Properties

Label 2-37e2-1.1-c1-0-9
Degree $2$
Conductor $1369$
Sign $1$
Analytic cond. $10.9315$
Root an. cond. $3.30628$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.938·2-s − 3.28·3-s − 1.12·4-s + 0.685·5-s + 3.07·6-s − 0.676·7-s + 2.92·8-s + 7.75·9-s − 0.642·10-s + 2.90·11-s + 3.67·12-s − 3.50·13-s + 0.634·14-s − 2.24·15-s − 0.504·16-s − 1.96·17-s − 7.27·18-s + 5.08·19-s − 0.767·20-s + 2.22·21-s − 2.72·22-s − 3.09·23-s − 9.59·24-s − 4.53·25-s + 3.28·26-s − 15.6·27-s + 0.758·28-s + ⋯
L(s)  = 1  − 0.663·2-s − 1.89·3-s − 0.560·4-s + 0.306·5-s + 1.25·6-s − 0.255·7-s + 1.03·8-s + 2.58·9-s − 0.203·10-s + 0.876·11-s + 1.06·12-s − 0.972·13-s + 0.169·14-s − 0.580·15-s − 0.126·16-s − 0.477·17-s − 1.71·18-s + 1.16·19-s − 0.171·20-s + 0.484·21-s − 0.581·22-s − 0.645·23-s − 1.95·24-s − 0.906·25-s + 0.644·26-s − 3.00·27-s + 0.143·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1369 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1369 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1369\)    =    \(37^{2}\)
Sign: $1$
Analytic conductor: \(10.9315\)
Root analytic conductor: \(3.30628\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1369,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4033809250\)
\(L(\frac12)\) \(\approx\) \(0.4033809250\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad37 \( 1 \)
good2 \( 1 + 0.938T + 2T^{2} \)
3 \( 1 + 3.28T + 3T^{2} \)
5 \( 1 - 0.685T + 5T^{2} \)
7 \( 1 + 0.676T + 7T^{2} \)
11 \( 1 - 2.90T + 11T^{2} \)
13 \( 1 + 3.50T + 13T^{2} \)
17 \( 1 + 1.96T + 17T^{2} \)
19 \( 1 - 5.08T + 19T^{2} \)
23 \( 1 + 3.09T + 23T^{2} \)
29 \( 1 + 5.09T + 29T^{2} \)
31 \( 1 - 4.42T + 31T^{2} \)
41 \( 1 - 2.50T + 41T^{2} \)
43 \( 1 - 2.65T + 43T^{2} \)
47 \( 1 + 1.75T + 47T^{2} \)
53 \( 1 + 1.47T + 53T^{2} \)
59 \( 1 - 3.94T + 59T^{2} \)
61 \( 1 - 8.66T + 61T^{2} \)
67 \( 1 - 7.09T + 67T^{2} \)
71 \( 1 + 13.2T + 71T^{2} \)
73 \( 1 + 4.75T + 73T^{2} \)
79 \( 1 - 6.20T + 79T^{2} \)
83 \( 1 - 0.618T + 83T^{2} \)
89 \( 1 - 10.3T + 89T^{2} \)
97 \( 1 + 11.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.860952953801678142784962181535, −9.143490034912793942694505785351, −7.78676159954630899991767646735, −7.10971256747211202535771212850, −6.24105422014880426103567892930, −5.46604216336371547020337225790, −4.70690165732218286854174879859, −3.89550921373401097575444199603, −1.74991925220048418312067200176, −0.57848353479409868812777353401, 0.57848353479409868812777353401, 1.74991925220048418312067200176, 3.89550921373401097575444199603, 4.70690165732218286854174879859, 5.46604216336371547020337225790, 6.24105422014880426103567892930, 7.10971256747211202535771212850, 7.78676159954630899991767646735, 9.143490034912793942694505785351, 9.860952953801678142784962181535

Graph of the $Z$-function along the critical line