Properties

Label 1369.2.a.o.1.14
Level $1369$
Weight $2$
Character 1369.1
Self dual yes
Analytic conductor $10.932$
Analytic rank $0$
Dimension $27$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1369,2,Mod(1,1369)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1369.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1369, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1369 = 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1369.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [27,9,-1,25,17,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.9315200367\)
Analytic rank: \(0\)
Dimension: \(27\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Character \(\chi\) \(=\) 1369.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.526565 q^{2} -2.50816 q^{3} -1.72273 q^{4} -0.0684348 q^{5} -1.32071 q^{6} -3.53356 q^{7} -1.96026 q^{8} +3.29085 q^{9} -0.0360353 q^{10} -3.28404 q^{11} +4.32088 q^{12} -4.46058 q^{13} -1.86065 q^{14} +0.171645 q^{15} +2.41326 q^{16} -6.41920 q^{17} +1.73285 q^{18} -1.03070 q^{19} +0.117895 q^{20} +8.86271 q^{21} -1.72926 q^{22} +4.56098 q^{23} +4.91664 q^{24} -4.99532 q^{25} -2.34878 q^{26} -0.729508 q^{27} +6.08736 q^{28} -6.88401 q^{29} +0.0903823 q^{30} -3.11573 q^{31} +5.19125 q^{32} +8.23689 q^{33} -3.38012 q^{34} +0.241818 q^{35} -5.66925 q^{36} -0.542728 q^{38} +11.1878 q^{39} +0.134150 q^{40} +0.132134 q^{41} +4.66679 q^{42} +1.05842 q^{43} +5.65751 q^{44} -0.225209 q^{45} +2.40165 q^{46} +6.28952 q^{47} -6.05283 q^{48} +5.48602 q^{49} -2.63036 q^{50} +16.1004 q^{51} +7.68437 q^{52} -10.3751 q^{53} -0.384133 q^{54} +0.224743 q^{55} +6.92668 q^{56} +2.58515 q^{57} -3.62488 q^{58} -0.295332 q^{59} -0.295698 q^{60} +0.197725 q^{61} -1.64063 q^{62} -11.6284 q^{63} -2.09298 q^{64} +0.305259 q^{65} +4.33726 q^{66} -8.35060 q^{67} +11.0585 q^{68} -11.4396 q^{69} +0.127333 q^{70} +5.41508 q^{71} -6.45092 q^{72} +10.3221 q^{73} +12.5290 q^{75} +1.77561 q^{76} +11.6043 q^{77} +5.89112 q^{78} +13.9537 q^{79} -0.165151 q^{80} -8.04284 q^{81} +0.0695773 q^{82} +5.50740 q^{83} -15.2681 q^{84} +0.439296 q^{85} +0.557325 q^{86} +17.2662 q^{87} +6.43757 q^{88} +4.93951 q^{89} -0.118587 q^{90} +15.7617 q^{91} -7.85733 q^{92} +7.81474 q^{93} +3.31184 q^{94} +0.0705354 q^{95} -13.0205 q^{96} +5.81769 q^{97} +2.88874 q^{98} -10.8073 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 27 q + 9 q^{2} - q^{3} + 25 q^{4} + 17 q^{5} + 10 q^{6} - 3 q^{7} + 21 q^{8} + 20 q^{9} - 11 q^{10} - 5 q^{11} - 10 q^{12} + 15 q^{13} + 25 q^{14} + 23 q^{15} + 13 q^{16} + 26 q^{17} + 15 q^{18} + 27 q^{19}+ \cdots + 35 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.526565 0.372337 0.186169 0.982518i \(-0.440393\pi\)
0.186169 + 0.982518i \(0.440393\pi\)
\(3\) −2.50816 −1.44809 −0.724043 0.689755i \(-0.757718\pi\)
−0.724043 + 0.689755i \(0.757718\pi\)
\(4\) −1.72273 −0.861365
\(5\) −0.0684348 −0.0306050 −0.0153025 0.999883i \(-0.504871\pi\)
−0.0153025 + 0.999883i \(0.504871\pi\)
\(6\) −1.32071 −0.539176
\(7\) −3.53356 −1.33556 −0.667779 0.744359i \(-0.732755\pi\)
−0.667779 + 0.744359i \(0.732755\pi\)
\(8\) −1.96026 −0.693056
\(9\) 3.29085 1.09695
\(10\) −0.0360353 −0.0113954
\(11\) −3.28404 −0.990176 −0.495088 0.868843i \(-0.664864\pi\)
−0.495088 + 0.868843i \(0.664864\pi\)
\(12\) 4.32088 1.24733
\(13\) −4.46058 −1.23714 −0.618571 0.785729i \(-0.712288\pi\)
−0.618571 + 0.785729i \(0.712288\pi\)
\(14\) −1.86065 −0.497278
\(15\) 0.171645 0.0443186
\(16\) 2.41326 0.603314
\(17\) −6.41920 −1.55688 −0.778442 0.627716i \(-0.783990\pi\)
−0.778442 + 0.627716i \(0.783990\pi\)
\(18\) 1.73285 0.408436
\(19\) −1.03070 −0.236458 −0.118229 0.992986i \(-0.537722\pi\)
−0.118229 + 0.992986i \(0.537722\pi\)
\(20\) 0.117895 0.0263620
\(21\) 8.86271 1.93400
\(22\) −1.72926 −0.368679
\(23\) 4.56098 0.951029 0.475515 0.879708i \(-0.342262\pi\)
0.475515 + 0.879708i \(0.342262\pi\)
\(24\) 4.91664 1.00360
\(25\) −4.99532 −0.999063
\(26\) −2.34878 −0.460634
\(27\) −0.729508 −0.140394
\(28\) 6.08736 1.15040
\(29\) −6.88401 −1.27833 −0.639164 0.769070i \(-0.720720\pi\)
−0.639164 + 0.769070i \(0.720720\pi\)
\(30\) 0.0903823 0.0165015
\(31\) −3.11573 −0.559601 −0.279801 0.960058i \(-0.590268\pi\)
−0.279801 + 0.960058i \(0.590268\pi\)
\(32\) 5.19125 0.917692
\(33\) 8.23689 1.43386
\(34\) −3.38012 −0.579686
\(35\) 0.241818 0.0408747
\(36\) −5.66925 −0.944875
\(37\) 0 0
\(38\) −0.542728 −0.0880421
\(39\) 11.1878 1.79149
\(40\) 0.134150 0.0212109
\(41\) 0.132134 0.0206359 0.0103180 0.999947i \(-0.496716\pi\)
0.0103180 + 0.999947i \(0.496716\pi\)
\(42\) 4.66679 0.720102
\(43\) 1.05842 0.161407 0.0807035 0.996738i \(-0.474283\pi\)
0.0807035 + 0.996738i \(0.474283\pi\)
\(44\) 5.65751 0.852902
\(45\) −0.225209 −0.0335722
\(46\) 2.40165 0.354104
\(47\) 6.28952 0.917421 0.458711 0.888586i \(-0.348311\pi\)
0.458711 + 0.888586i \(0.348311\pi\)
\(48\) −6.05283 −0.873650
\(49\) 5.48602 0.783716
\(50\) −2.63036 −0.371989
\(51\) 16.1004 2.25450
\(52\) 7.68437 1.06563
\(53\) −10.3751 −1.42513 −0.712564 0.701607i \(-0.752466\pi\)
−0.712564 + 0.701607i \(0.752466\pi\)
\(54\) −0.384133 −0.0522739
\(55\) 0.224743 0.0303043
\(56\) 6.92668 0.925617
\(57\) 2.58515 0.342411
