Properties

Label 14.50.a.c.1.4
Level $14$
Weight $50$
Character 14.1
Self dual yes
Analytic conductor $212.893$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [14,50,Mod(1,14)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 50, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("14.1"); S:= CuspForms(chi, 50); N := Newforms(S);
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 50 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,100663296] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(212.892687139\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} + \cdots + 43\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{36}\cdot 3^{12}\cdot 5^{6}\cdot 7^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.10241e11\) of defining polynomial
Character \(\chi\) \(=\) 14.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.67772e7 q^{2} +3.20530e11 q^{3} +2.81475e14 q^{4} -1.37317e17 q^{5} +5.37760e18 q^{6} -1.91581e20 q^{7} +4.72237e21 q^{8} -1.36560e23 q^{9} -2.30380e24 q^{10} +1.44829e25 q^{11} +9.02212e25 q^{12} -1.12978e27 q^{13} -3.21420e27 q^{14} -4.40143e28 q^{15} +7.92282e28 q^{16} -1.48576e30 q^{17} -2.29109e30 q^{18} +3.08778e31 q^{19} -3.86514e31 q^{20} -6.14075e31 q^{21} +2.42982e32 q^{22} -1.52974e33 q^{23} +1.51366e33 q^{24} +1.09245e33 q^{25} -1.89545e34 q^{26} -1.20474e35 q^{27} -5.39253e34 q^{28} +9.41722e34 q^{29} -7.38437e35 q^{30} +5.15961e36 q^{31} +1.32923e36 q^{32} +4.64220e36 q^{33} -2.49269e37 q^{34} +2.63074e37 q^{35} -3.84382e37 q^{36} -2.16463e38 q^{37} +5.18043e38 q^{38} -3.62127e38 q^{39} -6.48462e38 q^{40} -2.53591e39 q^{41} -1.03025e39 q^{42} +1.22952e40 q^{43} +4.07657e39 q^{44} +1.87520e40 q^{45} -2.56647e40 q^{46} -1.81487e41 q^{47} +2.53950e40 q^{48} +3.67034e40 q^{49} +1.83282e40 q^{50} -4.76231e41 q^{51} -3.18003e41 q^{52} +4.05705e41 q^{53} -2.02122e42 q^{54} -1.98875e42 q^{55} -9.04717e41 q^{56} +9.89725e42 q^{57} +1.57995e42 q^{58} +4.58148e43 q^{59} -1.23889e43 q^{60} +2.26993e43 q^{61} +8.65639e43 q^{62} +2.61623e43 q^{63} +2.23007e43 q^{64} +1.55138e44 q^{65} +7.78831e43 q^{66} +2.24099e44 q^{67} -4.18205e44 q^{68} -4.90327e44 q^{69} +4.41365e44 q^{70} -4.01377e44 q^{71} -6.44886e44 q^{72} +2.86410e44 q^{73} -3.63165e45 q^{74} +3.50162e44 q^{75} +8.69132e45 q^{76} -2.77465e45 q^{77} -6.07548e45 q^{78} +5.06429e46 q^{79} -1.08794e46 q^{80} -5.93687e45 q^{81} -4.25455e46 q^{82} +3.41809e46 q^{83} -1.72847e46 q^{84} +2.04021e47 q^{85} +2.06279e47 q^{86} +3.01850e46 q^{87} +6.83935e46 q^{88} +2.72157e47 q^{89} +3.14607e47 q^{90} +2.16444e47 q^{91} -4.30583e47 q^{92} +1.65381e48 q^{93} -3.04484e48 q^{94} -4.24005e48 q^{95} +4.26057e47 q^{96} +7.10658e48 q^{97} +6.15780e47 q^{98} -1.97778e48 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 100663296 q^{2} + 600288540488 q^{3} + 16\!\cdots\!36 q^{4} + 23\!\cdots\!44 q^{5} + 10\!\cdots\!08 q^{6} - 11\!\cdots\!06 q^{7} + 28\!\cdots\!76 q^{8} + 24\!\cdots\!58 q^{9} + 39\!\cdots\!04 q^{10}+ \cdots - 23\!\cdots\!84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.67772e7 0.707107
\(3\) 3.20530e11 0.655236 0.327618 0.944810i \(-0.393754\pi\)
0.327618 + 0.944810i \(0.393754\pi\)
\(4\) 2.81475e14 0.500000
\(5\) −1.37317e17 −1.03029 −0.515145 0.857103i \(-0.672262\pi\)
−0.515145 + 0.857103i \(0.672262\pi\)
\(6\) 5.37760e18 0.463322
\(7\) −1.91581e20 −0.377964
\(8\) 4.72237e21 0.353553
\(9\) −1.36560e23 −0.570666
\(10\) −2.30380e24 −0.728526
\(11\) 1.44829e25 0.443337 0.221669 0.975122i \(-0.428850\pi\)
0.221669 + 0.975122i \(0.428850\pi\)
\(12\) 9.02212e25 0.327618
\(13\) −1.12978e27 −0.577271 −0.288636 0.957439i \(-0.593202\pi\)
−0.288636 + 0.957439i \(0.593202\pi\)
\(14\) −3.21420e27 −0.267261
\(15\) −4.40143e28 −0.675084
\(16\) 7.92282e28 0.250000
\(17\) −1.48576e30 −1.06157 −0.530787 0.847505i \(-0.678104\pi\)
−0.530787 + 0.847505i \(0.678104\pi\)
\(18\) −2.29109e30 −0.403522
\(19\) 3.08778e31 1.44605 0.723024 0.690823i \(-0.242752\pi\)
0.723024 + 0.690823i \(0.242752\pi\)
\(20\) −3.86514e31 −0.515145
\(21\) −6.14075e31 −0.247656
\(22\) 2.42982e32 0.313487
\(23\) −1.52974e33 −0.664179 −0.332089 0.943248i \(-0.607754\pi\)
−0.332089 + 0.943248i \(0.607754\pi\)
\(24\) 1.51366e33 0.231661
\(25\) 1.09245e33 0.0614993
\(26\) −1.89545e34 −0.408192
\(27\) −1.20474e35 −1.02916
\(28\) −5.39253e34 −0.188982
\(29\) 9.41722e34 0.139692 0.0698461 0.997558i \(-0.477749\pi\)
0.0698461 + 0.997558i \(0.477749\pi\)
\(30\) −7.38437e35 −0.477356
\(31\) 5.15961e36 1.49367 0.746836 0.665008i \(-0.231572\pi\)
0.746836 + 0.665008i \(0.231572\pi\)
\(32\) 1.32923e36 0.176777
\(33\) 4.64220e36 0.290490
\(34\) −2.49269e37 −0.750647
\(35\) 2.63074e37 0.389413
\(36\) −3.84382e37 −0.285333
\(37\) −2.16463e38 −0.821187 −0.410593 0.911819i \(-0.634678\pi\)
−0.410593 + 0.911819i \(0.634678\pi\)
\(38\) 5.18043e38 1.02251
\(39\) −3.62127e38 −0.378249
\(40\) −6.48462e38 −0.364263
\(41\) −2.53591e39 −0.777909 −0.388955 0.921257i \(-0.627164\pi\)
−0.388955 + 0.921257i \(0.627164\pi\)
\(42\) −1.03025e39 −0.175119
\(43\) 1.22952e40 1.17425 0.587123 0.809498i \(-0.300261\pi\)
0.587123 + 0.809498i \(0.300261\pi\)
\(44\) 4.07657e39 0.221669
\(45\) 1.87520e40 0.587952
\(46\) −2.56647e40 −0.469645
\(47\) −1.81487e41 −1.96086 −0.980431 0.196862i \(-0.936925\pi\)
−0.980431 + 0.196862i \(0.936925\pi\)
\(48\) 2.53950e40 0.163809
\(49\) 3.67034e40 0.142857
\(50\) 1.83282e40 0.0434866
\(51\) −4.76231e41 −0.695582
\(52\) −3.18003e41 −0.288636
\(53\) 4.05705e41 0.230915 0.115457 0.993312i \(-0.463167\pi\)
0.115457 + 0.993312i \(0.463167\pi\)
\(54\) −2.02122e42 −0.727724
