Properties

Label 14.50
Level 14
Weight 50
Dimension 88
Nonzero newspaces 2
Newform subspaces 6
Sturm bound 600
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 14 = 2 \cdot 7 \)
Weight: \( k \) = \( 50 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 6 \)
Sturm bound: \(600\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{50}(\Gamma_1(14))\).

Total New Old
Modular forms 300 88 212
Cusp forms 288 88 200
Eisenstein series 12 0 12

Trace form

\( 88 q - 33554432 q^{2} + 35164150554 q^{3} - 22\!\cdots\!48 q^{4} + 57\!\cdots\!06 q^{5} + 38\!\cdots\!36 q^{6} - 99\!\cdots\!40 q^{7} - 94\!\cdots\!92 q^{8} - 15\!\cdots\!08 q^{9} + 20\!\cdots\!56 q^{10}+ \cdots + 33\!\cdots\!96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{50}^{\mathrm{new}}(\Gamma_1(14))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
14.50.a \(\chi_{14}(1, \cdot)\) 14.50.a.a 5 1
14.50.a.b 6
14.50.a.c 6
14.50.a.d 7
14.50.c \(\chi_{14}(9, \cdot)\) 14.50.c.a 32 2
14.50.c.b 32

Decomposition of \(S_{50}^{\mathrm{old}}(\Gamma_1(14))\) into lower level spaces

\( S_{50}^{\mathrm{old}}(\Gamma_1(14)) \cong \) \(S_{50}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{50}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{50}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)