!80\) \(13\!\cdots\!07\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{24}q^{2}+(-42896704104-\beta _{1}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{50}^{\mathrm{old}}(\Gamma_0(14))\) into lower level spaces

\( S_{50}^{\mathrm{old}}(\Gamma_0(14)) \simeq \) \(S_{50}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{50}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{50}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)