\(55\) −1.98875e42 −0.456766
\(56\) −9.04717e41 −0.133631
\(57\) 9.89725e42 0.947503
\(58\) 1.57995e42 0.0987773
\(59\) 4.58148e43 1.88422 0.942110 0.335304i \(-0.108839\pi\)
0.942110 + 0.335304i \(0.108839\pi\)
\(60\) −1.23889e43 −0.337542
\(61\) 2.26993e43 0.412507 0.206253 0.978499i \(-0.433873\pi\)
0.206253 + 0.978499i \(0.433873\pi\)
\(62\) 8.65639e43 1.05619
\(63\) 2.61623e43 0.215691
\(64\) 2.23007e43 0.125000
\(65\) 1.55138e44 0.594757
\(66\) 7.78831e43 0.205408
\(67\) 2.24099e44 0.408891 0.204446 0.978878i \(-0.434461\pi\)
0.204446 + 0.978878i \(0.434461\pi\)
\(68\) −4.18205e44 −0.530787
\(69\) −4.90327e44 −0.435194
\(70\) 4.41365e44 0.275357
\(71\) −4.01377e44 −0.176898 −0.0884490 0.996081i \(-0.528191\pi\)
−0.0884490 + 0.996081i \(0.528191\pi\)
\(72\) −6.44886e44 −0.201761
\(73\) 2.86410e44 0.0639114 0.0319557 0.999489i \(-0.489826\pi\)
0.0319557 + 0.999489i \(0.489826\pi\)
\(74\) −3.63165e45 −0.580667
\(75\) 3.50162e44 0.0402966
\(76\) 8.69132e45 0.723024
\(77\) −2.77465e45 −0.167566
\(78\) −6.07548e45 −0.267462
\(79\) 5.06429e46 1.63176 0.815878 0.578225i \(-0.196254\pi\)
0.815878 + 0.578225i \(0.196254\pi\)
\(80\) −1.08794e46 −0.257573
\(81\) −5.93687e45 −0.103675
\(82\) −4.25455e46 −0.550065
\(83\) 3.41809e46 0.328375 0.164188 0.986429i \(-0.447500\pi\)
0.164188 + 0.986429i \(0.447500\pi\)
\(84\) −1.72847e46 −0.123828
\(85\) 2.04021e47 1.09373
\(86\) 2.06279e47 0.830317
\(87\) 3.01850e46 0.0915313
\(88\) 6.83935e46 0.156743
\(89\) 2.72157e47 0.472894 0.236447 0.971644i \(-0.424017\pi\)
0.236447 + 0.971644i \(0.424017\pi\)
\(90\) 3.14607e47 0.415745
\(91\) 2.16444e47 0.218188
\(92\) −4.30583e47 −0.332089
\(93\) 1.65381e48 0.978709
\(94\) −3.04484e48 −1.38654
\(95\) −4.24005e48 −1.48985
\(96\) 4.26057e47 0.115830
\(97\) 7.10658e48 1.49883 0.749416 0.662099i \(-0.230334\pi\)
0.749416 + 0.662099i \(0.230334\pi\)
\(98\) 6.15780e47 0.101015
\(99\) −1.97778e48 −0.252997
\(100\) 3.07497e47 0.0307497
\(101\) −6.02228e48 −0.471941 −0.235970 0.971760i \(-0.575827\pi\)
−0.235970 + 0.971760i \(0.575827\pi\)
\(102\) −7.98983e48 −0.491851
\(103\) 1.78934e49 0.867321 0.433661 0.901076i \(-0.357222\pi\)
0.433661 + 0.901076i \(0.357222\pi\)
\(104\) −5.33521e48 −0.204096
\(105\) 8.43231e48 0.255158
\(106\) 6.80660e48 0.163281
\(107\) −4.27868e49 −0.815468 −0.407734 0.913101i \(-0.633681\pi\)
−0.407734 + 0.913101i \(0.633681\pi\)
\(108\) −3.39105e49 −0.514578
\(109\) 1.43986e50 1.74330 0.871650 0.490128i \(-0.163050\pi\)
0.871650 + 0.490128i \(0.163050\pi\)
\(110\) −3.33657e49 −0.322982
\(111\) −6.93829e49 −0.538071
\(112\) −1.51786e49 −0.0944911
\(113\) 3.60646e49 0.180576 0.0902878 0.995916i \(-0.471221\pi\)
0.0902878 + 0.995916i \(0.471221\pi\)
\(114\) 1.66048e50 0.669986
\(115\) 2.10059e50 0.684297
\(116\) 2.65071e49 0.0698461
\(117\) 1.54282e50 0.329429
\(118\) 7.68645e50 1.33234
\(119\) 2.84644e50 0.401238
\(120\) −2.07852e50 −0.238678
\(121\) −8.57436e50 −0.803452
\(122\) 3.80831e50 0.291686
\(123\) −8.12835e50 −0.509714
\(124\) 1.45230e51 0.746836
\(125\) 2.28923e51 0.966929
\(126\) 4.38931e50 0.152517
\(127\) 6.59646e51 1.88851 0.944257 0.329210i \(-0.106782\pi\)
0.944257 + 0.329210i \(0.106782\pi\)
\(128\) 3.74144e50 0.0883883
\(129\) 3.94098e51 0.769408
\(130\) 2.60278e51 0.420557
\(131\) −1.09170e52 −1.46203 −0.731014 0.682363i \(-0.760952\pi\)
−0.731014 + 0.682363i \(0.760952\pi\)
\(132\) 1.30666e51 0.145245
\(133\) −5.91560e51 −0.546555
\(134\) 3.75976e51 0.289130
\(135\) 1.65432e52 1.06033
\(136\) −7.01631e51 −0.375323
\(137\) −1.37733e52 −0.615722 −0.307861 0.951431i \(-0.599613\pi\)
−0.307861 + 0.951431i \(0.599613\pi\)
\(138\) −8.22632e51 −0.307729
\(139\) 9.17613e51 0.287605 0.143803 0.989606i \(-0.454067\pi\)
0.143803 + 0.989606i \(0.454067\pi\)
\(140\) 7.40487e51 0.194707
\(141\) −5.81719e52 −1.28483
\(142\) −6.73399e51 −0.125086
\(143\) −1.63624e52 −0.255926
\(144\) −1.08194e52 −0.142666
\(145\) −1.29315e52 −0.143924
\(146\) 4.80517e51 0.0451922
\(147\) 1.17645e52 0.0936052
\(148\) −6.09290e52 −0.410593
\(149\) 1.25631e53 0.717850 0.358925 0.933366i \(-0.383143\pi\)
0.358925 + 0.933366i \(0.383143\pi\)
\(150\) 5.87474e51 0.0284940
\(151\) −2.12233e53 −0.874738 −0.437369 0.899282i \(-0.644090\pi\)
−0.437369 + 0.899282i \(0.644090\pi\)
\(152\) 1.45816e53 0.511255
\(153\) 2.02895e53 0.605804
\(154\) −4.65509e52 −0.118487
\(155\) −7.08503e53 −1.53892
\(156\) −1.01930e53 −0.189124
\(157\) 2.36274e53 0.374864 0.187432 0.982278i \(-0.439984\pi\)
0.187432 + 0.982278i \(0.439984\pi\)
\(158\) 8.49647e53 1.15383
\(159\) 1.30041e53 0.151304
\(160\) −1.82526e53 −0.182131
\(161\) 2.93069e53 0.251036
\(162\) −9.96042e52 −0.0733094
\(163\) −2.03035e54 −1.28521 −0.642605 0.766198i \(-0.722146\pi\)
−0.642605 + 0.766198i \(0.722146\pi\)
\(164\) −7.13795e53 −0.388955
\(165\) −6.37453e53 −0.299290
\(166\) 5.73460e53 0.232196
\(167\) 1.30417e54 0.455807 0.227903 0.973684i \(-0.426813\pi\)
0.227903 + 0.973684i \(0.426813\pi\)
\(168\) −2.89989e53 −0.0875596
\(169\) −2.55383e54 −0.666758
\(170\) 3.42290e54 0.773384
\(171\) −4.21667e54 −0.825210
\(172\) 3.46079e54 0.587123
\(173\) −5.53279e54 −0.814357 −0.407178 0.913349i \(-0.633487\pi\)
−0.407178 + 0.913349i \(0.633487\pi\)
\(174\) 5.06421e53 0.0647224
\(175\) −2.09292e53 −0.0232446
\(176\) 1.14745e54 0.110834
\(177\) 1.46850e55 1.23461
\(178\) 4.56603e54 0.334387
\(179\) 2.88535e54 0.184204 0.0921020 0.995750i \(-0.470641\pi\)
0.0921020 + 0.995750i \(0.470641\pi\)
\(180\) 5.27823e54 0.293976
\(181\) 1.12761e55 0.548319 0.274160 0.961684i \(-0.411600\pi\)
0.274160 + 0.961684i \(0.411600\pi\)