\(58\) −3.62488 −0.475970
\(59\) −0.295332 −0.0384489 −0.0192245 0.999815i \(-0.506120\pi\)
−0.0192245 + 0.999815i \(0.506120\pi\)
\(60\) −0.295698 −0.0381745
\(61\) 0.197725 0.0253161 0.0126580 0.999920i \(-0.495971\pi\)
0.0126580 + 0.999920i \(0.495971\pi\)
\(62\) −1.64063 −0.208360
\(63\) −11.6284 −1.46504
\(64\) −2.09298 −0.261623
\(65\) 0.305259 0.0378627
\(66\) 4.33726 0.533879
\(67\) −8.35060 −1.02019 −0.510094 0.860119i \(-0.670389\pi\)
−0.510094 + 0.860119i \(0.670389\pi\)
\(68\) 11.0585 1.34105
\(69\) −11.4396 −1.37717
\(70\) 0.127333 0.0152192
\(71\) 5.41508 0.642652 0.321326 0.946969i \(-0.395872\pi\)
0.321326 + 0.946969i \(0.395872\pi\)
\(72\) −6.45092 −0.760249
\(73\) 10.3221 1.20811 0.604057 0.796941i \(-0.293550\pi\)
0.604057 + 0.796941i \(0.293550\pi\)
\(74\) 0 0
\(75\) 12.5290 1.44673
\(76\) 1.77561 0.203676
\(77\) 11.6043 1.32244
\(78\) 5.89112 0.667038
\(79\) 13.9537 1.56991 0.784956 0.619551i \(-0.212685\pi\)
0.784956 + 0.619551i \(0.212685\pi\)
\(80\) −0.165151 −0.0184644
\(81\) −8.04284 −0.893649
\(82\) 0.0695773 0.00768353
\(83\) 5.50740 0.604516 0.302258 0.953226i \(-0.402260\pi\)
0.302258 + 0.953226i \(0.402260\pi\)
\(84\) −15.2681 −1.66588
\(85\) 0.439296 0.0476484
\(86\) 0.557325 0.0600979
\(87\) 17.2662 1.85113
\(88\) 6.43757 0.686247
\(89\) 4.93951 0.523587 0.261794 0.965124i \(-0.415686\pi\)
0.261794 + 0.965124i \(0.415686\pi\)
\(90\) −0.118587 −0.0125002
\(91\) 15.7617 1.65228
\(92\) −7.85733 −0.819183
\(93\) 7.81474 0.810350
\(94\) 3.31184 0.341590
\(95\) 0.0705354 0.00723678
\(96\) −13.0205 −1.32890
\(97\) 5.81769 0.590697 0.295348 0.955390i \(-0.404564\pi\)
0.295348 + 0.955390i \(0.404564\pi\)
\(98\) 2.88874 0.291807
\(99\) −10.8073 −1.08617
\(100\) 8.60558 0.860558
\(101\) −7.73145 −0.769308 −0.384654 0.923061i \(-0.625679\pi\)
−0.384654 + 0.923061i \(0.625679\pi\)
\(102\) 8.47788 0.839435
\(103\) −9.36515 −0.922776 −0.461388 0.887199i \(-0.652648\pi\)
−0.461388 + 0.887199i \(0.652648\pi\)
\(104\) 8.74389 0.857409
\(105\) −0.606518 −0.0591901
\(106\) −5.46316 −0.530629
\(107\) −8.71420 −0.842433 −0.421217 0.906960i \(-0.638397\pi\)
−0.421217 + 0.906960i \(0.638397\pi\)
\(108\) 1.25675 0.120930
\(109\) 2.09957 0.201102 0.100551 0.994932i \(-0.467939\pi\)
0.100551 + 0.994932i \(0.467939\pi\)
\(110\) 0.118342 0.0112834
\(111\) 0 0
\(112\) −8.52738 −0.805761
\(113\) −16.9125 −1.59100 −0.795499 0.605955i \(-0.792791\pi\)
−0.795499 + 0.605955i \(0.792791\pi\)
\(114\) 1.36125 0.127492
\(115\) −0.312129 −0.0291062
\(116\) 11.8593 1.10111
\(117\) −14.6791 −1.35708
\(118\) −0.155511 −0.0143160
\(119\) 22.6826 2.07931
\(120\) −0.336469 −0.0307153
\(121\) −0.215076 −0.0195524
\(122\) 0.104115 0.00942612
\(123\) −0.331414 −0.0298826
\(124\) 5.36756 0.482021
\(125\) 0.684027 0.0611813
\(126\) −6.12311 −0.545490
\(127\) −6.57555 −0.583486 −0.291743 0.956497i \(-0.594235\pi\)
−0.291743 + 0.956497i \(0.594235\pi\)
\(128\) −11.4846 −1.01510
\(129\) −2.65468 −0.233731
\(130\) 0.160738 0.0140977
\(131\) 9.80674 0.856819 0.428409 0.903585i \(-0.359074\pi\)
0.428409 + 0.903585i \(0.359074\pi\)
\(132\) −14.1899 −1.23508
\(133\) 3.64202 0.315803
\(134\) −4.39713 −0.379854
\(135\) 0.0499237 0.00429675
\(136\) 12.5833 1.07901
\(137\) −17.7097 −1.51305 −0.756523 0.653967i \(-0.773103\pi\)
−0.756523 + 0.653967i \(0.773103\pi\)
\(138\) −6.02371 −0.512773
\(139\) −5.25256 −0.445516 −0.222758 0.974874i \(-0.571506\pi\)
−0.222758 + 0.974874i \(0.571506\pi\)
\(140\) −0.416587 −0.0352080
\(141\) −15.7751 −1.32850
\(142\) 2.85139 0.239283
\(143\) 14.6487 1.22499
\(144\) 7.94168 0.661806
\(145\) 0.471106 0.0391232
\(146\) 5.43527 0.449826
\(147\) −13.7598 −1.13489
\(148\) 0 0
\(149\) −5.44333 −0.445935 −0.222967 0.974826i \(-0.571574\pi\)
−0.222967 + 0.974826i \(0.571574\pi\)
\(150\) 6.59735 0.538671
\(151\) 0.818729 0.0666272 0.0333136 0.999445i \(-0.489394\pi\)
0.0333136 + 0.999445i \(0.489394\pi\)
\(152\) 2.02043 0.163878
\(153\) −21.1247 −1.70783
\(154\) 6.11044 0.492393
\(155\) 0.213224 0.0171266
\(156\) −19.2736 −1.54312
\(157\) −4.29533 −0.342805 −0.171402 0.985201i \(-0.554830\pi\)
−0.171402 + 0.985201i \(0.554830\pi\)
\(158\) 7.34752 0.584537
\(159\) 26.0224 2.06371
\(160\) −0.355262 −0.0280859
\(161\) −16.1165 −1.27016
\(162\) −4.23508 −0.332739
\(163\) 1.00287 0.0785509 0.0392754 0.999228i \(-0.487495\pi\)
0.0392754 + 0.999228i \(0.487495\pi\)
\(164\) −0.227632 −0.0177751
\(165\) −0.563690 −0.0438832
\(166\) 2.90000 0.225084
\(167\) −14.3325 −1.10908 −0.554540 0.832157i \(-0.687106\pi\)
−0.554540 + 0.832157i \(0.687106\pi\)
\(168\) −17.3732 −1.34037
\(169\) 6.89677 0.530521
\(170\) 0.231318 0.0177413
\(171\) −3.39187 −0.259383
\(172\) −1.82337 −0.139030
\(173\) 8.04485 0.611638 0.305819 0.952090i \(-0.401070\pi\)
0.305819 + 0.952090i \(0.401070\pi\)
\(174\) 9.09176 0.689245
\(175\) 17.6512 1.33431
\(176\) −7.92523 −0.597387
\(177\) 0.740739 0.0556774
\(178\) 2.60097 0.194951
\(179\) −6.30681 −0.471393 −0.235697 0.971827i \(-0.575737\pi\)
−0.235697 + 0.971827i \(0.575737\pi\)
\(180\) 0.387974 0.0289179
\(181\) 0.866005 0.0643696 0.0321848 0.999482i \(-0.489753\pi\)
0.0321848 + 0.999482i \(0.489753\pi\)
\(182\) 8.29956 0.615204
\(183\) −0.495925 −0.0366598
