Properties

Label 2-14-1.1-c49-0-1
Degree $2$
Conductor $14$
Sign $1$
Analytic cond. $212.892$
Root an. cond. $14.5908$
Motivic weight $49$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.67e7·2-s − 4.81e11·3-s + 2.81e14·4-s − 9.77e16·5-s − 8.07e18·6-s − 1.91e20·7-s + 4.72e21·8-s − 7.78e21·9-s − 1.63e24·10-s + 2.53e25·11-s − 1.35e26·12-s − 1.03e27·13-s − 3.21e27·14-s + 4.70e28·15-s + 7.92e28·16-s + 8.07e29·17-s − 1.30e29·18-s − 3.81e31·19-s − 2.75e31·20-s + 9.21e31·21-s + 4.26e32·22-s + 1.80e33·23-s − 2.27e33·24-s − 8.21e33·25-s − 1.74e34·26-s + 1.18e35·27-s − 5.39e34·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.983·3-s + 0.5·4-s − 0.733·5-s − 0.695·6-s − 0.377·7-s + 0.353·8-s − 0.0325·9-s − 0.518·10-s + 0.777·11-s − 0.491·12-s − 0.530·13-s − 0.267·14-s + 0.721·15-s + 0.250·16-s + 0.576·17-s − 0.0230·18-s − 1.78·19-s − 0.366·20-s + 0.371·21-s + 0.549·22-s + 0.784·23-s − 0.347·24-s − 0.462·25-s − 0.375·26-s + 1.01·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(50-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s+49/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14\)    =    \(2 \cdot 7\)
Sign: $1$
Analytic conductor: \(212.892\)
Root analytic conductor: \(14.5908\)
Motivic weight: \(49\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 14,\ (\ :49/2),\ 1)\)

Particular Values

\(L(25)\) \(\approx\) \(0.8628396972\)
\(L(\frac12)\) \(\approx\) \(0.8628396972\)
\(L(\frac{51}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 1.67e7T \)
7 \( 1 + 1.91e20T \)
good3 \( 1 + 4.81e11T + 2.39e23T^{2} \)
5 \( 1 + 9.77e16T + 1.77e34T^{2} \)
11 \( 1 - 2.53e25T + 1.06e51T^{2} \)
13 \( 1 + 1.03e27T + 3.83e54T^{2} \)
17 \( 1 - 8.07e29T + 1.95e60T^{2} \)
19 \( 1 + 3.81e31T + 4.55e62T^{2} \)
23 \( 1 - 1.80e33T + 5.30e66T^{2} \)
29 \( 1 + 1.04e36T + 4.54e71T^{2} \)
31 \( 1 - 2.15e36T + 1.19e73T^{2} \)
37 \( 1 + 4.78e38T + 6.94e76T^{2} \)
41 \( 1 + 2.69e38T + 1.06e79T^{2} \)
43 \( 1 + 1.37e40T + 1.09e80T^{2} \)
47 \( 1 + 6.92e40T + 8.56e81T^{2} \)
53 \( 1 - 1.63e42T + 3.08e84T^{2} \)
59 \( 1 + 2.25e43T + 5.91e86T^{2} \)
61 \( 1 - 5.72e43T + 3.02e87T^{2} \)
67 \( 1 - 7.90e43T + 3.00e89T^{2} \)
71 \( 1 + 4.06e45T + 5.14e90T^{2} \)
73 \( 1 - 4.94e45T + 2.00e91T^{2} \)
79 \( 1 + 6.03e46T + 9.63e92T^{2} \)
83 \( 1 + 2.77e46T + 1.08e94T^{2} \)
89 \( 1 - 1.26e46T + 3.31e95T^{2} \)
97 \( 1 + 4.45e48T + 2.24e97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.36610803357109562606675586292, −10.24688444875485666452905142038, −8.621550166580617839651840570498, −7.15283714525956097977179538758, −6.28809571151742885145360098407, −5.25281118060909158197256999763, −4.19879830932058351566376318980, −3.23518046144624203389066997807, −1.77786963773334805215347719723, −0.35243240421970505006579977209, 0.35243240421970505006579977209, 1.77786963773334805215347719723, 3.23518046144624203389066997807, 4.19879830932058351566376318980, 5.25281118060909158197256999763, 6.28809571151742885145360098407, 7.15283714525956097977179538758, 8.621550166580617839651840570498, 10.24688444875485666452905142038, 11.36610803357109562606675586292

Graph of the $Z$-function along the critical line