\(182\) 3.63132e54 0.154282
\(183\) 7.27580e54 0.270289
\(184\) −7.22398e54 −0.234823
\(185\) 2.97241e55 0.846061
\(186\) 2.77463e55 0.692051
\(187\) −2.15181e55 −0.470635
\(188\) −5.10839e55 −0.980431
\(189\) 2.30806e55 0.388985
\(190\) −7.11362e55 −1.05348
\(191\) 6.37104e55 0.829645 0.414823 0.909902i \(-0.363844\pi\)
0.414823 + 0.909902i \(0.363844\pi\)
\(192\) 7.14806e54 0.0819045
\(193\) −5.35370e55 −0.540132 −0.270066 0.962842i \(-0.587045\pi\)
−0.270066 + 0.962842i \(0.587045\pi\)
\(194\) 1.19229e56 1.05983
\(195\) 4.97262e55 0.389706
\(196\) 1.03311e55 0.0714286
\(197\) 2.63990e55 0.161126 0.0805630 0.996750i \(-0.474328\pi\)
0.0805630 + 0.996750i \(0.474328\pi\)
\(198\) −3.31816e55 −0.178896
\(199\) 2.20414e56 1.05036 0.525180 0.850991i \(-0.323998\pi\)
0.525180 + 0.850991i \(0.323998\pi\)
\(200\) 5.15894e54 0.0217433
\(201\) 7.18305e55 0.267920
\(202\) −1.01037e56 −0.333713
\(203\) −1.80416e55 −0.0527987
\(204\) −1.34047e56 −0.347791
\(205\) 3.48224e56 0.801473
\(206\) 3.00201e56 0.613289
\(207\) 2.08901e56 0.379024
\(208\) −8.95100e55 −0.144318
\(209\) 4.47199e56 0.641087
\(210\) 1.41471e56 0.180424
\(211\) 5.17597e56 0.587587 0.293793 0.955869i \(-0.405082\pi\)
0.293793 + 0.955869i \(0.405082\pi\)
\(212\) 1.14196e56 0.115457
\(213\) −1.28653e56 −0.115910
\(214\) −7.17843e56 −0.576623
\(215\) −1.68834e57 −1.20981
\(216\) −5.68923e56 −0.363862
\(217\) −9.88485e56 −0.564555
\(218\) 2.41569e57 1.23270
\(219\) 9.18030e55 0.0418771
\(220\) −5.59783e56 −0.228383
\(221\) 1.67858e57 0.612816
\(222\) −1.16405e57 −0.380474
\(223\) −2.09516e57 −0.613407 −0.306703 0.951805i \(-0.599226\pi\)
−0.306703 + 0.951805i \(0.599226\pi\)
\(224\) −2.54655e56 −0.0668153
\(225\) −1.49184e56 −0.0350955
\(226\) 6.05063e56 0.127686
\(227\) 5.03761e57 0.954094 0.477047 0.878878i \(-0.341707\pi\)
0.477047 + 0.878878i \(0.341707\pi\)
\(228\) 2.78583e57 0.473751
\(229\) 1.15787e58 1.76885 0.884424 0.466685i \(-0.154552\pi\)
0.884424 + 0.466685i \(0.154552\pi\)
\(230\) 3.52421e57 0.483871
\(231\) −8.89358e56 −0.109795
\(232\) 4.44716e56 0.0493886
\(233\) 1.05442e58 1.05388 0.526942 0.849901i \(-0.323338\pi\)
0.526942 + 0.849901i \(0.323338\pi\)
\(234\) 2.58842e57 0.232941
\(235\) 2.49212e58 2.02026
\(236\) 1.28957e58 0.942110
\(237\) 1.62326e58 1.06919
\(238\) 4.77553e57 0.283718
\(239\) 1.75410e58 0.940387 0.470193 0.882563i \(-0.344184\pi\)
0.470193 + 0.882563i \(0.344184\pi\)
\(240\) −3.48717e57 −0.168771
\(241\) 1.07418e58 0.469524 0.234762 0.972053i \(-0.424569\pi\)
0.234762 + 0.972053i \(0.424569\pi\)
\(242\) −1.43854e58 −0.568127
\(243\) 2.69264e58 0.961225
\(244\) 6.38928e57 0.206253
\(245\) −5.04000e57 −0.147184
\(246\) −1.36371e58 −0.360423
\(247\) −3.48849e58 −0.834762
\(248\) 2.43656e58 0.528093
\(249\) 1.09560e58 0.215163
\(250\) 3.84069e58 0.683722
\(251\) 1.95389e58 0.315423 0.157711 0.987485i \(-0.449588\pi\)
0.157711 + 0.987485i \(0.449588\pi\)
\(252\) 7.36404e57 0.107846
\(253\) −2.21550e58 −0.294455
\(254\) 1.10670e59 1.33538
\(255\) 6.53947e58 0.716652
\(256\) 6.27710e57 0.0625000
\(257\) −1.23033e58 −0.111342 −0.0556711 0.998449i \(-0.517730\pi\)
−0.0556711 + 0.998449i \(0.517730\pi\)
\(258\) 6.61187e58 0.544054
\(259\) 4.14703e58 0.310379
\(260\) 4.36673e58 0.297379
\(261\) −1.28602e58 −0.0797175
\(262\) −1.83156e59 −1.03381
\(263\) 1.33616e58 0.0686980 0.0343490 0.999410i \(-0.489064\pi\)
0.0343490 + 0.999410i \(0.489064\pi\)
\(264\) 2.19221e58 0.102704
\(265\) −5.57103e58 −0.237909
\(266\) −9.92473e58 −0.386473
\(267\) 8.72344e58 0.309857
\(268\) 6.30783e58 0.204446
\(269\) −1.51315e59 −0.447664 −0.223832 0.974628i \(-0.571857\pi\)
−0.223832 + 0.974628i \(0.571857\pi\)
\(270\) 2.77548e59 0.749767
\(271\) 3.78095e59 0.932940 0.466470 0.884537i \(-0.345526\pi\)
0.466470 + 0.884537i \(0.345526\pi\)
\(272\) −1.17714e59 −0.265394
\(273\) 6.93767e58 0.142965
\(274\) −2.31078e59 −0.435382
\(275\) 1.58218e58 0.0272649
\(276\) −1.38015e59 −0.217597
\(277\) 7.02874e59 1.01420 0.507099 0.861888i \(-0.330718\pi\)
0.507099 + 0.861888i \(0.330718\pi\)
\(278\) 1.53950e59 0.203368
\(279\) −7.04596e59 −0.852388
\(280\) 1.24233e59 0.137678
\(281\) 1.00237e60 1.01794 0.508969 0.860785i \(-0.330027\pi\)
0.508969 + 0.860785i \(0.330027\pi\)
\(282\) −9.75962e59 −0.908510
\(283\) 8.91573e59 0.761008 0.380504 0.924779i \(-0.375751\pi\)
0.380504 + 0.924779i \(0.375751\pi\)
\(284\) −1.12978e59 −0.0884490
\(285\) −1.35906e60 −0.976204
\(286\) −2.74515e59 −0.180967
\(287\) 4.85832e59 0.294022
\(288\) −1.81519e59 −0.100880
\(289\) 2.48656e59 0.126941
\(290\) −2.16954e59 −0.101769
\(291\) 2.27787e60 0.982089
\(292\) 8.06173e58 0.0319557
\(293\) −3.70515e59 −0.135067 −0.0675334 0.997717i \(-0.521513\pi\)
−0.0675334 + 0.997717i \(0.521513\pi\)
\(294\) 1.97376e59 0.0661888
\(295\) −6.29116e60 −1.94129
\(296\) −1.02222e60 −0.290333
\(297\) −1.74481e60 −0.456263
\(298\) 2.10774e60 0.507596
\(299\) 1.72826e60 0.383411
\(300\) 9.85618e58 0.0201483
\(301\) −2.35553e60 −0.443823
\(302\) −3.56068e60 −0.618533
\(303\) −1.93032e60 −0.309233
\(304\) 2.44639e60 0.361512
\(305\) −3.11700e60 −0.425002
\(306\) 3.40402e60 0.428368
\(307\) −1.43845e61 −1.67110 −0.835551 0.549413i \(-0.814852\pi\)
−0.835551 + 0.549413i \(0.814852\pi\)
\(308\) −7.80994e59 −0.0837828
\(309\) 5.73536e60 0.568300
\(310\) −1.18867e61 −1.08818
\(311\) 6.29091e60 0.532211 0.266106 0.963944i \(-0.414263\pi\)
0.266106 + 0.963944i \(0.414263\pi\)
\(312\) −1.71010e60 −0.133731
\(313\) −1.25838e61 −0.909865 −0.454933 0.890526i \(-0.650337\pi\)
−0.454933 + 0.890526i \(0.650337\pi\)
\(314\) 3.96402e60 0.265069