\(184\) −8.94069 −0.659116
\(185\) 0 0
\(186\) 4.11496 0.301724
\(187\) 21.0809 1.54159
\(188\) −10.8351 −0.790234
\(189\) 2.57776 0.187504
\(190\) 0.0371415 0.00269452
\(191\) 9.29054 0.672240 0.336120 0.941819i \(-0.390885\pi\)
0.336120 + 0.941819i \(0.390885\pi\)
\(192\) 5.24953 0.378852
\(193\) −2.92124 −0.210276 −0.105138 0.994458i \(-0.533528\pi\)
−0.105138 + 0.994458i \(0.533528\pi\)
\(194\) 3.06339 0.219938
\(195\) −0.765637 −0.0548284
\(196\) −9.45092 −0.675066
\(197\) −8.07471 −0.575300 −0.287650 0.957736i \(-0.592874\pi\)
−0.287650 + 0.957736i \(0.592874\pi\)
\(198\) −5.69074 −0.404423
\(199\) −26.7947 −1.89943 −0.949713 0.313123i \(-0.898625\pi\)
−0.949713 + 0.313123i \(0.898625\pi\)
\(200\) 9.79211 0.692407
\(201\) 20.9446 1.47732
\(202\) −4.07111 −0.286442
\(203\) 24.3250 1.70728
\(204\) −27.7366 −1.94195
\(205\) −0.00904259 −0.000631562 0
\(206\) −4.93136 −0.343584
\(207\) 15.0095 1.04323
\(208\) −10.7645 −0.746386
\(209\) 3.38485 0.234135
\(210\) −0.319371 −0.0220387
\(211\) 23.8048 1.63879 0.819395 0.573230i \(-0.194310\pi\)
0.819395 + 0.573230i \(0.194310\pi\)
\(212\) 17.8735 1.22756
\(213\) −13.5819 −0.930615
\(214\) −4.58859 −0.313669
\(215\) −0.0724325 −0.00493986
\(216\) 1.43002 0.0973008
\(217\) 11.0096 0.747380
\(218\) 1.10556 0.0748779
\(219\) −25.8895 −1.74945
\(220\) −0.387171 −0.0261030
\(221\) 28.6334 1.92609
\(222\) 0 0
\(223\) −14.5194 −0.972288 −0.486144 0.873879i \(-0.661597\pi\)
−0.486144 + 0.873879i \(0.661597\pi\)
\(224\) −18.3436 −1.22563
\(225\) −16.4389 −1.09592
\(226\) −8.90555 −0.592388
\(227\) −25.8042 −1.71269 −0.856344 0.516406i \(-0.827270\pi\)
−0.856344 + 0.516406i \(0.827270\pi\)
\(228\) −4.45351 −0.294941
\(229\) −12.9045 −0.852751 −0.426376 0.904546i \(-0.640210\pi\)
−0.426376 + 0.904546i \(0.640210\pi\)
\(230\) −0.164356 −0.0108373
\(231\) −29.1055 −1.91500
\(232\) 13.4944 0.885953
\(233\) −25.7678 −1.68811 −0.844054 0.536258i \(-0.819837\pi\)
−0.844054 + 0.536258i \(0.819837\pi\)
\(234\) −7.72951 −0.505294
\(235\) −0.430422 −0.0280776
\(236\) 0.508777 0.0331186
\(237\) −34.9980 −2.27337
\(238\) 11.9439 0.774205
\(239\) −4.23509 −0.273945 −0.136973 0.990575i \(-0.543737\pi\)
−0.136973 + 0.990575i \(0.543737\pi\)
\(240\) 0.414224 0.0267380
\(241\) 26.7537 1.72335 0.861677 0.507457i \(-0.169414\pi\)
0.861677 + 0.507457i \(0.169414\pi\)
\(242\) −0.113252 −0.00728009
\(243\) 22.3612 1.43447
\(244\) −0.340627 −0.0218064
\(245\) −0.375434 −0.0239856
\(246\) −0.174511 −0.0111264
\(247\) 4.59750 0.292532
\(248\) 6.10763 0.387835
\(249\) −13.8134 −0.875390
\(250\) 0.360185 0.0227801
\(251\) 20.3984 1.28753 0.643766 0.765222i \(-0.277371\pi\)
0.643766 + 0.765222i \(0.277371\pi\)
\(252\) 20.0326 1.26194
\(253\) −14.9784 −0.941686
\(254\) −3.46245 −0.217254
\(255\) −1.10182 −0.0689989
\(256\) −1.86141 −0.116338
\(257\) −3.30196 −0.205971 −0.102985 0.994683i \(-0.532840\pi\)
−0.102985 + 0.994683i \(0.532840\pi\)
\(258\) −1.39786 −0.0870269
\(259\) 0 0
\(260\) −0.525878 −0.0326136
\(261\) −22.6543 −1.40226
\(262\) 5.16388 0.319026
\(263\) −9.32130 −0.574776 −0.287388 0.957814i \(-0.592787\pi\)
−0.287388 + 0.957814i \(0.592787\pi\)
\(264\) −16.1464 −0.993744
\(265\) 0.710017 0.0436160
\(266\) 1.91776 0.117585
\(267\) −12.3891 −0.758199
\(268\) 14.3858 0.878754
\(269\) −0.204606 −0.0124751 −0.00623754 0.999981i \(-0.501985\pi\)
−0.00623754 + 0.999981i \(0.501985\pi\)
\(270\) 0.0262881 0.00159984
\(271\) −1.48951 −0.0904811 −0.0452406 0.998976i \(-0.514405\pi\)
−0.0452406 + 0.998976i \(0.514405\pi\)
\(272\) −15.4912 −0.939291
\(273\) −39.5328 −2.39264
\(274\) −9.32533 −0.563364
\(275\) 16.4048 0.989248
\(276\) 19.7074 1.18625
\(277\) −24.2853 −1.45916 −0.729582 0.683893i \(-0.760285\pi\)
−0.729582 + 0.683893i \(0.760285\pi\)
\(278\) −2.76581 −0.165882
\(279\) −10.2534 −0.613855
\(280\) −0.474026 −0.0283285
\(281\) 22.0161 1.31337 0.656684 0.754166i \(-0.271959\pi\)
0.656684 + 0.754166i \(0.271959\pi\)
\(282\) −8.30662 −0.494652
\(283\) −15.7565 −0.936627 −0.468313 0.883562i \(-0.655138\pi\)
−0.468313 + 0.883562i \(0.655138\pi\)
\(284\) −9.32872 −0.553558
\(285\) −0.176914 −0.0104795
\(286\) 7.71350 0.456109
\(287\) −0.466905 −0.0275605
\(288\) 17.0837 1.00666
\(289\) 24.2061 1.42389
\(290\) 0.248068 0.0145670
\(291\) −14.5917 −0.855379
\(292\) −17.7822 −1.04063
\(293\) 12.6623 0.739741 0.369871 0.929083i \(-0.379402\pi\)
0.369871 + 0.929083i \(0.379402\pi\)
\(294\) −7.24542 −0.422561
\(295\) 0.0202110 0.00117673
\(296\) 0 0
\(297\) 2.39573 0.139015
\(298\) −2.86626 −0.166038
\(299\) −20.3446 −1.17656
\(300\) −21.5842 −1.24616
\(301\) −3.73998 −0.215569
\(302\) 0.431114 0.0248078
\(303\) 19.3917 1.11402
\(304\) −2.48733 −0.142658
\(305\) −0.0135313 −0.000774798 0
\(306\) −11.1235 −0.635888
\(307\) 33.4953 1.91168 0.955839 0.293891i \(-0.0949502\pi\)
0.955839 + 0.293891i \(0.0949502\pi\)
\(308\) −19.9911 −1.13910
\(309\) 23.4893 1.33626
\(310\) 0.112276 0.00637686
\(311\) 27.4894 1.55878 0.779389 0.626540i \(-0.215529\pi\)
0.779389 + 0.626540i \(0.215529\pi\)
\(312\) −21.9310 −1.24160
\(313\) −14.7595 −0.834254 −0.417127 0.908848i \(-0.636963\pi\)
−0.417127 + 0.908848i \(0.636963\pi\)
\(314\) −2.26177 −0.127639
\(315\) 0.795788 0.0448376
