gp: [N,k,chi] = [1369,2,Mod(1,1369)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1369, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1369.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [27,9,-1,25,17,10]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(37\)
\( -1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1369))\):
\( T_{2}^{27} - 9 T_{2}^{26} + T_{2}^{25} + 215 T_{2}^{24} - 470 T_{2}^{23} - 1956 T_{2}^{22} + 7238 T_{2}^{21} + \cdots - 19 \)
T2^27 - 9*T2^26 + T2^25 + 215*T2^24 - 470*T2^23 - 1956*T2^22 + 7238*T2^21 + 7212*T2^20 - 52486*T2^19 + 5844*T2^18 + 217788*T2^17 - 157361*T2^16 - 539821*T2^15 + 642907*T2^14 + 768031*T2^13 - 1336470*T2^12 - 507157*T2^11 + 1553695*T2^10 - 53315*T2^9 - 967879*T2^8 + 266361*T2^7 + 275386*T2^6 - 117914*T2^5 - 21679*T2^4 + 11305*T2^3 + 817*T2^2 - 228*T2 - 19
\( T_{3}^{27} + T_{3}^{26} - 50 T_{3}^{25} - 44 T_{3}^{24} + 1099 T_{3}^{23} + 833 T_{3}^{22} - 14001 T_{3}^{21} + \cdots - 1369 \)
T3^27 + T3^26 - 50*T3^25 - 44*T3^24 + 1099*T3^23 + 833*T3^22 - 14001*T3^21 - 8910*T3^20 + 114675*T3^19 + 59542*T3^18 - 632577*T3^17 - 260347*T3^16 + 2391826*T3^15 + 763567*T3^14 - 6186095*T3^13 - 1535581*T3^12 + 10729719*T3^11 + 2184224*T3^10 - 11972770*T3^9 - 2245979*T3^8 + 7935702*T3^7 + 1574888*T3^6 - 2633955*T3^5 - 594156*T3^4 + 269690*T3^3 + 54924*T3^2 - 8214*T3 - 1369