\(315\) −3.59254e60 −0.222225
\(316\) 1.42547e61 0.815878
\(317\) −2.47540e61 −1.31128 −0.655638 0.755076i \(-0.727600\pi\)
−0.655638 + 0.755076i \(0.727600\pi\)
\(318\) 2.18172e60 0.106988
\(319\) 1.36389e60 0.0619307
\(320\) −3.06228e60 −0.128786
\(321\) −1.37144e61 −0.534324
\(322\) 4.91688e60 0.177509
\(323\) −4.58770e61 −1.53509
\(324\) −1.67108e60 −0.0518376
\(325\) −1.23422e60 −0.0355018
\(326\) −3.40636e61 −0.908781
\(327\) 4.61519e61 1.14227
\(328\) −1.19755e61 −0.275033
\(329\) 3.47694e61 0.741136
\(330\) −1.06947e61 −0.211630
\(331\) −9.91929e61 −1.82261 −0.911307 0.411727i \(-0.864926\pi\)
−0.911307 + 0.411727i \(0.864926\pi\)
\(332\) 9.62107e60 0.164188
\(333\) 2.95602e61 0.468623
\(334\) 2.18803e61 0.322304
\(335\) −3.07727e61 −0.421277
\(336\) −4.86520e60 −0.0619140
\(337\) −1.21001e62 −1.43171 −0.715855 0.698249i \(-0.753963\pi\)
−0.715855 + 0.698249i \(0.753963\pi\)
\(338\) −4.28462e61 −0.471469
\(339\) 1.15598e61 0.118320
\(340\) 5.74267e61 0.546865
\(341\) 7.47260e61 0.662201
\(342\) −7.07439e61 −0.583512
\(343\) −7.03168e60 −0.0539949
\(344\) 5.80625e61 0.415158
\(345\) 6.73303e61 0.448376
\(346\) −9.28248e61 −0.575837
\(347\) −1.81045e62 −1.04644 −0.523220 0.852198i \(-0.675269\pi\)
−0.523220 + 0.852198i \(0.675269\pi\)
\(348\) 8.49633e60 0.0457657
\(349\) 3.09486e62 1.55388 0.776942 0.629572i \(-0.216770\pi\)
0.776942 + 0.629572i \(0.216770\pi\)
\(350\) −3.51134e60 −0.0164364
\(351\) 1.36109e62 0.594103
\(352\) 1.92510e61 0.0783717
\(353\) 4.83424e62 1.83590 0.917948 0.396701i \(-0.129845\pi\)
0.917948 + 0.396701i \(0.129845\pi\)
\(354\) 2.46374e62 0.873001
\(355\) 5.51159e61 0.182256
\(356\) 7.66053e61 0.236447
\(357\) 9.12369e61 0.262905
\(358\) 4.84081e61 0.130252
\(359\) −1.78585e62 −0.448777 −0.224388 0.974500i \(-0.572038\pi\)
−0.224388 + 0.974500i \(0.572038\pi\)
\(360\) 8.85539e61 0.207872
\(361\) 4.97477e62 1.09106
\(362\) 1.89181e62 0.387720
\(363\) −2.74834e62 −0.526451
\(364\) 6.09235e61 0.109094
\(365\) −3.93291e61 −0.0658473
\(366\) 1.22068e62 0.191123
\(367\) 8.69990e62 1.27408 0.637039 0.770832i \(-0.280159\pi\)
0.637039 + 0.770832i \(0.280159\pi\)
\(368\) −1.21198e62 −0.166045
\(369\) 3.46303e62 0.443926
\(370\) 4.98688e62 0.598256
\(371\) −7.77254e61 −0.0872775
\(372\) 4.65506e62 0.489354
\(373\) −1.32784e63 −1.30701 −0.653504 0.756923i \(-0.726702\pi\)
−0.653504 + 0.756923i \(0.726702\pi\)
\(374\) −3.61014e62 −0.332790
\(375\) 7.33767e62 0.633567
\(376\) −8.57046e62 −0.693269
\(377\) −1.06393e62 −0.0806402
\(378\) 3.87228e62 0.275054
\(379\) 1.30257e63 0.867242 0.433621 0.901095i \(-0.357236\pi\)
0.433621 + 0.901095i \(0.357236\pi\)
\(380\) −1.19347e63 −0.744925
\(381\) 2.11436e63 1.23742
\(382\) 1.06888e63 0.586648
\(383\) −1.95459e63 −1.00621 −0.503103 0.864227i \(-0.667808\pi\)
−0.503103 + 0.864227i \(0.667808\pi\)
\(384\) 1.19924e62 0.0579152
\(385\) 3.81007e62 0.172641
\(386\) −8.98201e62 −0.381931
\(387\) −1.67903e63 −0.670101
\(388\) 2.00032e63 0.749416
\(389\) −6.20777e62 −0.218359 −0.109179 0.994022i \(-0.534822\pi\)
−0.109179 + 0.994022i \(0.534822\pi\)
\(390\) 8.34268e62 0.275564
\(391\) 2.27283e63 0.705075
\(392\) 1.73327e62 0.0505076
\(393\) −3.49922e63 −0.957973
\(394\) 4.42902e62 0.113933
\(395\) −6.95414e63 −1.68118
\(396\) −5.56696e62 −0.126499
\(397\) 1.99504e63 0.426170 0.213085 0.977034i \(-0.431649\pi\)
0.213085 + 0.977034i \(0.431649\pi\)
\(398\) 3.69793e63 0.742717
\(399\) −1.89613e63 −0.358122
\(400\) 8.65526e61 0.0153748
\(401\) 9.18415e63 1.53462 0.767311 0.641275i \(-0.221594\pi\)
0.767311 + 0.641275i \(0.221594\pi\)
\(402\) 1.20512e63 0.189448
\(403\) −5.82920e63 −0.862254
\(404\) −1.69512e63 −0.235970
\(405\) 8.15235e62 0.106816
\(406\) −3.02688e62 −0.0373343
\(407\) −3.13501e63 −0.364062
\(408\) −2.24894e63 −0.245925
\(409\) −9.32356e63 −0.960198 −0.480099 0.877214i \(-0.659399\pi\)
−0.480099 + 0.877214i \(0.659399\pi\)
\(410\) 5.84223e63 0.566727
\(411\) −4.41476e63 −0.403444
\(412\) 5.03653e63 0.433661
\(413\) −8.77726e63 −0.712168
\(414\) 3.50477e63 0.268010
\(415\) −4.69363e63 −0.338322
\(416\) −1.50173e63 −0.102048
\(417\) 2.94122e63 0.188449
\(418\) 7.50275e63 0.453317
\(419\) −1.73453e64 −0.988414 −0.494207 0.869344i \(-0.664541\pi\)
−0.494207 + 0.869344i \(0.664541\pi\)
\(420\) 2.37348e63 0.127579
\(421\) −7.81333e63 −0.396210 −0.198105 0.980181i \(-0.563479\pi\)
−0.198105 + 0.980181i \(0.563479\pi\)
\(422\) 8.68384e63 0.415486
\(423\) 2.47838e64 1.11900
\(424\) 1.91589e63 0.0816406
\(425\) −1.62312e63 −0.0652861
\(426\) −2.15844e63 −0.0819607
\(427\) −4.34876e63 −0.155913
\(428\) −1.20434e64 −0.407734
\(429\) −5.24464e63 −0.167692
\(430\) −2.83257e64 −0.855468
\(431\) −2.27308e64 −0.648518 −0.324259 0.945968i \(-0.605115\pi\)
−0.324259 + 0.945968i \(0.605115\pi\)
\(432\) −9.54494e63 −0.257289
\(433\) 3.22129e64 0.820497 0.410248 0.911974i \(-0.365442\pi\)
0.410248 + 0.911974i \(0.365442\pi\)
\(434\) −1.65840e64 −0.399201
\(435\) −4.14492e63 −0.0943039
\(436\) 4.05286e64 0.871650
\(437\) −4.72349e64 −0.960434
\(438\) 1.54020e63 0.0296116
\(439\) −8.47376e64 −1.54062 −0.770309 0.637670i \(-0.779898\pi\)
−0.770309 + 0.637670i \(0.779898\pi\)
\(440\) −9.39160e63 −0.161491
\(441\) −5.01221e63 −0.0815237
\(442\) 2.81618e64 0.433327
\(443\) −1.16580e65 −1.69720 −0.848602 0.529032i \(-0.822555\pi\)
−0.848602 + 0.529032i \(0.822555\pi\)
\(444\) −1.95296e64 −0.269036
\(445\) −3.73718e64 −0.487218
\(446\) −3.51510e64 −0.433744
\(447\) 4.02685e64 0.470361
\(448\) −4.27240e63 −0.0472456
\(449\) −1.08285e65 −1.13379 −0.566897 0.823788i \(-0.691856\pi\)