\(316\) −24.0384 −1.35227
\(317\) −23.4424 −1.31666 −0.658328 0.752731i \(-0.728736\pi\)
−0.658328 + 0.752731i \(0.728736\pi\)
\(318\) 13.7025 0.768396
\(319\) 22.6074 1.26577
\(320\) 0.143233 0.00800696
\(321\) 21.8566 1.21992
\(322\) −8.48636 −0.472926
\(323\) 6.61624 0.368137
\(324\) 13.8556 0.769758
\(325\) 22.2820 1.23598
\(326\) 0.528076 0.0292474
\(327\) −5.26605 −0.291213
\(328\) −0.259018 −0.0143019
\(329\) −22.2244 −1.22527
\(330\) −0.296819 −0.0163394
\(331\) 7.78059 0.427660 0.213830 0.976871i \(-0.431406\pi\)
0.213830 + 0.976871i \(0.431406\pi\)
\(332\) −9.48776 −0.520709
\(333\) 0 0
\(334\) −7.54697 −0.412952
\(335\) 0.571471 0.0312228
\(336\) 21.3880 1.16681
\(337\) 2.12301 0.115648 0.0578238 0.998327i \(-0.481584\pi\)
0.0578238 + 0.998327i \(0.481584\pi\)
\(338\) 3.63160 0.197533
\(339\) 42.4193 2.30390
\(340\) −0.756789 −0.0410427
\(341\) 10.2322 0.554103
\(342\) −1.78604 −0.0965779
\(343\) 5.34975 0.288859
\(344\) −2.07477 −0.111864
\(345\) 0.782870 0.0421483
\(346\) 4.23613 0.227736
\(347\) 0.922491 0.0495219 0.0247610 0.999693i \(-0.492118\pi\)
0.0247610 + 0.999693i \(0.492118\pi\)
\(348\) −29.7450 −1.59450
\(349\) −11.1602 −0.597394 −0.298697 0.954348i \(-0.596552\pi\)
−0.298697 + 0.954348i \(0.596552\pi\)
\(350\) 9.29451 0.496813
\(351\) 3.25403 0.173687
\(352\) −17.0483 −0.908676
\(353\) 32.1241 1.70979 0.854895 0.518800i \(-0.173621\pi\)
0.854895 + 0.518800i \(0.173621\pi\)
\(354\) 0.390047 0.0207308
\(355\) −0.370580 −0.0196683
\(356\) −8.50944 −0.450999
\(357\) −56.8915 −3.01102
\(358\) −3.32095 −0.175517
\(359\) 14.1001 0.744177 0.372089 0.928197i \(-0.378642\pi\)
0.372089 + 0.928197i \(0.378642\pi\)
\(360\) 0.441467 0.0232674
\(361\) −17.9377 −0.944088
\(362\) 0.456008 0.0239672
\(363\) 0.539445 0.0283135
\(364\) −27.1532 −1.42321
\(365\) −0.706393 −0.0369743
\(366\) −0.261137 −0.0136498
\(367\) −10.4345 −0.544679 −0.272339 0.962201i \(-0.587797\pi\)
−0.272339 + 0.962201i \(0.587797\pi\)
\(368\) 11.0068 0.573769
\(369\) 0.434835 0.0226366
\(370\) 0 0
\(371\) 36.6610 1.90334
\(372\) −13.4627 −0.698007
\(373\) 16.2539 0.841597 0.420799 0.907154i \(-0.361750\pi\)
0.420799 + 0.907154i \(0.361750\pi\)
\(374\) 11.1005 0.573991
\(375\) −1.71565 −0.0885957
\(376\) −12.3291 −0.635824
\(377\) 30.7067 1.58147
\(378\) 1.35736 0.0698149
\(379\) −19.0074 −0.976344 −0.488172 0.872748i \(-0.662336\pi\)
−0.488172 + 0.872748i \(0.662336\pi\)
\(380\) −0.121513 −0.00623351
\(381\) 16.4925 0.844937
\(382\) 4.89207 0.250300
\(383\) −1.37881 −0.0704538 −0.0352269 0.999379i \(-0.511215\pi\)
−0.0352269 + 0.999379i \(0.511215\pi\)
\(384\) 28.8052 1.46996
\(385\) −0.794140 −0.0404731
\(386\) −1.53822 −0.0782935
\(387\) 3.48310 0.177056
\(388\) −10.0223 −0.508805
\(389\) 20.5060 1.03969 0.519847 0.854260i \(-0.325989\pi\)
0.519847 + 0.854260i \(0.325989\pi\)
\(390\) −0.403157 −0.0204147
\(391\) −29.2778 −1.48064
\(392\) −10.7540 −0.543159
\(393\) −24.5968 −1.24075
\(394\) −4.25186 −0.214206
\(395\) −0.954917 −0.0480471
\(396\) 18.6181 0.935592
\(397\) −35.8997 −1.80176 −0.900878 0.434072i \(-0.857076\pi\)
−0.900878 + 0.434072i \(0.857076\pi\)
\(398\) −14.1091 −0.707227
\(399\) −9.13476 −0.457310
\(400\) −12.0550 −0.602749
\(401\) 39.0228 1.94870 0.974352 0.225029i \(-0.0722478\pi\)
0.974352 + 0.225029i \(0.0722478\pi\)
\(402\) 11.0287 0.550061
\(403\) 13.8980 0.692306
\(404\) 13.3192 0.662655
\(405\) 0.550410 0.0273501
\(406\) 12.8087 0.635685
\(407\) 0 0
\(408\) −31.5609 −1.56250
\(409\) −12.0635 −0.596502 −0.298251 0.954488i \(-0.596403\pi\)
−0.298251 + 0.954488i \(0.596403\pi\)
\(410\) −0.00476151 −0.000235154 0
\(411\) 44.4188 2.19102
\(412\) 16.1336 0.794846
\(413\) 1.04357 0.0513508
\(414\) 7.90348 0.388435
\(415\) −0.376898 −0.0185012
\(416\) −23.1560 −1.13532
\(417\) 13.1743 0.645146
\(418\) 1.78234 0.0871771
\(419\) −26.7346 −1.30607 −0.653036 0.757327i \(-0.726505\pi\)
−0.653036 + 0.757327i \(0.726505\pi\)
\(420\) 1.04487 0.0509843
\(421\) 28.5640 1.39212 0.696062 0.717981i \(-0.254934\pi\)
0.696062 + 0.717981i \(0.254934\pi\)
\(422\) 12.5348 0.610183
\(423\) 20.6979 1.00637
\(424\) 20.3379 0.987693
\(425\) 32.0659 1.55543
\(426\) −7.15173 −0.346503
\(427\) −0.698672 −0.0338111
\(428\) 15.0122 0.725642
\(429\) −36.7413 −1.77389
\(430\) −0.0381404 −0.00183929
\(431\) 36.5545 1.76077 0.880384 0.474262i \(-0.157285\pi\)
0.880384 + 0.474262i \(0.157285\pi\)
\(432\) −1.76049 −0.0847016
\(433\) 12.9039 0.620124 0.310062 0.950716i \(-0.399650\pi\)
0.310062 + 0.950716i \(0.399650\pi\)
\(434\) 5.79726 0.278278
\(435\) −1.18161 −0.0566537
\(436\) −3.61699 −0.173222
\(437\) −4.70098 −0.224878
\(438\) −13.6325 −0.651387
\(439\) 1.75636 0.0838264 0.0419132 0.999121i \(-0.486655\pi\)
0.0419132 + 0.999121i \(0.486655\pi\)
\(440\) −0.440553 −0.0210026
\(441\) 18.0537 0.859699
\(442\) 15.0773 0.717155
\(443\) −4.25988 −0.202393 −0.101197 0.994866i \(-0.532267\pi\)
−0.101197 + 0.994866i \(0.532267\pi\)
\(444\) 0 0
\(445\) −0.338034 −0.0160244
\(446\) −7.64538 −0.362019
\(447\) 13.6527 0.645752
\(448\) 7.39568 0.349413
\(449\) −5.66630 −0.267409 −0.133705 0.991021i \(-0.542687\pi\)
−0.133705 + 0.991021i \(0.542687\pi\)
\(450\) −8.65612 −0.408054
