Properties

Label 2-14-1.1-c49-0-5
Degree $2$
Conductor $14$
Sign $1$
Analytic cond. $212.892$
Root an. cond. $14.5908$
Motivic weight $49$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.67e7·2-s + 3.20e11·3-s + 2.81e14·4-s − 1.37e17·5-s + 5.37e18·6-s − 1.91e20·7-s + 4.72e21·8-s − 1.36e23·9-s − 2.30e24·10-s + 1.44e25·11-s + 9.02e25·12-s − 1.12e27·13-s − 3.21e27·14-s − 4.40e28·15-s + 7.92e28·16-s − 1.48e30·17-s − 2.29e30·18-s + 3.08e31·19-s − 3.86e31·20-s − 6.14e31·21-s + 2.42e32·22-s − 1.52e33·23-s + 1.51e33·24-s + 1.09e33·25-s − 1.89e34·26-s − 1.20e35·27-s − 5.39e34·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.655·3-s + 0.5·4-s − 1.03·5-s + 0.463·6-s − 0.377·7-s + 0.353·8-s − 0.570·9-s − 0.728·10-s + 0.443·11-s + 0.327·12-s − 0.577·13-s − 0.267·14-s − 0.675·15-s + 0.250·16-s − 1.06·17-s − 0.403·18-s + 1.44·19-s − 0.515·20-s − 0.247·21-s + 0.313·22-s − 0.664·23-s + 0.231·24-s + 0.0614·25-s − 0.408·26-s − 1.02·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(50-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s+49/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14\)    =    \(2 \cdot 7\)
Sign: $1$
Analytic conductor: \(212.892\)
Root analytic conductor: \(14.5908\)
Motivic weight: \(49\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 14,\ (\ :49/2),\ 1)\)

Particular Values

\(L(25)\) \(\approx\) \(2.723834070\)
\(L(\frac12)\) \(\approx\) \(2.723834070\)
\(L(\frac{51}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 1.67e7T \)
7 \( 1 + 1.91e20T \)
good3 \( 1 - 3.20e11T + 2.39e23T^{2} \)
5 \( 1 + 1.37e17T + 1.77e34T^{2} \)
11 \( 1 - 1.44e25T + 1.06e51T^{2} \)
13 \( 1 + 1.12e27T + 3.83e54T^{2} \)
17 \( 1 + 1.48e30T + 1.95e60T^{2} \)
19 \( 1 - 3.08e31T + 4.55e62T^{2} \)
23 \( 1 + 1.52e33T + 5.30e66T^{2} \)
29 \( 1 - 9.41e34T + 4.54e71T^{2} \)
31 \( 1 - 5.15e36T + 1.19e73T^{2} \)
37 \( 1 + 2.16e38T + 6.94e76T^{2} \)
41 \( 1 + 2.53e39T + 1.06e79T^{2} \)
43 \( 1 - 1.22e40T + 1.09e80T^{2} \)
47 \( 1 + 1.81e41T + 8.56e81T^{2} \)
53 \( 1 - 4.05e41T + 3.08e84T^{2} \)
59 \( 1 - 4.58e43T + 5.91e86T^{2} \)
61 \( 1 - 2.26e43T + 3.02e87T^{2} \)
67 \( 1 - 2.24e44T + 3.00e89T^{2} \)
71 \( 1 + 4.01e44T + 5.14e90T^{2} \)
73 \( 1 - 2.86e44T + 2.00e91T^{2} \)
79 \( 1 - 5.06e46T + 9.63e92T^{2} \)
83 \( 1 - 3.41e46T + 1.08e94T^{2} \)
89 \( 1 - 2.72e47T + 3.31e95T^{2} \)
97 \( 1 - 7.10e48T + 2.24e97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.44686811755639176798756119717, −9.825418433583763045905987064751, −8.532856377877836841142659207579, −7.55584319074550835208110200340, −6.45262264956560585830374141843, −5.04775263835487492349885414580, −3.90085191813886207117298311163, −3.15781888198153297835241578775, −2.15044158838848237406064203462, −0.56580599530273756148940753427, 0.56580599530273756148940753427, 2.15044158838848237406064203462, 3.15781888198153297835241578775, 3.90085191813886207117298311163, 5.04775263835487492349885414580, 6.45262264956560585830374141843, 7.55584319074550835208110200340, 8.532856377877836841142659207579, 9.825418433583763045905987064751, 11.44686811755639176798756119717

Graph of the $Z$-function along the critical line