−0.566897 + 0.823788i \(0.691856\pi\)
\(450\) −2.50290e63 −0.0248163
\(451\) −3.67272e64 −0.344876
\(452\) 1.01513e64 0.0902878
\(453\) −6.80271e64 −0.573160
\(454\) 8.45171e64 0.674647
\(455\) −2.97214e64 −0.224797
\(456\) 4.67384e64 0.334993
\(457\) 2.03773e65 1.38420 0.692101 0.721801i \(-0.256685\pi\)
0.692101 + 0.721801i \(0.256685\pi\)
\(458\) 1.94258e65 1.25076
\(459\) 1.78996e65 1.09253
\(460\) 5.91264e64 0.342149
\(461\) 3.48744e64 0.191353 0.0956763 0.995413i \(-0.469499\pi\)
0.0956763 + 0.995413i \(0.469499\pi\)
\(462\) −1.49209e64 −0.0776368
\(463\) 1.63807e65 0.808348 0.404174 0.914682i \(-0.367559\pi\)
0.404174 + 0.914682i \(0.367559\pi\)
\(464\) 7.46109e63 0.0349230
\(465\) −2.27097e65 −1.00835
\(466\) 1.76902e65 0.745209
\(467\) −3.21155e65 −1.28366 −0.641832 0.766846i \(-0.721825\pi\)
−0.641832 + 0.766846i \(0.721825\pi\)
\(468\) 4.34265e64 0.164714
\(469\) −4.29332e64 −0.154546
\(470\) 4.18109e65 1.42854
\(471\) 7.57328e64 0.245625
\(472\) 2.16354e65 0.666172
\(473\) 1.78070e65 0.520587
\(474\) 2.72337e65 0.756028
\(475\) 3.37323e64 0.0889310
\(476\) 8.01202e64 0.200619
\(477\) −5.54030e64 −0.131775
\(478\) 2.94290e65 0.664954
\(479\) 4.15329e65 0.891604 0.445802 0.895132i \(-0.352919\pi\)
0.445802 + 0.895132i \(0.352919\pi\)
\(480\) −5.85050e64 −0.119339
\(481\) 2.44555e65 0.474047
\(482\) 1.80217e65 0.332004
\(483\) 9.39374e64 0.164488
\(484\) −2.41347e65 −0.401726
\(485\) −9.75855e65 −1.54423
\(486\) 4.51751e65 0.679689
\(487\) −3.75635e65 −0.537411 −0.268705 0.963222i \(-0.586596\pi\)
−0.268705 + 0.963222i \(0.586596\pi\)
\(488\) 1.07194e65 0.145843
\(489\) −6.50787e65 −0.842116
\(490\) −8.45572e64 −0.104075
\(491\) 6.08801e65 0.712818 0.356409 0.934330i \(-0.384001\pi\)
0.356409 + 0.934330i \(0.384001\pi\)
\(492\) −2.28793e65 −0.254857
\(493\) −1.39918e65 −0.148294
\(494\) −5.85272e65 −0.590266
\(495\) 2.71583e65 0.260661
\(496\) 4.08787e65 0.373418
\(497\) 7.68963e64 0.0668611
\(498\) 1.83811e65 0.152143
\(499\) 1.05957e66 0.834965 0.417482 0.908685i \(-0.362913\pi\)
0.417482 + 0.908685i \(0.362913\pi\)
\(500\) 6.44361e65 0.483464
\(501\) 4.18025e65 0.298661
\(502\) 3.27808e65 0.223038
\(503\) −4.44566e65 −0.288085 −0.144042 0.989572i \(-0.546010\pi\)
−0.144042 + 0.989572i \(0.546010\pi\)
\(504\) 1.23548e65 0.0762584
\(505\) 8.26963e65 0.486236
\(506\) −3.71699e65 −0.208211
\(507\) −8.18580e65 −0.436884
\(508\) 1.85674e66 0.944257
\(509\) 1.95401e65 0.0946980 0.0473490 0.998878i \(-0.484923\pi\)
0.0473490 + 0.998878i \(0.484923\pi\)
\(510\) 1.09714e66 0.506749
\(511\) −5.48708e64 −0.0241562
\(512\) 1.05312e65 0.0441942
\(513\) −3.71997e66 −1.48821
\(514\) −2.06415e65 −0.0787308
\(515\) −2.45707e66 −0.893593
\(516\) 1.10929e66 0.384704
\(517\) −2.62845e66 −0.869323
\(518\) 6.95756e65 0.219471
\(519\) −1.77343e66 −0.533596
\(520\) 7.32616e65 0.210278
\(521\) 2.36176e66 0.646714 0.323357 0.946277i \(-0.395189\pi\)
0.323357 + 0.946277i \(0.395189\pi\)
\(522\) −2.15758e65 −0.0563688
\(523\) −5.44692e66 −1.35787 −0.678937 0.734197i \(-0.737559\pi\)
−0.678937 + 0.734197i \(0.737559\pi\)
\(524\) −3.07285e66 −0.731014
\(525\) −6.70845e64 −0.0152307
\(526\) 2.24171e65 0.0485768
\(527\) −7.66595e66 −1.58565
\(528\) 3.67793e65 0.0726226
\(529\) −2.96464e66 −0.558867
\(530\) −9.34663e65 −0.168227
\(531\) −6.25647e66 −1.07526
\(532\) −1.66509e66 −0.273277
\(533\) 2.86501e66 0.449065
\(534\) 1.46355e66 0.219102
\(535\) 5.87536e66 0.840170
\(536\) 1.05828e66 0.144565
\(537\) 9.24840e65 0.120697
\(538\) −2.53865e66 −0.316546
\(539\) 5.31570e65 0.0633339
\(540\) 4.65649e66 0.530165
\(541\) −8.98029e66 −0.977141 −0.488571 0.872524i \(-0.662481\pi\)
−0.488571 + 0.872524i \(0.662481\pi\)
\(542\) 6.34338e66 0.659688
\(543\) 3.61432e66 0.359278
\(544\) −1.97492e66 −0.187662
\(545\) −1.97718e67 −1.79611
\(546\) 1.16395e66 0.101091
\(547\) 1.18439e67 0.983566 0.491783 0.870718i \(-0.336345\pi\)
0.491783 + 0.870718i \(0.336345\pi\)
\(548\) −3.87685e66 −0.307861
\(549\) −3.09981e66 −0.235403
\(550\) 2.65445e65 0.0192792
\(551\) 2.90783e66 0.202002
\(552\) −2.31550e66 −0.153864
\(553\) −9.70223e66 −0.616746
\(554\) 1.17923e67 0.717147
\(555\) 9.52747e66 0.554370
\(556\) 2.58285e66 0.143803
\(557\) 2.88034e67 1.53459 0.767293 0.641297i \(-0.221603\pi\)
0.767293 + 0.641297i \(0.221603\pi\)
\(558\) −1.18212e67 −0.602729
\(559\) −1.38908e67 −0.677858
\(560\) 2.08429e66 0.0973533
\(561\) −6.89720e66 −0.308377
\(562\) 1.68169e67 0.719791
\(563\) −3.18805e67 −1.30638 −0.653189 0.757194i \(-0.726569\pi\)
−0.653189 + 0.757194i \(0.726569\pi\)
\(564\) −1.63739e67 −0.642414
\(565\) −4.95229e66 −0.186045
\(566\) 1.49581e67 0.538114
\(567\) 1.13739e66 0.0391855
\(568\) −1.89545e66 −0.0625429
\(569\) 5.26063e67 1.66260 0.831299 0.555826i \(-0.187598\pi\)
0.831299 + 0.555826i \(0.187598\pi\)
\(570\) −2.28013e67 −0.690280
\(571\) 2.72418e66 0.0790044 0.0395022 0.999219i \(-0.487423\pi\)
0.0395022 + 0.999219i \(0.487423\pi\)
\(572\) −4.60560e66 −0.127963
\(573\) 2.04211e67 0.543614
\(574\) 8.15092e66 0.207905
\(575\) −1.67116e66 −0.0408465
\(576\) −3.04539e66 −0.0713332
\(577\) 1.74337e67 0.391365 0.195682 0.980667i \(-0.437308\pi\)
0.195682 + 0.980667i \(0.437308\pi\)
\(578\) 4.17175e66 0.0897607
\(579\) −1.71602e67 −0.353914
\(580\) −3.63989e66 −0.0719618
\(581\) −6.54842e66 −0.124114
\(582\) 3.82163e67 0.694442
\(583\) 5.87577e66 0.102373
\(584\) 1.35253e66 0.0225961
\(585\) −2.11856e67 −0.339408
\(586\) −6.21621e66 −0.0955067
\(587\) 1.76536e67 0.260136 0.130068 0.991505i \(-0.458480\pi\)
0.130068 + 0.991505i \(0.458480\pi\)
\(588\) 3.31142e66 0.0468026