\(451\) −0.433935 −0.0204332
\(452\) 29.1357 1.37043
\(453\) −2.05350 −0.0964819
\(454\) −13.5876 −0.637698
\(455\) −1.07865 −0.0505678
\(456\) −5.06755 −0.237310
\(457\) 6.02235 0.281714 0.140857 0.990030i \(-0.455014\pi\)
0.140857 + 0.990030i \(0.455014\pi\)
\(458\) −6.79504 −0.317511
\(459\) 4.68286 0.218577
\(460\) 0.537715 0.0250711
\(461\) 31.9058 1.48600 0.743002 0.669289i \(-0.233401\pi\)
0.743002 + 0.669289i \(0.233401\pi\)
\(462\) −15.3259 −0.713027
\(463\) −1.96921 −0.0915169 −0.0457584 0.998953i \(-0.514570\pi\)
−0.0457584 + 0.998953i \(0.514570\pi\)
\(464\) −16.6129 −0.771234
\(465\) −0.534800 −0.0248007
\(466\) −13.5684 −0.628546
\(467\) 23.6540 1.09458 0.547289 0.836944i \(-0.315660\pi\)
0.547289 + 0.836944i \(0.315660\pi\)
\(468\) 25.2882 1.16895
\(469\) 29.5073 1.36252
\(470\) −0.226645 −0.0104544
\(471\) 10.7734 0.496410
\(472\) 0.578927 0.0266473
\(473\) −3.47588 −0.159821
\(474\) −18.4287 −0.846460
\(475\) 5.14865 0.236236
\(476\) −39.0760 −1.79104
\(477\) −34.1429 −1.56330
\(478\) −2.23005 −0.102000
\(479\) 16.8900 0.771724 0.385862 0.922557i \(-0.373904\pi\)
0.385862 + 0.922557i \(0.373904\pi\)
\(480\) 0.891053 0.0406708
\(481\) 0 0
\(482\) 14.0875 0.641669
\(483\) 40.4226 1.83929
\(484\) 0.370518 0.0168417
\(485\) −0.398132 −0.0180782
\(486\) 11.7746 0.534108
\(487\) 21.8897 0.991917 0.495959 0.868346i \(-0.334817\pi\)
0.495959 + 0.868346i \(0.334817\pi\)
\(488\) −0.387592 −0.0175455
\(489\) −2.51536 −0.113748
\(490\) −0.197690 −0.00893074
\(491\) −29.8896 −1.34890 −0.674449 0.738322i \(-0.735619\pi\)
−0.674449 + 0.738322i \(0.735619\pi\)
\(492\) 0.570937 0.0257398
\(493\) 44.1898 1.99021
\(494\) 2.42088 0.108921
\(495\) 0.739595 0.0332423
\(496\) −7.51905 −0.337615
\(497\) −19.1345 −0.858299
\(498\) −7.27366 −0.325941
\(499\) −19.1355 −0.856623 −0.428312 0.903631i \(-0.640891\pi\)
−0.428312 + 0.903631i \(0.640891\pi\)
\(500\) −1.17839 −0.0526994
\(501\) 35.9481 1.60604
\(502\) 10.7411 0.479397
\(503\) −2.93324 −0.130787 −0.0653935 0.997860i \(-0.520830\pi\)
−0.0653935 + 0.997860i \(0.520830\pi\)
\(504\) 22.7947 1.01536
\(505\) 0.529100 0.0235447
\(506\) −7.88711 −0.350625
\(507\) −17.2982 −0.768240
\(508\) 11.3279 0.502594
\(509\) 17.8704 0.792093 0.396047 0.918230i \(-0.370382\pi\)
0.396047 + 0.918230i \(0.370382\pi\)
\(510\) −0.580182 −0.0256909
\(511\) −36.4738 −1.61351
\(512\) 21.9890 0.971787
\(513\) 0.751901 0.0331972
\(514\) −1.73870 −0.0766907
\(515\) 0.640902 0.0282415
\(516\) 4.57329 0.201328
\(517\) −20.6551 −0.908408
\(518\) 0 0
\(519\) −20.1777 −0.885705
\(520\) −0.598386 −0.0262410
\(521\) −23.8776 −1.04610 −0.523048 0.852304i \(-0.675205\pi\)
−0.523048 + 0.852304i \(0.675205\pi\)
\(522\) −11.9289 −0.522115
\(523\) −20.4872 −0.895842 −0.447921 0.894073i \(-0.647835\pi\)
−0.447921 + 0.894073i \(0.647835\pi\)
\(524\) −16.8944 −0.738034
\(525\) −44.2721 −1.93219
\(526\) −4.90827 −0.214011
\(527\) 20.0005 0.871235
\(528\) 19.8777 0.865067
\(529\) −2.19750 −0.0955434
\(530\) 0.373870 0.0162399
\(531\) −0.971894 −0.0421766
\(532\) −6.27422 −0.272022
\(533\) −0.589396 −0.0255296
\(534\) −6.52365 −0.282306
\(535\) 0.596354 0.0257826
\(536\) 16.3693 0.707047
\(537\) 15.8185 0.682618
\(538\) −0.107739 −0.00464494
\(539\) −18.0163 −0.776017
\(540\) −0.0860051 −0.00370107
\(541\) −41.5639 −1.78697 −0.893485 0.449092i \(-0.851747\pi\)
−0.893485 + 0.449092i \(0.851747\pi\)
\(542\) −0.784322 −0.0336895
\(543\) −2.17208 −0.0932127
\(544\) −33.3237 −1.42874
\(545\) −0.143684 −0.00615473
\(546\) −20.8166 −0.890868
\(547\) −30.7561 −1.31504 −0.657518 0.753439i \(-0.728394\pi\)
−0.657518 + 0.753439i \(0.728394\pi\)
\(548\) 30.5091 1.30328
\(549\) 0.650684 0.0277705
\(550\) 8.63820 0.368334
\(551\) 7.09532 0.302271
\(552\) 22.4247 0.954457
\(553\) −49.3061 −2.09671
\(554\) −12.7878 −0.543302
\(555\) 0 0
\(556\) 9.04874 0.383752
\(557\) −6.28603 −0.266348 −0.133174 0.991093i \(-0.542517\pi\)
−0.133174 + 0.991093i \(0.542517\pi\)
\(558\) −5.39908 −0.228561
\(559\) −4.72115 −0.199684
\(560\) 0.583569 0.0246603
\(561\) −52.8743 −2.23235
\(562\) 11.5929 0.489016
\(563\) 3.90668 0.164647 0.0823234 0.996606i \(-0.473766\pi\)
0.0823234 + 0.996606i \(0.473766\pi\)
\(564\) 27.1763 1.14433
\(565\) 1.15741 0.0486924
\(566\) −8.29682 −0.348741
\(567\) 28.4198 1.19352
\(568\) −10.6150 −0.445394
\(569\) −9.18872 −0.385211 −0.192606 0.981276i \(-0.561694\pi\)
−0.192606 + 0.981276i \(0.561694\pi\)
\(570\) −0.0931566 −0.00390190
\(571\) −5.00637 −0.209510 −0.104755 0.994498i \(-0.533406\pi\)
−0.104755 + 0.994498i \(0.533406\pi\)
\(572\) −25.2358 −1.05516
\(573\) −23.3021 −0.973461
\(574\) −0.245855 −0.0102618
\(575\) −22.7835 −0.950138
\(576\) −6.88770 −0.286988
\(577\) 23.7048 0.986843 0.493422 0.869790i \(-0.335746\pi\)
0.493422 + 0.869790i \(0.335746\pi\)
\(578\) 12.7461 0.530167
\(579\) 7.32694 0.304497
\(580\) −0.811588 −0.0336993
\(581\) −19.4607 −0.807366
\(582\) −7.68346 −0.318490
\(583\) 34.0722 1.41113
\(584\) −20.2340 −0.837291
\(585\) 1.00456 0.0415335
\(586\) 6.66754 0.275433
\(587\) 34.9252 1.44152 0.720760 0.693185i \(-0.243793\pi\)
0.720760 + 0.693185i \(0.243793\pi\)
\(588\) 23.7044 0.977553
\(589\) 3.21137 0.132322
\(590\) 0.0106424 0.000438140 0
