Properties

Label 2-37e2-1.1-c1-0-0
Degree $2$
Conductor $1369$
Sign $1$
Analytic cond. $10.9315$
Root an. cond. $3.30628$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.526·2-s − 2.50·3-s − 1.72·4-s − 0.0684·5-s − 1.32·6-s − 3.53·7-s − 1.96·8-s + 3.29·9-s − 0.0360·10-s − 3.28·11-s + 4.32·12-s − 4.46·13-s − 1.86·14-s + 0.171·15-s + 2.41·16-s − 6.41·17-s + 1.73·18-s − 1.03·19-s + 0.117·20-s + 8.86·21-s − 1.72·22-s + 4.56·23-s + 4.91·24-s − 4.99·25-s − 2.34·26-s − 0.729·27-s + 6.08·28-s + ⋯
L(s)  = 1  + 0.372·2-s − 1.44·3-s − 0.861·4-s − 0.0306·5-s − 0.539·6-s − 1.33·7-s − 0.693·8-s + 1.09·9-s − 0.0113·10-s − 0.990·11-s + 1.24·12-s − 1.23·13-s − 0.497·14-s + 0.0443·15-s + 0.603·16-s − 1.55·17-s + 0.408·18-s − 0.236·19-s + 0.0263·20-s + 1.93·21-s − 0.368·22-s + 0.951·23-s + 1.00·24-s − 0.999·25-s − 0.460·26-s − 0.140·27-s + 1.15·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1369 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1369 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1369\)    =    \(37^{2}\)
Sign: $1$
Analytic conductor: \(10.9315\)
Root analytic conductor: \(3.30628\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1369,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.08980053017\)
\(L(\frac12)\) \(\approx\) \(0.08980053017\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad37 \( 1 \)
good2 \( 1 - 0.526T + 2T^{2} \)
3 \( 1 + 2.50T + 3T^{2} \)
5 \( 1 + 0.0684T + 5T^{2} \)
7 \( 1 + 3.53T + 7T^{2} \)
11 \( 1 + 3.28T + 11T^{2} \)
13 \( 1 + 4.46T + 13T^{2} \)
17 \( 1 + 6.41T + 17T^{2} \)
19 \( 1 + 1.03T + 19T^{2} \)
23 \( 1 - 4.56T + 23T^{2} \)
29 \( 1 + 6.88T + 29T^{2} \)
31 \( 1 + 3.11T + 31T^{2} \)
41 \( 1 - 0.132T + 41T^{2} \)
43 \( 1 - 1.05T + 43T^{2} \)
47 \( 1 - 6.28T + 47T^{2} \)
53 \( 1 + 10.3T + 53T^{2} \)
59 \( 1 + 0.295T + 59T^{2} \)
61 \( 1 - 0.197T + 61T^{2} \)
67 \( 1 + 8.35T + 67T^{2} \)
71 \( 1 - 5.41T + 71T^{2} \)
73 \( 1 - 10.3T + 73T^{2} \)
79 \( 1 - 13.9T + 79T^{2} \)
83 \( 1 - 5.50T + 83T^{2} \)
89 \( 1 - 4.93T + 89T^{2} \)
97 \( 1 - 5.81T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.548263542342241366666241192673, −9.165099774860214612792343344450, −7.79473696831766621268356100978, −6.85464967601703927523705420269, −6.13322531691578023820210965799, −5.33177999234003609415853367955, −4.76771251244674637056047693228, −3.76008466374010197942538667782, −2.52423755742608452672634116798, −0.20505265866272653017409021063, 0.20505265866272653017409021063, 2.52423755742608452672634116798, 3.76008466374010197942538667782, 4.76771251244674637056047693228, 5.33177999234003609415853367955, 6.13322531691578023820210965799, 6.85464967601703927523705420269, 7.79473696831766621268356100978, 9.165099774860214612792343344450, 9.548263542342241366666241192673

Graph of the $Z$-function along the critical line