\(589\) 1.59317e68 2.15992
\(590\) −1.05548e68 −1.37270
\(591\) 8.46168e66 0.105576
\(592\) −1.71500e67 −0.205297
\(593\) 5.15076e67 0.591604 0.295802 0.955249i \(-0.404413\pi\)
0.295802 + 0.955249i \(0.404413\pi\)
\(594\) −2.92731e67 −0.322627
\(595\) −3.90865e67 −0.413391
\(596\) 3.53620e67 0.358925
\(597\) 7.06492e67 0.688234
\(598\) 2.89954e67 0.271113
\(599\) −3.92603e67 −0.352368 −0.176184 0.984357i \(-0.556375\pi\)
−0.176184 + 0.984357i \(0.556375\pi\)
\(600\) 1.65359e66 0.0142470
\(601\) −2.70864e67 −0.224040 −0.112020 0.993706i \(-0.535732\pi\)
−0.112020 + 0.993706i \(0.535732\pi\)
\(602\) −3.95193e67 −0.313830
\(603\) −3.06030e67 −0.233340
\(604\) −5.97383e67 −0.437369
\(605\) 1.17741e68 0.827790
\(606\) −3.23854e67 −0.218661
\(607\) −9.36102e66 −0.0607016 −0.0303508 0.999539i \(-0.509662\pi\)
−0.0303508 + 0.999539i \(0.509662\pi\)
\(608\) 4.10436e67 0.255628
\(609\) −5.78288e66 −0.0345956
\(610\) −5.22946e67 −0.300522
\(611\) 2.05039e68 1.13195
\(612\) 5.71100e67 0.302902
\(613\) 2.92720e68 1.49166 0.745831 0.666135i \(-0.232052\pi\)
0.745831 + 0.666135i \(0.232052\pi\)
\(614\) −2.41331e68 −1.18165
\(615\) 1.11616e68 0.525154
\(616\) −1.31029e67 −0.0592434
\(617\) 2.81902e68 1.22493 0.612466 0.790497i \(-0.290178\pi\)
0.612466 + 0.790497i \(0.290178\pi\)
\(618\) 9.62234e67 0.401849
\(619\) 9.77354e67 0.392311 0.196156 0.980573i \(-0.437154\pi\)
0.196156 + 0.980573i \(0.437154\pi\)
\(620\) −1.99426e68 −0.769459
\(621\) 1.84294e68 0.683544
\(622\) 1.05544e68 0.376330
\(623\) −5.21401e67 −0.178737
\(624\) −2.86906e67 −0.0945622
\(625\) −3.33757e68 −1.05772
\(626\) −2.11122e68 −0.643372
\(627\) 1.43341e68 0.420063
\(628\) 6.65052e67 0.187432
\(629\) 3.21613e68 0.871751
\(630\) −6.02727e67 −0.157137
\(631\) 5.22565e67 0.131045 0.0655226 0.997851i \(-0.479129\pi\)
0.0655226 + 0.997851i \(0.479129\pi\)
\(632\) 2.39154e68 0.576913
\(633\) 1.65905e68 0.385008
\(634\) −4.15304e68 −0.927212
\(635\) −9.05808e68 −1.94572
\(636\) 3.66032e67 0.0756518
\(637\) −4.14666e67 −0.0824673
\(638\) 2.28822e67 0.0437916
\(639\) 5.48120e67 0.100950
\(640\) −5.13765e67 −0.0910657
\(641\) −8.37146e67 −0.142817 −0.0714084 0.997447i \(-0.522749\pi\)
−0.0714084 + 0.997447i \(0.522749\pi\)
\(642\) −2.30090e68 −0.377824
\(643\) −1.19279e69 −1.88537 −0.942686 0.333682i \(-0.891709\pi\)
−0.942686 + 0.333682i \(0.891709\pi\)
\(644\) 8.24916e67 0.125518
\(645\) −5.41165e68 −0.792714
\(646\) −7.69688e68 −1.08547
\(647\) −6.60049e68 −0.896234 −0.448117 0.893975i \(-0.647905\pi\)
−0.448117 + 0.893975i \(0.647905\pi\)
\(648\) −2.80361e67 −0.0366547
\(649\) 6.63530e68 0.835345
\(650\) −2.07068e67 −0.0251035
\(651\) −3.16839e68 −0.369917
\(652\) −5.71492e68 −0.642605
\(653\) −1.72958e69 −1.87313 −0.936563 0.350498i \(-0.886012\pi\)
−0.936563 + 0.350498i \(0.886012\pi\)
\(654\) 7.74301e68 0.807709
\(655\) 1.49909e69 1.50631
\(656\) −2.00915e68 −0.194477
\(657\) −3.91121e67 −0.0364720
\(658\) 5.83334e68 0.524062
\(659\) −2.16909e68 −0.187752 −0.0938759 0.995584i \(-0.529926\pi\)
−0.0938759 + 0.995584i \(0.529926\pi\)
\(660\) −1.79427e68 −0.149645
\(661\) −5.22963e68 −0.420277 −0.210138 0.977672i \(-0.567391\pi\)
−0.210138 + 0.977672i \(0.567391\pi\)
\(662\) −1.66418e69 −1.28878
\(663\) 5.38034e68 0.401540
\(664\) 1.61415e68 0.116098
\(665\) 8.12314e68 0.563110
\(666\) 4.95938e68 0.331366
\(667\) −1.44059e68 −0.0927805
\(668\) 3.67091e68 0.227903
\(669\) −6.71562e68 −0.401926
\(670\) −5.16280e68 −0.297888
\(671\) 3.28751e68 0.182880
\(672\) −8.16246e67 −0.0437798
\(673\) −2.34852e69 −1.21458 −0.607289 0.794481i \(-0.707743\pi\)
−0.607289 + 0.794481i \(0.707743\pi\)
\(674\) −2.03005e69 −1.01237
\(675\) −1.31612e68 −0.0632924
\(676\) −7.18840e68 −0.333379
\(677\) 3.32372e69 1.48663 0.743314 0.668943i \(-0.233253\pi\)
0.743314 + 0.668943i \(0.233253\pi\)
\(678\) 1.93941e68 0.0836646
\(679\) −1.36149e69 −0.566505
\(680\) 9.63460e68 0.386692
\(681\) 1.61471e69 0.625157
\(682\) 1.25369e69 0.468247
\(683\) 3.01824e69 1.08754 0.543771 0.839234i \(-0.316996\pi\)
0.543771 + 0.839234i \(0.316996\pi\)
\(684\) −1.18689e69 −0.412605
\(685\) 1.89131e69 0.634373
\(686\) −1.17972e68 −0.0381802
\(687\) 3.71132e69 1.15901
\(688\) 9.74127e68 0.293561
\(689\) −4.58355e68 −0.133300
\(690\) 1.12961e69 0.317050
\(691\) 3.56336e69 0.965268 0.482634 0.875822i \(-0.339680\pi\)
0.482634 + 0.875822i \(0.339680\pi\)
\(692\) −1.55734e69 −0.407178
\(693\) 3.78906e68 0.0956240
\(694\) −3.03743e69 −0.739944
\(695\) −1.26004e69 −0.296317
\(696\) 1.42545e68 0.0323612
\(697\) 3.76776e69 0.825809
\(698\) 5.19232e69 1.09876
\(699\) 3.37973e69 0.690543
\(700\) −5.89106e67 −0.0116223
\(701\) −8.77106e69 −1.67094 −0.835470 0.549536i \(-0.814805\pi\)
−0.835470 + 0.549536i \(0.814805\pi\)
\(702\) 2.28352e69 0.420094
\(703\) −6.68390e69 −1.18748
\(704\) 3.22979e68 0.0554171
\(705\) 7.98800e69 1.32375
\(706\) 8.11051e69 1.29817
\(707\) 1.15376e69 0.178377
\(708\) 4.13347e69 0.617305
\(709\) 5.59517e68 0.0807198 0.0403599 0.999185i \(-0.487150\pi\)
0.0403599 + 0.999185i \(0.487150\pi\)
\(710\) 9.24692e68 0.128875
\(711\) −6.91579e69 −0.931187
\(712\) 1.28522e69 0.167193
\(713\) −7.89285e69 −0.992066
\(714\) 1.53070e69 0.185902
\(715\) 2.24684e69 0.263678
\(716\) 8.12153e68 0.0921020
\(717\) 5.62242e69 0.616175
\(718\) −2.99616e69 −0.317333
\(719\) −1.47821e68 −0.0151314 −0.00756569 0.999971i \(-0.502408\pi\)
−0.00756569 + 0.999971i \(0.502408\pi\)
\(720\) 1.48569e69 0.146988
\(721\) −3.42803e69 −0.327817
\(722\) 8.34628e69 0.771492
\(723\) 3.44306e69 0.307649
\(724\) 3.17394e69 0.274160
\(725\) 1.02878e68 0.00859097