\(591\) 20.2527 0.833083
\(592\) 0 0
\(593\) 30.3683 1.24708 0.623538 0.781793i \(-0.285695\pi\)
0.623538 + 0.781793i \(0.285695\pi\)
\(594\) 1.26151 0.0517603
\(595\) −1.55228 −0.0636372
\(596\) 9.37738 0.384113
\(597\) 67.2053 2.75053
\(598\) −10.7127 −0.438077
\(599\) −2.63334 −0.107595 −0.0537977 0.998552i \(-0.517133\pi\)
−0.0537977 + 0.998552i \(0.517133\pi\)
\(600\) −24.5602 −1.00266
\(601\) 28.8263 1.17585 0.587924 0.808916i \(-0.299946\pi\)
0.587924 + 0.808916i \(0.299946\pi\)
\(602\) −1.96934 −0.0802643
\(603\) −27.4806 −1.11910
\(604\) −1.41045 −0.0573903
\(605\) 0.0147187 0.000598400 0
\(606\) 10.2110 0.414793
\(607\) −17.9531 −0.728695 −0.364347 0.931263i \(-0.618708\pi\)
−0.364347 + 0.931263i \(0.618708\pi\)
\(608\) −5.35060 −0.216995
\(609\) −61.0110 −2.47229
\(610\) −0.00712508 −0.000288486 0
\(611\) −28.0549 −1.13498
\(612\) 36.3921 1.47106
\(613\) 37.0598 1.49683 0.748416 0.663230i \(-0.230815\pi\)
0.748416 + 0.663230i \(0.230815\pi\)
\(614\) 17.6374 0.711789
\(615\) 0.0226802 0.000914556 0
\(616\) −22.7475 −0.916523
\(617\) −27.7006 −1.11519 −0.557593 0.830115i \(-0.688275\pi\)
−0.557593 + 0.830115i \(0.688275\pi\)
\(618\) 12.3686 0.497539
\(619\) −27.1079 −1.08956 −0.544779 0.838580i \(-0.683386\pi\)
−0.544779 + 0.838580i \(0.683386\pi\)
\(620\) −0.367328 −0.0147522
\(621\) −3.32727 −0.133519
\(622\) 14.4749 0.580392
\(623\) −17.4540 −0.699281
\(624\) 26.9991 1.08083
\(625\) 24.9298 0.997191
\(626\) −7.77181 −0.310624
\(627\) −8.48973 −0.339047
\(628\) 7.39969 0.295280
\(629\) 0 0
\(630\) 0.419034 0.0166947
\(631\) 18.4257 0.733516 0.366758 0.930316i \(-0.380468\pi\)
0.366758 + 0.930316i \(0.380468\pi\)
\(632\) −27.3528 −1.08804
\(633\) −59.7062 −2.37311
\(634\) −12.3439 −0.490240
\(635\) 0.449996 0.0178576
\(636\) −44.8295 −1.77760
\(637\) −24.4708 −0.969569
\(638\) 11.9042 0.471293
\(639\) 17.8202 0.704958
\(640\) 0.785946 0.0310672
\(641\) −23.3565 −0.922527 −0.461263 0.887263i \(-0.652604\pi\)
−0.461263 + 0.887263i \(0.652604\pi\)
\(642\) 11.5089 0.454220
\(643\) −12.8226 −0.505672 −0.252836 0.967509i \(-0.581363\pi\)
−0.252836 + 0.967509i \(0.581363\pi\)
\(644\) 27.7643 1.09407
\(645\) 0.181672 0.00715334
\(646\) 3.48388 0.137071
\(647\) 24.5104 0.963604 0.481802 0.876280i \(-0.339982\pi\)
0.481802 + 0.876280i \(0.339982\pi\)
\(648\) 15.7660 0.619349
\(649\) 0.969882 0.0380712
\(650\) 11.7329 0.460203
\(651\) −27.6138 −1.08227
\(652\) −1.72768 −0.0676610
\(653\) 35.6842 1.39643 0.698215 0.715888i \(-0.253978\pi\)
0.698215 + 0.715888i \(0.253978\pi\)
\(654\) −2.77292 −0.108430
\(655\) −0.671122 −0.0262229
\(656\) 0.318874 0.0124500
\(657\) 33.9686 1.32524
\(658\) −11.7026 −0.456214
\(659\) 19.4230 0.756612 0.378306 0.925681i \(-0.376507\pi\)
0.378306 + 0.925681i \(0.376507\pi\)
\(660\) 0.971085 0.0377994
\(661\) −34.1803 −1.32946 −0.664731 0.747083i \(-0.731454\pi\)
−0.664731 + 0.747083i \(0.731454\pi\)
\(662\) 4.09698 0.159234
\(663\) −71.8170 −2.78914
\(664\) −10.7959 −0.418963
\(665\) −0.249241 −0.00966514
\(666\) 0 0
\(667\) −31.3978 −1.21573
\(668\) 24.6910 0.955322
\(669\) 36.4168 1.40796
\(670\) 0.300917 0.0116254
\(671\) −0.649337 −0.0250674
\(672\) 46.0086 1.77482
\(673\) −26.5978 −1.02527 −0.512634 0.858607i \(-0.671330\pi\)
−0.512634 + 0.858607i \(0.671330\pi\)
\(674\) 1.11790 0.0430599
\(675\) 3.64412 0.140262
\(676\) −11.8813 −0.456972
\(677\) 10.0461 0.386105 0.193052 0.981188i \(-0.438161\pi\)
0.193052 + 0.981188i \(0.438161\pi\)
\(678\) 22.3365 0.857829
\(679\) −20.5571 −0.788910
\(680\) −0.861134 −0.0330230
\(681\) 64.7211 2.48012
\(682\) 5.38790 0.206313
\(683\) −32.5300 −1.24473 −0.622364 0.782728i \(-0.713828\pi\)
−0.622364 + 0.782728i \(0.713828\pi\)
\(684\) 5.84327 0.223423
\(685\) 1.21196 0.0463067
\(686\) 2.81699 0.107553
\(687\) 32.3664 1.23486
\(688\) 2.55423 0.0973792
\(689\) 46.2789 1.76309
\(690\) 0.412231 0.0156934
\(691\) −45.2007 −1.71952 −0.859759 0.510700i \(-0.829386\pi\)
−0.859759 + 0.510700i \(0.829386\pi\)
\(692\) −13.8591 −0.526844
\(693\) 38.1882 1.45065
\(694\) 0.485751 0.0184389
\(695\) 0.359458 0.0136350
\(696\) −33.8462 −1.28294
\(697\) −0.848198 −0.0321278
\(698\) −5.87659 −0.222432
\(699\) 64.6298 2.44452
\(700\) −30.4083 −1.14933
\(701\) −6.75355 −0.255078 −0.127539 0.991834i \(-0.540708\pi\)
−0.127539 + 0.991834i \(0.540708\pi\)
\(702\) 1.71346 0.0646703
\(703\) 0 0
\(704\) 6.87344 0.259053
\(705\) 1.07957 0.0406588
\(706\) 16.9154 0.636619
\(707\) 27.3195 1.02746
\(708\) −1.27609 −0.0479585
\(709\) −37.9151 −1.42393 −0.711966 0.702214i \(-0.752195\pi\)
−0.711966 + 0.702214i \(0.752195\pi\)
\(710\) −0.195134 −0.00732326
\(711\) 45.9195 1.72212
\(712\) −9.68271 −0.362875
\(713\) −14.2108 −0.532197
\(714\) −29.9571 −1.12112
\(715\) −1.00248 −0.0374907
\(716\) 10.8649 0.406042
\(717\) 10.6223 0.396696
\(718\) 7.42464 0.277085
\(719\) 26.0171 0.970274 0.485137 0.874438i \(-0.338770\pi\)
0.485137 + 0.874438i \(0.338770\pi\)
\(720\) −0.543487 −0.0202546
\(721\) 33.0923 1.23242
\(722\) −9.44534 −0.351519
\(723\) −67.1024 −2.49556
\(724\) −1.49189 −0.0554457
\(725\) 34.3878 1.27713
\(726\) 0.284053 0.0105422
\(727\) 52.6165 1.95144 0.975718 0.219029i \(-0.0702890\pi\)
0.975718 + 0.219029i \(0.0702890\pi\)