\(726\) −4.61095e69 −0.372257
\(727\) −9.28029e69 −0.724384 −0.362192 0.932104i \(-0.617971\pi\)
−0.362192 + 0.932104i \(0.617971\pi\)
\(728\) 1.02213e69 0.0771411
\(729\) 1.00514e70 0.733505
\(730\) −6.59832e68 −0.0465611
\(731\) −1.82678e70 −1.24655
\(732\) 2.04796e69 0.135145
\(733\) −2.15509e69 −0.137537 −0.0687683 0.997633i \(-0.521907\pi\)
−0.0687683 + 0.997633i \(0.521907\pi\)
\(734\) 1.45960e70 0.900909
\(735\) −1.61547e69 −0.0964405
\(736\) −2.03337e69 −0.117411
\(737\) 3.24560e69 0.181277
\(738\) 5.81001e69 0.313903
\(739\) −2.88670e70 −1.50874 −0.754368 0.656452i \(-0.772057\pi\)
−0.754368 + 0.656452i \(0.772057\pi\)
\(740\) 8.36660e69 0.423031
\(741\) −1.11817e70 −0.546966
\(742\) −1.30402e69 −0.0617145
\(743\) −1.66416e70 −0.762023 −0.381011 0.924570i \(-0.624424\pi\)
−0.381011 + 0.924570i \(0.624424\pi\)
\(744\) 7.80990e69 0.346026
\(745\) −1.72513e70 −0.739594
\(746\) −2.22774e70 −0.924194
\(747\) −4.66774e69 −0.187392
\(748\) −6.05681e69 −0.235318
\(749\) 8.19714e69 0.308218
\(750\) 1.23106e70 0.447999
\(751\) 4.39139e70 1.54676 0.773381 0.633941i \(-0.218564\pi\)
0.773381 + 0.633941i \(0.218564\pi\)
\(752\) −1.43789e70 −0.490216
\(753\) 6.26279e69 0.206677
\(754\) −1.78499e69 −0.0570213
\(755\) 2.91433e70 0.901235
\(756\) 6.49661e69 0.194492
\(757\) −4.35596e70 −1.26251 −0.631256 0.775575i \(-0.717460\pi\)
−0.631256 + 0.775575i \(0.717460\pi\)
\(758\) 2.18535e70 0.613233
\(759\) −7.10134e69 −0.192938
\(760\) −2.00231e70 −0.526742
\(761\) 4.87700e70 1.24231 0.621153 0.783689i \(-0.286664\pi\)
0.621153 + 0.783689i \(0.286664\pi\)
\(762\) 3.54731e70 0.874990
\(763\) −2.75851e70 −0.658906
\(764\) 1.79329e70 0.414823
\(765\) −2.78610e70 −0.624155
\(766\) −3.27926e70 −0.711495
\(767\) −5.17604e70 −1.08771
\(768\) 2.01200e69 0.0409523
\(769\) −1.77679e70 −0.350301 −0.175151 0.984542i \(-0.556041\pi\)
−0.175151 + 0.984542i \(0.556041\pi\)
\(770\) 6.39223e69 0.122076
\(771\) −3.94357e69 −0.0729554
\(772\) −1.50693e70 −0.270066
\(773\) −7.30568e69 −0.126842 −0.0634210 0.997987i \(-0.520201\pi\)
−0.0634210 + 0.997987i \(0.520201\pi\)
\(774\) −2.81695e70 −0.473833
\(775\) 5.63660e69 0.0918599
\(776\) 3.35599e70 0.529917
\(777\) 1.32925e70 0.203372
\(778\) −1.04149e70 −0.154403
\(779\) −7.83032e70 −1.12489
\(780\) 1.39967e70 0.194853
\(781\) −5.81309e69 −0.0784254
\(782\) 3.81317e70 0.498564
\(783\) −1.13453e70 −0.143765
\(784\) 2.90794e69 0.0357143
\(785\) −3.24445e70 −0.386219
\(786\) −5.87071e70 −0.677389
\(787\) −1.24388e71 −1.39123 −0.695615 0.718415i \(-0.744868\pi\)
−0.695615 + 0.718415i \(0.744868\pi\)
\(788\) 7.43067e69 0.0805630
\(789\) 4.28280e69 0.0450134
\(790\) −1.16671e71 −1.18878
\(791\) −6.90930e69 −0.0682511
\(792\) −9.33980e69 −0.0894480
\(793\) −2.56451e70 −0.238128
\(794\) 3.34711e70 0.301348
\(795\) −1.78568e70 −0.155887
\(796\) 6.20409e70 0.525180
\(797\) 9.59345e70 0.787491 0.393746 0.919219i \(-0.371179\pi\)
0.393746 + 0.919219i \(0.371179\pi\)
\(798\) −3.18117e70 −0.253231
\(799\) 2.69646e71 2.08160
\(800\) 1.45211e69 0.0108716
\(801\) −3.71657e70 −0.269864
\(802\) 1.54084e71 1.08514
\(803\) 4.14804e69 0.0283343
\(804\) 2.02185e70 0.133960
\(805\) −4.02434e70 −0.258640
\(806\) −9.77978e70 −0.609706
\(807\) −4.85011e70 −0.293326
\(808\) −2.84394e70 −0.166856
\(809\) −1.57627e71 −0.897204 −0.448602 0.893732i \(-0.648078\pi\)
−0.448602 + 0.893732i \(0.648078\pi\)
\(810\) 1.36774e70 0.0755300
\(811\) 1.06538e71 0.570810 0.285405 0.958407i \(-0.407872\pi\)
0.285405 + 0.958407i \(0.407872\pi\)
\(812\) −5.07827e69 −0.0263993
\(813\) 1.21191e71 0.611296
\(814\) −5.25967e70 −0.257431
\(815\) 2.78802e71 1.32414
\(816\) −3.77309e70 −0.173896
\(817\) 3.79649e71 1.69802
\(818\) −1.56423e71 −0.678962
\(819\) −2.95575e70 −0.124512
\(820\) 9.80163e70 0.400737
\(821\) −3.32636e71 −1.31996 −0.659981 0.751282i \(-0.729436\pi\)
−0.659981 + 0.751282i \(0.729436\pi\)
\(822\) −7.40674e70 −0.285278
\(823\) 4.08995e71 1.52905 0.764525 0.644594i \(-0.222974\pi\)
0.764525 + 0.644594i \(0.222974\pi\)
\(824\) 8.44990e70 0.306644
\(825\) 5.07135e69 0.0178650
\(826\) −1.47258e71 −0.503579
\(827\) 2.99049e71 0.992791 0.496396 0.868096i \(-0.334657\pi\)
0.496396 + 0.868096i \(0.334657\pi\)
\(828\) 5.88003e70 0.189512
\(829\) 1.25139e71 0.391568 0.195784 0.980647i \(-0.437275\pi\)
0.195784 + 0.980647i \(0.437275\pi\)
\(830\) −7.87460e70 −0.239230
\(831\) 2.25292e71 0.664540
\(832\) −2.51948e70 −0.0721589
\(833\) −5.45325e70 −0.151654
\(834\) 4.93456e70 0.133254
\(835\) −1.79085e71 −0.469613
\(836\) 1.25875e71 0.320543
\(837\) −6.21600e71 −1.53722
\(838\) −2.91006e71 −0.698914
\(839\) −7.79272e70 −0.181769 −0.0908847 0.995861i \(-0.528969\pi\)
−0.0908847 + 0.995861i \(0.528969\pi\)
\(840\) 3.98205e70 0.0902119
\(841\) −4.45598e71 −0.980486
\(842\) −1.31086e71 −0.280162
\(843\) 3.21288e71 0.666990
\(844\) 1.45691e71 0.293793
\(845\) 3.50685e71 0.686955
\(846\) 4.15803e71 0.791250
\(847\) 1.64269e71 0.303676
\(848\) 3.21432e70 0.0577286
\(849\) 2.85776e71 0.498640
\(850\) −2.72314e70 −0.0461642
\(851\) 3.31132e71 0.545415
\(852\) −3.62127e70 −0.0579550
\(853\) 3.64421e71 0.566698 0.283349 0.959017i \(-0.408555\pi\)
0.283349 + 0.959017i \(0.408555\pi\)
\(854\) −7.29600e70 −0.110247
\(855\) 5.79021e71 0.850206
\(856\) −2.02055e71 −0.288312
\(857\) 6.57061e71 0.911120 0.455560 0.890205i \(-0.349439\pi\)
0.455560 + 0.890205i \(0.349439\pi\)
\(858\) −8.79904e70 −0.118576
\(859\) 1.28942e72 1.68874 0.844370 0.535761i \(-0.179975\pi\)
0.844370 + 0.535761i \(0.179975\pi\)
\(860\) −4.75227e71 −0.604907
\(861\) 1.55724e71 0.192654
\(862\) −3.81360e71 −0.458571
\(863\) −1.66010e72 −1.94031 −0.970153 0.242494i \(-0.922034\pi\)
−0.970153 + 0.242494i \(0.922034\pi\)
\(864\) −1.60138e71 −0.181931
\(865\) 7.59748e71 0.839025
\(866\) 5.40443e71 0.580179
\(867\) 7.97016e70 0.0831762
\(868\) −2.78234e71 −0.282278
\(869\) 7.33455e71 0.723418
\(870\) −6.95403e70 −0.0666829
\(871\) −2.53182e71 −0.236041
\(872\) 6.79956e71 0.616350
\(873\) −9.70473e71 −0.855332
\(874\) −7.92470e71 −0.679130
\(875\) −4.38574e71 −0.365465
\(876\) 2.58403e70 0.0209385
\(877\) 2.69384e71 0.212267 0.106133 0.994352i \(-0.466153\pi\)
0.106133 + 0.994352i \(0.466153\pi\)
\(878\) −1.42166e72 −1.08938
\(879\) −1.18761e71 −0.0885007
\(880\) −1.57565e71 −0.114192
\(881\) 1.44383e72 1.01767 0.508835 0.860864i \(-0.330076\pi\)
0.508835 + 0.860864i \(0.330076\pi\)
\(882\) −8.40909e70 −0.0576459
\(883\) 2.32816e72 1.55230 0.776150 0.630549i \(-0.217170\pi\)
0.776150 + 0.630549i \(0.217170\pi\)
\(884\) 4.72477e71 0.306408
\(885\) −2.01651e72 −1.27201
\(886\) −1.95589e72 −1.20010
\(887\) −1.87379e72 −1.11839 −0.559193 0.829037i \(-0.688889\pi\)
−0.559193 + 0.829037i \(0.688889\pi\)
\(888\) −3.27652e71 −0.190237
\(889\) −1.26376e72 −0.713791
\(890\) −6.26995e71 −0.344515
\(891\) −8.59830e70 −0.0459631
\(892\) −5.89736e71 −0.306703
\(893\) −5.60390e72 −2.83550
\(894\) 6.75594e71 0.332595
\(895\) −3.96208e71 −0.189784
\(896\) −7.16790e70 −0.0334077
\(897\) 5.53959e71 0.251225
\(898\) −1.81673e72 −0.801714
\(899\) 4.85892e71 0.208654
\(900\) −4.19917e70 −0.0175478
\(901\) −6.02781e71 −0.245133
\(902\) −6.16181e71 −0.243864
\(903\) −7.55019e71 −0.290809
\(904\) 1.70310e71 0.0638431
\(905\) −1.54840e72 −0.564928
\(906\) −1.14130e72 −0.405285
\(907\) −2.89662e72 −1.00118 −0.500591 0.865684i \(-0.666884\pi\)
−0.500591 + 0.865684i \(0.666884\pi\)
\(908\) 1.41796e72 0.477047
\(909\) 8.22402e71 0.269320
\(910\) −4.98643e71 −0.158956
\(911\) 8.77445e71 0.272282 0.136141 0.990689i \(-0.456530\pi\)
0.136141 + 0.990689i \(0.456530\pi\)
\(912\) 7.84141e71 0.236876
\(913\) 4.95038e71 0.145581
\(914\) 3.41874e72 0.978778
\(915\) −9.99092e71 −0.278477
\(916\) 3.25911e72 0.884424
\(917\) 2.09149e72 0.552594
\(918\) 3.00305e72 0.772533
\(919\) 9.09736e71 0.227869 0.113935 0.993488i \(-0.463655\pi\)
0.113935 + 0.993488i \(0.463655\pi\)
\(920\) 9.91977e71 0.241936
\(921\) −4.61065e72 −1.09497
\(922\) 5.85096e71 0.135307
\(923\) 4.53466e71 0.102118
\(924\) −2.50332e71 −0.0548975
\(925\) −2.36475e71 −0.0505024
\(926\) 2.74823e72 0.571588
\(927\) −2.44352e72 −0.494950
\(928\) 1.25176e71 0.0246943
\(929\) 7.78119e72 1.49507 0.747535 0.664223i \(-0.231237\pi\)
0.747535 + 0.664223i \(0.231237\pi\)
\(930\) −3.81005e72 −0.713014
\(931\) 1.13332e72 0.206578
\(932\) 2.96792e72 0.526942
\(933\) 2.01643e72 0.348724
\(934\) −5.38809e72 −0.907687
\(935\) 2.95481e72 0.484891
\(936\) 7.28576e71 0.116471
\(937\) −4.79942e72 −0.747427 −0.373714 0.927544i \(-0.621916\pi\)
−0.373714 + 0.927544i \(0.621916\pi\)
\(938\) −7.20300e71 −0.109281
\(939\) −4.03350e72 −0.596177
\(940\) 7.01470e72 1.01013
\(941\) 9.46139e72 1.32742 0.663711 0.747989i \(-0.268980\pi\)
0.663711 + 0.747989i \(0.268980\pi\)
\(942\) 1.27059e72 0.173683
\(943\) 3.87927e72 0.516671
\(944\) 3.62982e72 0.471055
\(945\) −3.16936e72 −0.400767
\(946\) 2.98752e72 0.368110
\(947\) −8.54052e72 −1.02544 −0.512719 0.858556i \(-0.671362\pi\)
−0.512719 + 0.858556i \(0.671362\pi\)
\(948\) 4.56906e72 0.534593
\(949\) −3.23579e71 −0.0368942
\(950\) 5.65935e71 0.0628837
\(951\) −7.93441e72 −0.859195
\(952\) 1.34419e72 0.141859
\(953\) 1.43899e73 1.48007 0.740033 0.672570i \(-0.234810\pi\)
0.740033 + 0.672570i \(0.234810\pi\)
\(954\) −9.29508e71 −0.0931790
\(955\) −8.74853e72 −0.854776
\(956\) 4.93736e72 0.470193
\(957\) 4.37166e71 0.0405792
\(958\) 6.96806e72 0.630459
\(959\) 2.63871e72 0.232721
\(960\) −9.81551e71 −0.0843855
\(961\) 1.46893e73 1.23106
\(962\) 4.10295e72 0.335202
\(963\) 5.84296e72 0.465360
\(964\) 3.02354e72 0.234762
\(965\) 7.35154e72 0.556493
\(966\) 1.57601e72 0.116310
\(967\) −2.44383e73 −1.75842 −0.879210 0.476435i \(-0.841929\pi\)
−0.879210 + 0.476435i \(0.841929\pi\)
\(968\) −4.04913e72 −0.284063
\(969\) −1.47050e73 −1.00585
\(970\) −1.63721e73 −1.09194
\(971\) 2.40656e73 1.56504 0.782520 0.622625i \(-0.213934\pi\)
0.782520 + 0.622625i \(0.213934\pi\)
\(972\) 7.57912e72 0.480613
\(973\) −1.75797e72 −0.108705
\(974\) −6.30211e72 −0.380007
\(975\) −3.95604e71 −0.0232620
\(976\) 1.79842e72 0.103127
\(977\) 1.89189e73 1.05798 0.528992 0.848627i \(-0.322570\pi\)
0.528992 + 0.848627i \(0.322570\pi\)
\(978\) −1.09184e73 −0.595466
\(979\) 3.94161e72 0.209651
\(980\) −1.41864e72 −0.0735922
\(981\) −1.96628e73 −0.994842
\(982\) 1.02140e73 0.504039
\(983\) −3.42670e71 −0.0164936 −0.00824678 0.999966i \(-0.502625\pi\)
−0.00824678 + 0.999966i \(0.502625\pi\)
\(984\) −3.83850e72 −0.180211
\(985\) −3.62504e72 −0.166007
\(986\) −2.34743e72 −0.104859
\(987\) 1.11446e73 0.485619
\(988\) −9.81924e72 −0.417381
\(989\) −1.88084e73 −0.779909
\(990\) 4.55641e72 0.184315
\(991\) −5.00088e72 −0.197352 −0.0986761 0.995120i \(-0.531461\pi\)
−0.0986761 + 0.995120i \(0.531461\pi\)
\(992\) 6.85830e72 0.264047
\(993\) −3.17943e73 −1.19424
\(994\) 1.29011e72 0.0472780
\(995\) −3.02666e73 −1.08218
\(996\) 3.08384e72 0.107582
\(997\) 3.57944e73 1.21838 0.609191 0.793024i \(-0.291494\pi\)
0.609191 + 0.793024i \(0.291494\pi\)
\(998\) 1.77767e73 0.590409
\(999\) 2.60782e73 0.845130
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 14.50.a.c.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.50.a.c.1.4 6 1.1 even 1 trivial