\(728\) −30.8970 −1.14512
\(729\) −31.9570 −1.18359
\(730\) −0.371962 −0.0137669
\(731\) −6.79419 −0.251292
\(732\) 0.854345 0.0315775
\(733\) −7.94458 −0.293440 −0.146720 0.989178i \(-0.546872\pi\)
−0.146720 + 0.989178i \(0.546872\pi\)
\(734\) −5.49446 −0.202804
\(735\) 0.941648 0.0347332
\(736\) 23.6772 0.872752
\(737\) 27.4237 1.01017
\(738\) 0.228969 0.00842846
\(739\) −4.31152 −0.158602 −0.0793010 0.996851i \(-0.525269\pi\)
−0.0793010 + 0.996851i \(0.525269\pi\)
\(740\) 0 0
\(741\) −11.5313 −0.423611
\(742\) 19.3044 0.708686
\(743\) −10.8365 −0.397553 −0.198777 0.980045i \(-0.563697\pi\)
−0.198777 + 0.980045i \(0.563697\pi\)
\(744\) −15.3189 −0.561618
\(745\) 0.372513 0.0136478
\(746\) 8.55875 0.313358
\(747\) 18.1241 0.663124
\(748\) −36.3167 −1.32787
\(749\) 30.7921 1.12512
\(750\) −0.903400 −0.0329875
\(751\) −44.6876 −1.63067 −0.815336 0.578988i \(-0.803448\pi\)
−0.815336 + 0.578988i \(0.803448\pi\)
\(752\) 15.1782 0.553493
\(753\) −51.1623 −1.86446
\(754\) 16.1691 0.588842
\(755\) −0.0560295 −0.00203912
\(756\) −4.44078 −0.161510
\(757\) 18.0245 0.655112 0.327556 0.944832i \(-0.393775\pi\)
0.327556 + 0.944832i \(0.393775\pi\)
\(758\) −10.0086 −0.363529
\(759\) 37.5683 1.36364
\(760\) −0.138268 −0.00501549
\(761\) 3.36170 0.121862 0.0609308 0.998142i \(-0.480593\pi\)
0.0609308 + 0.998142i \(0.480593\pi\)
\(762\) 8.68437 0.314602
\(763\) −7.41894 −0.268584
\(764\) −16.0051 −0.579044
\(765\) 1.44566 0.0522680
\(766\) −0.726032 −0.0262326
\(767\) 1.31735 0.0475668
\(768\) 4.66872 0.168468
\(769\) 46.0044 1.65896 0.829480 0.558536i \(-0.188637\pi\)
0.829480 + 0.558536i \(0.188637\pi\)
\(770\) −0.418166 −0.0150697
\(771\) 8.28185 0.298263
\(772\) 5.03251 0.181124
\(773\) 19.0909 0.686653 0.343327 0.939216i \(-0.388446\pi\)
0.343327 + 0.939216i \(0.388446\pi\)
\(774\) 1.83408 0.0659245
\(775\) 15.5640 0.559077
\(776\) −11.4042 −0.409386
\(777\) 0 0
\(778\) 10.7977 0.387117
\(779\) −0.136190 −0.00487953
\(780\) 1.31899 0.0472273
\(781\) −17.7833 −0.636338
\(782\) −15.4167 −0.551299
\(783\) 5.02194 0.179470
\(784\) 13.2392 0.472827
\(785\) 0.293950 0.0104915
\(786\) −12.9518 −0.461977
\(787\) 22.1092 0.788109 0.394054 0.919087i \(-0.371072\pi\)
0.394054 + 0.919087i \(0.371072\pi\)
\(788\) 13.9106 0.495543
\(789\) 23.3793 0.832325
\(790\) −0.502826 −0.0178897
\(791\) 59.7614 2.12487
\(792\) 21.1851 0.752780
\(793\) −0.881968 −0.0313196
\(794\) −18.9035 −0.670861
\(795\) −1.78083 −0.0631597
\(796\) 46.1600 1.63610
\(797\) −4.77394 −0.169102 −0.0845508 0.996419i \(-0.526946\pi\)
−0.0845508 + 0.996419i \(0.526946\pi\)
\(798\) −4.81004 −0.170274
\(799\) −40.3737 −1.42832
\(800\) −25.9319 −0.916833
\(801\) 16.2552 0.574349
\(802\) 20.5480 0.725575
\(803\) −33.8983 −1.19625
\(804\) −36.0819 −1.27251
\(805\) 1.10293 0.0388731
\(806\) 7.31817 0.257772
\(807\) 0.513185 0.0180650
\(808\) 15.1556 0.533174
\(809\) 24.1639 0.849558 0.424779 0.905297i \(-0.360352\pi\)
0.424779 + 0.905297i \(0.360352\pi\)
\(810\) 0.289826 0.0101835
\(811\) 20.4560 0.718307 0.359154 0.933278i \(-0.383065\pi\)
0.359154 + 0.933278i \(0.383065\pi\)
\(812\) −41.9055 −1.47059
\(813\) 3.73592 0.131024
\(814\) 0 0
\(815\) −0.0686312 −0.00240405
\(816\) 38.8543 1.36017
\(817\) −1.09091 −0.0381660
\(818\) −6.35221 −0.222100
\(819\) 51.8695 1.81247
\(820\) 0.0155779 0.000544005 0
\(821\) 8.27234 0.288707 0.144353 0.989526i \(-0.453890\pi\)
0.144353 + 0.989526i \(0.453890\pi\)
\(822\) 23.3894 0.815799
\(823\) −35.3049 −1.23065 −0.615326 0.788273i \(-0.710976\pi\)
−0.615326 + 0.788273i \(0.710976\pi\)
\(824\) 18.3581 0.639535
\(825\) −41.1459 −1.43252
\(826\) 0.549508 0.0191198
\(827\) 21.9832 0.764430 0.382215 0.924073i \(-0.375161\pi\)
0.382215 + 0.924073i \(0.375161\pi\)
\(828\) −25.8573 −0.898604
\(829\) −49.5466 −1.72082 −0.860412 0.509598i \(-0.829794\pi\)
−0.860412 + 0.509598i \(0.829794\pi\)
\(830\) −0.198461 −0.00688868
\(831\) 60.9114 2.11299
\(832\) 9.33592 0.323665
\(833\) −35.2158 −1.22016
\(834\) 6.93710 0.240212
\(835\) 0.980839 0.0339433
\(836\) −5.83118 −0.201675
\(837\) 2.27295 0.0785646
\(838\) −14.0775 −0.486299
\(839\) −41.0989 −1.41889 −0.709447 0.704759i \(-0.751055\pi\)
−0.709447 + 0.704759i \(0.751055\pi\)
\(840\) 1.18893 0.0410220
\(841\) 18.3896 0.634124
\(842\) 15.0408 0.518340
\(843\) −55.2197 −1.90187
\(844\) −41.0092 −1.41160
\(845\) −0.471979 −0.0162366
\(846\) 10.8988 0.374708
\(847\) 0.759984 0.0261134
\(848\) −25.0378 −0.859800
\(849\) 39.5198 1.35632
\(850\) 16.8848 0.579143
\(851\) 0 0
\(852\) 23.3979 0.801599
\(853\) 26.4660 0.906179 0.453089 0.891465i \(-0.350322\pi\)
0.453089 + 0.891465i \(0.350322\pi\)
\(854\) −0.367896 −0.0125891
\(855\) 0.232122 0.00793840
\(856\) 17.0821 0.583853
\(857\) −2.73858 −0.0935481 −0.0467741 0.998905i \(-0.514894\pi\)
−0.0467741 + 0.998905i \(0.514894\pi\)
\(858\) −19.3467 −0.660485
\(859\) −6.12536 −0.208995 −0.104497 0.994525i \(-0.533323\pi\)
−0.104497 + 0.994525i \(0.533323\pi\)
\(860\) 0.124782 0.00425502
\(861\) 1.17107 0.0399100
\(862\) 19.2483 0.655600
\(863\) −22.6823 −0.772116 −0.386058 0.922474i \(-0.626164\pi\)
−0.386058 + 0.922474i \(0.626164\pi\)
\(864\) −3.78706 −0.128838
\(865\) −0.550547 −0.0187192
\(866\) 6.79476 0.230895
\(867\) −60.7128 −2.06191
\(868\) −18.9666 −0.643767
\(869\) −45.8245 −1.55449
\(870\) −0.622193 −0.0210943
\(871\) 37.2485 1.26212
\(872\) −4.11570 −0.139375
\(873\) 19.1452 0.647966
\(874\) −2.47537 −0.0837306
\(875\) −2.41705 −0.0817111
\(876\) 44.6007 1.50692
\(877\) 4.44443 0.150078 0.0750389 0.997181i \(-0.476092\pi\)
0.0750389 + 0.997181i \(0.476092\pi\)
\(878\) 0.924836 0.0312117
\(879\) −31.7591 −1.07121
\(880\) 0.542362 0.0182830
\(881\) 46.7564 1.57526 0.787632 0.616146i \(-0.211307\pi\)
0.787632 + 0.616146i \(0.211307\pi\)
\(882\) 9.50643 0.320098
\(883\) −23.0255 −0.774871 −0.387435 0.921897i \(-0.626639\pi\)
−0.387435 + 0.921897i \(0.626639\pi\)
\(884\) −49.3275 −1.65906
\(885\) −0.0506923 −0.00170400
\(886\) −2.24310 −0.0753585
\(887\) −34.5820 −1.16115 −0.580575 0.814207i \(-0.697172\pi\)
−0.580575 + 0.814207i \(0.697172\pi\)
\(888\) 0 0
\(889\) 23.2351 0.779279
\(890\) −0.177997 −0.00596647
\(891\) 26.4130 0.884869
\(892\) 25.0129 0.837495
\(893\) −6.48258 −0.216931
\(894\) 7.18904 0.240438
\(895\) 0.431605 0.0144270
\(896\) 40.5815 1.35573
\(897\) 51.0275 1.70376
\(898\) −2.98367 −0.0995665
\(899\) 21.4487 0.715354
\(900\) 28.3197 0.943990
\(901\) 66.5998 2.21876
\(902\) −0.228495 −0.00760805
\(903\) 9.38045 0.312162
\(904\) 33.1530 1.10265
\(905\) −0.0592649 −0.00197003
\(906\) −1.08130 −0.0359238
\(907\) −26.9725 −0.895607 −0.447803 0.894132i \(-0.647794\pi\)
−0.447803 + 0.894132i \(0.647794\pi\)
\(908\) 44.4537 1.47525
\(909\) −25.4431 −0.843894
\(910\) −0.567978 −0.0188283
\(911\) 9.96573 0.330179 0.165090 0.986279i \(-0.447209\pi\)
0.165090 + 0.986279i \(0.447209\pi\)
\(912\) 6.23862 0.206581
\(913\) −18.0865 −0.598577
\(914\) 3.17116 0.104893
\(915\) 0.0339385 0.00112197
\(916\) 22.2309 0.734530
\(917\) −34.6527 −1.14433
\(918\) 2.46583 0.0813844
\(919\) 13.3269 0.439613 0.219806 0.975543i \(-0.429457\pi\)
0.219806 + 0.975543i \(0.429457\pi\)
\(920\) 0.611854 0.0201722
\(921\) −84.0115 −2.76827
\(922\) 16.8005 0.553295
\(923\) −24.1544 −0.795052
\(924\) 50.1409 1.64952
\(925\) 0 0
\(926\) −1.03692 −0.0340752
\(927\) −30.8193 −1.01224
\(928\) −35.7366 −1.17311
\(929\) 52.1412 1.71070 0.855348 0.518054i \(-0.173343\pi\)
0.855348 + 0.518054i \(0.173343\pi\)
\(930\) −0.281607 −0.00923424
\(931\) −5.65441 −0.185316
\(932\) 44.3910 1.45408
\(933\) −68.9476 −2.25724
\(934\) 12.4554 0.407552
\(935\) −1.44267 −0.0471803
\(936\) 28.7749 0.940536
\(937\) −9.76511 −0.319012 −0.159506 0.987197i \(-0.550990\pi\)
−0.159506 + 0.987197i \(0.550990\pi\)
\(938\) 15.5375 0.507318
\(939\) 37.0190 1.20807
\(940\) 0.741501 0.0241851
\(941\) −43.3925 −1.41455 −0.707277 0.706937i \(-0.750077\pi\)
−0.707277 + 0.706937i \(0.750077\pi\)
\(942\) 5.67287 0.184832
\(943\) 0.602662 0.0196254
\(944\) −0.712712 −0.0231968
\(945\) −0.176408 −0.00573856
\(946\) −1.83028 −0.0595075
\(947\) −47.3912 −1.54001 −0.770004 0.638040i \(-0.779746\pi\)
−0.770004 + 0.638040i \(0.779746\pi\)
\(948\) 60.2922 1.95820
\(949\) −46.0427 −1.49461
\(950\) 2.71110 0.0879596
\(951\) 58.7972 1.90663
\(952\) −44.4637 −1.44108
\(953\) 37.2753 1.20747 0.603733 0.797186i \(-0.293679\pi\)
0.603733 + 0.797186i \(0.293679\pi\)
\(954\) −17.9784 −0.582074
\(955\) −0.635796 −0.0205739
\(956\) 7.29591 0.235967
\(957\) −56.7028 −1.83294
\(958\) 8.89368 0.287342
\(959\) 62.5784 2.02076
\(960\) −0.359251 −0.0115948
\(961\) −21.2922 −0.686847
\(962\) 0 0
\(963\) −28.6772 −0.924108
\(964\) −46.0893 −1.48444
\(965\) 0.199915 0.00643548
\(966\) 21.2851 0.684838
\(967\) 24.5302 0.788837 0.394418 0.918931i \(-0.370946\pi\)
0.394418 + 0.918931i \(0.370946\pi\)
\(968\) 0.421605 0.0135509
\(969\) −16.5946 −0.533095
\(970\) −0.209642 −0.00673121
\(971\) −2.85194 −0.0915232 −0.0457616 0.998952i \(-0.514571\pi\)
−0.0457616 + 0.998952i \(0.514571\pi\)
\(972\) −38.5224 −1.23561
\(973\) 18.5602 0.595013
\(974\) 11.5263 0.369328
\(975\) −55.8868 −1.78981
\(976\) 0.477161 0.0152735
\(977\) −40.4966 −1.29560 −0.647800 0.761811i \(-0.724311\pi\)
−0.647800 + 0.761811i \(0.724311\pi\)
\(978\) −1.32450 −0.0423528
\(979\) −16.2216 −0.518443
\(980\) 0.646772 0.0206604
\(981\) 6.90938 0.220599
\(982\) −15.7388 −0.502245
\(983\) 19.9376 0.635911 0.317955 0.948106i \(-0.397004\pi\)
0.317955 + 0.948106i \(0.397004\pi\)
\(984\) 0.649657 0.0207103
\(985\) 0.552591 0.0176070
\(986\) 23.2688 0.741030
\(987\) 55.7423 1.77430
\(988\) −7.92025 −0.251977
\(989\) 4.82742 0.153503
\(990\) 0.389445 0.0123774
\(991\) 31.8979 1.01327 0.506635 0.862161i \(-0.330889\pi\)
0.506635 + 0.862161i \(0.330889\pi\)
\(992\) −16.1745 −0.513542
\(993\) −19.5149 −0.619288
\(994\) −10.0755 −0.319577
\(995\) 1.83369 0.0581318
\(996\) 23.7968 0.754031
\(997\) 22.1782 0.702391 0.351196 0.936302i \(-0.385775\pi\)
0.351196 + 0.936302i \(0.385775\pi\)
\(998\) −10.0761 −0.318953
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1369.2.a.o.1.14 yes 27
37.6 odd 4 1369.2.b.h.1368.23 54
37.31 odd 4 1369.2.b.h.1368.32 54
37.36 even 2 1369.2.a.n.1.14 27
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1369.2.a.n.1.14 27 37.36 even 2
1369.2.a.o.1.14 yes 27 1.1 even 1 trivial
1369.2.b.h.1368.23 54 37.6 odd 4
1369.2.b.h.1368.32 54 37.31 odd 4